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Abstract—Sampled Dense-Dense Matrix Multiplication (SD-
DMM) is a core component of many machine learning systems.
SDDMM exposes a substantial amount of parallelism that fa-
vors throughput-oriented architectures like the GPU. However,
accelerating it on GPUs is challenging in two aspects: the poor
memory access locality caused by the sparse sampling matrix
with the poor parallelism caused by the dot-product reduction
of vectors in two dense matrices.

To address both challenges, we present PRedS to boost
SDDMM efficiency with a suite of Parallel Reduction Scheduling
optimizations. PRedS uses Vectorized Coarsen 1-Dimensional
Tiling (VCT) to benefit the online locality of loading the dense
matrix. PRedS uses Integrated Interleaving Reduction (IIR) to
increase thread occupancy in the parallel reduction. PRedS also
leverages Warp-Merged Tiling (WMT) to preserve occupancy
and parallelism when reducing very long arrays. Enhanced with
GPU-intrinsic vectorized memory loading, PRedS achieves a
geometric speedup of 29.20× compared to the vendor library.
PRedS achieves up to 8.31× speedup over state-of-the-art imple-
mentations on the SuiteSparse benchmark.

Index Terms—HPC, GPU, kernel optimization

I. INTRODUCTION

Sampled Dense-Dense Matrix Multiplication (SDDMM)
performs a matrix multiplication between two dense matrices
A and B, and sample the output with a sparse matrix S, yield-
ing another sparse matrix P with the same non-zero locations
of S, as shown in Fig. 1(a). SDDMM is implemented in many
machine learning systems (e.g., recommendation [1]). It is
used by many iterative matrix factorization algorithms such as
Sparse Factor Analysis (SFA) [2], Latent Dirichlet Allocation
(LDA) [3, 4] and Cyclic Coordinate Descent (CCD++) [5].
SDDMM is a core primitive in Tensor Algebra Compiler
(TACO) [6]. It is also one of the core operators in Deep Graph
Library (DGL) [7], a popular GNN systematic framework.
Thus, speeding up SDDMM can potentially improve the
performance of many of the algorithms mentioned before.

SDDMM exposes a substantial amount of parallelism be-
cause it needs to compute the dot product of every non-
zero entry. It is also a bandwidth-bound kernel due to the
substantial memory access of the dense matrices. Implement-
ing SDDMM on GPUs with high performance has several
challenges. Firstly, the access pattern of dense matrices A and
B shows poor locality due to the sparsity of the sampling
matrix S. As shown in Fig. 1(a), sparsely distributed elements
in S cause irregular access to the dense matrices. Secondly,

doing the multiple dot products together, as shown in Fig. 1(b),
still lacks researched methodologies.

To tackle these problems, we propose PRedS, a high-
performance SDDMM kernel with three dedicated schedule
transformations detailed in Section III. Instead of using offline
sparse format transformation, we show that the SDDMM per-
formance can be greatly benefited by online hardware-aware,
which is not conflict with offline preprocess. Schedule trans-
formations (e.g., loop reorder, loop unroll, thread coarsening)
are important techniques in parallel computing, extensively
studied for dense matrix kernels [8], DNN kernels [9], image
processing [10] and data processing [11]. We conduct exten-
sive experiments on the 956 matrices from the SuiteSparse [12]
benchmark to demonstrate the effectiveness of our techniques.
The contributions of this paper are summarized below.

• To exploit the online locality without time-consuming
preprocessing, we propose Vectorized Coarse 1-
Dimensional Tiling (VCT) for SDDMM. VCT improves
memory access locality without offline transformation
into a non-standard sparse matrix format. Compared to
baseline, VCT reduces the LLC miss bytes by up to
59%, and brings average 11.63×, 3.72× speedup on
Tesla V100 and RTX 2080, respectively.

• To improve the parallelism for reduction operation,
we propose Integrated Interleaving Reduction (IIR) and
Warp-Merged Tiling (WMT) for SDDMM. IIR and WMT
increase parallelism in the dot-product reduction through
intra-warp and inter-warp workload merging, respec-
tively. IIR brings 1.20×, 2.09× speedup on Tesla V100
and RTX 2080 on average for reduction dimension 32,
respectively. WMT further improves the performance by
1.08∼1.16× in geometric mean for reduction dimension
256. To our best knowledge, this is the first work dis-
cussing the reduction scheduling for SDDMM.

• We present experimental results on 956 matrices of
SuiteSparse [12] benchmark. PRedS achieves a geomet-
ric speedup of 29.20× compared to cuSPARSE [13].
PRedS surpasses the state-of-the-art SDDMM implemen-
tation ASpT [14] by average 1.03∼1.76×. Also, PRedS
achieves up to 8.31× speedup compared to ASpT.

We organize the rest of the paper as follows: Section II
elaborates on preliminaries on GPU architecture and rela-
tive programming techniques. Section III presents the three
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Fig. 1. The overview of the SDDMM operation on GPUs. (a) Calculating the result matrix P using two dense matrix A, B and a sparse matrix S. P [i][j]
equals to the dot product of A[i] and B[j] if S[i][j] is not zero. (b) Three steps of implementing the SDDMM operation on GPUs. Step 1©: Loading
corresponding rows/columns in A and B according to the non-zero elements in the sparse matrix S. Step 2©: Calculating the partial sum in a GPU warp,
which is detailed in Section II-A. Step 3©: Sum-up all partial sums in different warps of a same vector pair. (c) Challenges of each step in previous works,
and the proposed solutions in our work. Corresponding sections and diagrams in this paper are labeled.

schedule-level designs adopted by PRedS. Section IV shows
experimental results and we conclude in Section V.

II. BACKGROUND

A. GPU Preliminary

1) Parallel Execution on GPUs: We use CUDA as our
programming interface for NVIDIA GPUs. CUDA abstracts
parallel programs into blocks of threads. The threads in the
block are handed over to the same streaming multiprocessor
(SM) in the GPU hardware for execution. The SM would
execute threads in the Single Instruction, Multiple Thread
(SIMT) model. In this model, the multiprocessor creates,
manages, schedules, and executes threads in groups of 32
parallel threads called warps. [15] Threads in one threads
block would map to warps according to thread ID. The warp
scheduler picks an eligible warp and executes all threads in
the warp. If any of the threads in the executing warp stalls,
the warp scheduler would make it inactive. In addition, when
the SM needs to execute one or more thread blocks, it follows
the rule of the threads block scheduler. [16]

2) Memory Hierarchy on GPUs: In the CUDA program-
ming model, the GPU memory system is composed of global
memory and shared memory. The global memory is physically
composed of the DRAM, the L2 cache shared by all SMs, and
the L1 cache owned by each SM. [17] Specifically, data stored
in the SM independent L1 cache would reduce redundant
loading from DRAM.

3) Hardware Intrinsic: We leverage some hardware-
intrinsic features in CUDA to accelerate SDDMM, such as
vectorized memory access and warp-level primitives. With
vectorized memory access, a thread could load up to 128 bits
of memory in one instruction, a granularity appropriate for L1
data cache [18]. Vectorized memory reduces the total amount

of instructions and improves bandwidth utilization [19]. With
warp-level primitives, threads within a warp can process local
variables in specific patterns efficiently [15]. By using these
primitives, we could build a high-performance tree reduction
to calculate dot production, on which we would elaborate in
section 1 III-B.

B. Related Work

1) SDDMM on GPUs: Different from designing a high-
perf accelerator [20], optimizing the SDDMM performance
on GPU has to be aware of the hardware’s characteristics.
Previous studies have addressed the locality and parallelism
issue by various methods. BIDMach [21] is a GPU-accelerated
machine learning framework, providing the SDDMM kernel
based on widely-used sparse matrix formats such as COO
(Coordinate) or CSR (Compressed Sparse Row). It uses atomic
operations to reduce results from different warps, leading
to unsatisfactory performance. Some recent efforts focus on
improving the performance of SDDMM by exploring different
tiling methods. Nisa et al. [1] study how to apply different
types of streaming to tile matrices by leveraging the shared
memory capacity. Gale et al. [22] proposes new techniques
to enable the use of vector instruction on misaligned memory
addresses. Hong et al. [14] use the adaptive tiling method to
identify condensed blocks of the sparse matrix, enabling fine-
grained reuse of dense matrices tiles. Jiang et al. [23] improve
the ASpT with a matrix row reorder algorithm to increase the
occurrence of dense blocks.

However, these related works didn’t fully release the poten-
tial of GPU’s architecture while considering the SDDMM cal-
culation features. [1] uses the matrix tiling method similar to
that of GEMM [24]. [22] overlooks the reduction optimization
brought by multiple dot products. Although implementations
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Fig. 2. Examples of data loading patterns by different blocks. (a) Four
consecutive non-zero elements are processed by different blocks, leading to
pool cache utilization. (b) Four consecutive non-zero elements are processed
by a same block (Block0), thus the corresponding row is only loaded by
Block0.

such as [14] and [23] surpass cuSPARSE in performance, they
require preprocessing on the sparse matrix. Our work does
not rely on offline preprocessing on the sparse matrix, but ex-
ploits hardware-aware scheduling to boost online performance,
which are orthogonal to offline optimization techniques.

2) Parallel Reduction on GPUs: Reduction is common
in all kinds of matrix multiplications. GPUs require enough
parallelism to get high throughput, but it is hard to parallelize
a reduction operation. Intuitively, the single output depends on
all of the input elements. Previous work proposes algorithms
and tuning techniques based on combinations of inner-thread
loop-carried reduction, intra-warp reduction, and atomic op-
erations in shared memory or global memory [25]. However,
they couldn’t fully adapt to SDDMM, which has the specialty
to calculate a large number of dot products together.

III. PREDS DESIGN

PRedS supports COO and CSR sparse formats, which adapts
to formats in vendor libraries [13] and open-access tool-
kits [26]. They are also compatible with existing frameworks
for data science [21] and graph learning [7]. COO represents
a sparse matrix with three arrays: a row array, a column array,
and a value array. The CSR format compressed the row array
of COO to get the indices for only the first value of every
row. [27] Row coordinates of CSR format could retrieve from
the compressed pointer array by binary search. Note that the
default triples in COO are in ascending order of rows and
columns.

To accelerate SDDMM in parallel, a general organization
assigns nonzeros to different blocks, in which threads are
responsible for the parallel reduction. This section elaborates
PRedS’s key designs for SDDMM, which are Vectorized
Coarsen 1-D Tiling (VCT) for better memory locality (Sec-
tion III-A), Integrated Interleaving Reductions (IIR) (Sec-
tion III-B) and Virtual Warp Reduction (VWR) (Section III-C)
for efficient reduction.

A. Vectorized Coarsen 1-Dimensional Tiling

For data locality optimization, tiling has been widely used in
many GPU-side algorithms, such as dense matrix-matrix mul-
tiplication [28] and sparse-dense matrix multiplication [14].

The effective use of data locality brings benefits like reducing
global memory transactions and increasing the L1 cache hit
rate, which exerts the high bandwidth advantage of the GPU
memory. However, it is non-trivial to obtain a tiling method
that is hardware-friendly without the overhead of preprocess-
ing. Previous work has applied a 2-Dimensional block-wise
tiling strategy to the sparse matrix [14], but it requires a ded-
icated sparse matrix representation. Instead of 2-Dimensional
tiling, we use 1-Dimensional element-wise tiling, which does
not require preprocessing and is adaptive to different matrix
patterns or sizes. We introduced a Vectorized 1-Dimensional
tiling method with the advantage of the spatial locality in the
sparse matrix, noticing that consecutive nonzeros would locate
in the same row.

There are two motivations for proposing 1-D tiling. Firstly,
1-D tiling utilizes the locality of row coordinates to reduce
cache miss based on the global memory access mechanism
within the warp [15]. As shown in Fig. 2, each block will
request global memory and store related data in the L1 cache,
which is locally exclusive in each Streaming Multiprocessor
(SM). We introduce a hyper-parameter Ts, which represents
the size of the tile allocated to each block. Finding an optimal
Ts to utilize data locality in the sparse matrix is challenging. A
larger Ts will reduce the data load of the DRAM and instead
request data from the L1 cache. In other words, it makes
data reuse through the L1 cache more effective. Secondly,
1-D tiling paves the way for vectorized memory loading,
which could increase the utilization of memory bandwidth [19]
and improved the efficiency of memory access by memory
alignment.

Fig. 2 demonstrates four adjacent non-zeros elements in the
same color map to one block, which explains the VCT method
when the tile size equals four. When the number of elements
in the sparse array is not divisible by the tile size, we need to
reconsider the implementation of vectorized instructions. We
use the residue handler to solve the residual elements using a
non-vectorized method.

From many comparative experiments, we choose a Ts =
16 as a relatively good result obtained by various analysis
indicators and benchmarks, to be detailed in Section IV-B as
well.

B. Integrated Interleaving Reduction

Another problem we urgently need to solve is the low
parallelism in reduction operation in previous work. The
insight is to optimize multiple independent reduction oper-
ations cooperatively instead of focusing on a single reduc-
tion. Existing algorithms [1, 14] use the warp-level intrinsic
functions provided by NVIDIA for the reduction in the dot-
product, but dot-product for each output element is carried out
independently, either sequentially (within a tile). We propose
Integrated Interleaving Reduction (IIR), which makes a warp
of threads merge different chunks in parallel possible.

To show the intra-warp reduction step, we take the case of
K=32 as an example. As shown in Fig. 3(a), the traditional
reduction method using the primitive __shfl_down_sync
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Fig. 3. Comparison of different reduction schemes in a GPU warp, using a
warp with 32 threads and the reduction of vector A0 ∼ A3 and B0 ∼ B3

with K = 32 as the example. (a) The baseline reduction scheme. Each thread
calculates the dot product of the corresponding element in A and B, then the
results of 32 threads are reduced. A0 ∼ A3 and B0 ∼ B3 are processed by
the warp sequentially. (b) The Integrated Interleaving Reduction (IIR) scheme.
Each thread calculates the dot product of four element pairs in A and B. The
dot of A0 ∼ A3 with B0 ∼ B3 are processed by the warp in parallel. (c)
The comparison of thread occupancy (output-related threads) in two reduction
schemes, IIR makes a better utilization of threads in a GPU warp during the
intra-warp reduction step.

needs a warp of 32 threads. This method uses 32 threads
to calculate the dot product, with only one value related to
output in the end. This is also the baseline implementation
of tree-based reduction. Unlike a generic parallel reduction,
SDDMM is composed of a large number of independent
reduction operations at the same time. Here we define the
Shfl Coarsening Factor (SCF) as

SCF = number of output threads/warpSize.

to elaborate our idea. When using the shfl primitive model in
Fig. 3(a), SCF is equal to 1/32, which means that the reduction
uses 32 threads to output only one final result. Low SCF
leads to an inefficient reduction in the warp. In this way, the
proportion of threads used to output the dot product results is
relatively low, which will make SDDMM inefficient.

Algorithm 1 SDDMM with IIR when K = 32

Input: S.row[nnz], S.col[nnz], S.val[nnz], A[M][K], B[N][K]
Output: P[nnz]

1: if blockIdx.x < nnz/Ts then
2: eid = blockIdx.x * (Ts/vec size) + threadIdx.y *

vec size
3: cid = threadIdx.x * SCF * warp size
4: /* Ready to load S */
5: row[] = vec load(S.row,eid)
6: col[] = vec load(S.col,eid)
7: sum[] = vec dot(A, B, S.row, S.col, cid)
8: sum[] *= S.val[eid:eid+vec size-1]
9: /* Warp reduction */

10: for stride = SCF ∗warp size to 0 step stride/2 do
11: sum[] = shfl down sync(sum[], stride)
12: end for
13: /* Store */
14: if threadIdx.x == 0 then
15: P[eid:eid+vec size-1] = sum[]
16: end if
17: else
18: residue handler(P[eid:nnz-1], A, B, S)
19: end if
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Fig. 4. Comparison of different reduction schemes using 2 warps with
32 threads each and 2 vector pairs A0 ∼ A1 and B0 ∼ B1 with K =
64 as the example. (a) The baseline reduction scheme. 64 threads in two
warps calculates the dot product of the corresponding element in A and
B, the reduction results of 2 warps are further reduced using inter-warps
communication schemes (e.g., atomic add or shared memory). A0 ∼ A1 and
B0 ∼ B1 are processed by the warp sequentially. (b) Warp-Merged Tiling
(WMT) scheme. Each thread calculates the dot product of 2 element pairs
in A and B. Thus, A0 ∼ A1 and B0 ∼ B1 are processed by the warp in
parallel without inter-warps communication.

IIR method makes it possible for one shfl down sync
primitive to compute multiple vector dot products at the
same time. As shown in Fig. 3(b), eight threads can solve a
single 32-dimensional dot product reduction problem, which
increased SCF by four times. Every eight threads of different
colors will output a vector dot product at last. The small
squares in the picture represent the intermediate value of the
dot product of the vector elements.

We organize the thread model of IIR when K = 32 in the
following form. A warp of 32 threads maps to a rectangular



Algorithm 2 WMT when K is larger than 32
Input: S.row[nnz],S.col[nnz],S.val[nnz],A[M][K],B[N][K]
Output: P[nnz]

1: if blockIdx.x < nnz/Ts then
2: eid = blockIdx.x * (Ts/vec size) + threadIdx.y *

vec size
3: cid = threadIdx.x * SCF * warp size
4: sum[] = 0
5: /* Ready to load S */
6: row[] = Load(S.row,eid)
7: col[] = Load(S.col,eid)
8: /* Tiling in warp */
9: for i = 0 to K ∗ SCF/vec size do

10: sum[] = vec dot(A, B, S.row, S.col , cid)
11: cid += vec size/SCF
12: end for
13: sum[] *= S.val[eid:eid+vec size-1]
14: for stride = SCF ∗warp size to 0 step stride/2 do
15: sum[] = shfl down sync(sum[], stride)
16: end for
17: if threadIdx.x == 0 then
18: P[eid:eid+vec size-1] = sum[]
19: end if
20: else
21: residue handler(P[eid:nnz-1], A, B, S)
22: end if

block pattern, where blockDim.x is eight, and blockDim.y is
four. The calculation of these Ts = 16 nonzero elements can
be divided into Ts/vec size = 4 groups, and each group will
share the same reduction model as shown in Fig. 3(b).

To clearly describe our overall process, we show the pseudo-
code of IIR under the K = 32 conditions in Algorithm 1.
We exhibit the results of our experimental improvement in a
subsequent experiment section.

C. Warp-Merged Tiling

To scale SDDMM to larger K, we implement the WMT
method to tile the dense matrix into slices. 32 is one threshold
because it exactly matches the number of threads in the warp.
However, if K reaches a certain level, inter-warp communica-
tion will be inevitable. Previous work used shared memory or
atomic operations[28, 29] for the inter-warp communication.
However, atomic addition needs to ensure that the calculation
process of each warp is the same, which will bring additional
memory and instruction overhead. Shared memory would
bring additional costs in dealing with synchronization. WMT
overcomes these obstacles and brings several benefits.

As shown in Fig. 4, our idea is to divide K into multiple
parts compatible with the warp. Algorithm 2 demonstrates our
pseudo-code when K is more than 32.

Firstly, as shown in Algorithm 2, the sparse matrix data
only needs to be loaded once in each warp, which reduces
redundant memory transactions. Secondly, we move the shfl
part and the multiplication part in IIR outside the loop, which
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in L1, eligible warps per cycle under different slice sizes. To a large extent,
these two metrics have a strong correlation. Experiment data is based on Tesla
V100.

reduces the number of instructions and workload. Thus, we
merge the calculation of multiple warps and cut the number
of threads.

This method is an effective extension of both IIR and VCT,
therefore inherits many of the previous parallel features.

IV. EVALUATION AND ANALYSIS

We conduct extensive experiments on the SDDMM design.
This section shows performance comparison with various
SDDMM kernels and implementation on the ML framework.

A. Experiment Setup

1) Hardware Environments: In this section, we elaborates
the experimental evaluation of the parallel reduction SDDMM
on two different architectures:

• NVIDIA Tesla V100 (80 Volta SMs, 16GB global mem-
ory with bandwidth of 900 GB/s, 6MB L2 cache, 128KB
L1/shared memory unified cache per each SM).

• NVIDIA RTX 2080 (72 Turing SMs, 8GB global mem-
ory, with bandwidth of 448 GB/s, 4M L2 cache and 96
KB L1/shared memory unified cache per each SM).

The code is compiled by NVCC 10.1 with the -O3 flag and
ECC off. CUDA and cuSPARSE library [13] are both in
version 10.1. We carry 100 tests to get the average execution
time. In time statistics, we don’t consider the data transfer
time from CPU to GPU. We calculate the throughput by this
formula: 2 ∗ nnz ∗ K/time. Since the Turing architecture
does not support the nvprof for operator analysis, we only
implement our results on the Tesla V100 GPU.

2) Matrices Benchmark: We use data in the SuiteSparse
collection [12], whose matrices come from different applica-
tion domains. We selected 956 matrices from SuiteSparse with
at least 10K rows and 100K non-zeros.
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3) Baseline: We compared our code with ASpT [14] and
BIDMach [21], which represent high-performance SDDMM
implementations. In addition, we selected related function
from the NVIDIA cuSPARSE library [13] as our baseline.

• cuSPARSE Here we use a variant of SDDMM provided in
cuSPARSE Library [13], which only samples the output
of A multiplies B with the sparse matrix pattern and does
not perform scaling calculations.

• BIDMach [21]: It is an efficient toolkit for machine
learning with several parallel algorithms. It has built-in
efficient kernels for SDDMM on GPU, which is the core
of SFA [2] and LDA [3, 4] algorithms.

• Sputnik [22]: It provides SpMM and SDDMM kernels
which are targeted specifically at deep learning applica-
tions on GPUs. It is based on CSR format and does not
enforce any structure on the topology of nonzero values.

• ASpT [14]: It is a state-of-the-art tiling method that
makes the SDDMM kernel of high performance. Al-
though reordering is an important part of ASpT, we did
not include preprocessing time in our evaluation. In their
open-source code, we can only run SDDMM with K=32
and K=128.

B. Benefits of SDDMM Design

1) Benefits of Vectorized coarsen 1-D tiling: The purpose
of VCT is to reduce cache miss and improve bandwidth
efficiency. Different tile sizes have different effects. Here
we demonstrate why we choose Ts = 16 in the following
experiments. We compare the tile size Ts from 1, 4, 8, 16,
32, 64, 128 as representatives and use multiple indicators for
evaluation. Our data is an average of over 956 matrices from
the SuiteSparse dataset [12].

First, we analyze our kernels with different tile sizes by
metric l2 global load bytes represents Bytes read from L2
for misses in L1 for global loads, which aims to prove the
improvement of the L1 hit rate.

As shown in Fig. 5, the L1 cache miss drops when the tile
size increases from 1 to 16. In theory, expanding the tile size
will make more effective use of data locality and reduce cache
misses. However, experiments have shown that continuing to
increase the tile size will not achieve better performance.

We analyze this phenomenon from another metric called
eligible warps per cycle. It stands for the average number of

Machine slowdown speedup
<-10% -10∼0% 0∼50% 50-100% >1x

RTX 2080 3% 23.5% 67.7% 5.8% 0%
V100 4.4% 25.5% 67.0% 2.6% 0.5%

TABLE I
THIS TABLE SHOWS THE SPEEDUP DISTRIBUTION ON THE SUITESPARSE
DATASET (956 MATRICES) WHEN COMPARING THE WMT METHOD WITH

THE ATOMIC ADD METHOD. NOTE THAT THE ATOMIC ADD METHOD ALSO
IMPLEMENT VCT AND IIR TO CONTROL VARIABLE.

warps that are eligible to issue per active cycle per SM [30].
This metric is strongly related to the whole performance. Note
that this metric has a max limitation, which is bound to the
number of warp schedulers. In architecture like volta, each SM
has four warp schedulers.

Fig. 5 shows that eligible warps first go up to reach the
max limit and then fall. As we introduced in Section II-A,
the warp is the basic unit of parallel computing. The GPU
effectively hides the stall caused by instructions or memory
fetch through enough amount of eligible warps. Since there
are limited workloads in each SM, the eligible warps are fewer
in small tile size. However, mapping too many dot products
to each SM would cause overload, reducing the number of
eligible warps in each cycle. Also, as the tile size increases, the
cost of processing residual elements will increase. Therefore,
choosing Ts = 16 is a trade-off of multiple indicators.

2) Benefits of Interleaving Integrated Reduction: We intro-
duce IIR to efficiently use reduction primitives and improve the
SCF within a warp. We conducted comparative experiments of
IIR and VCT based on K = 32. Fig. 6 shows the increase in
throughput performance. Our result shows the geometric mean
of speed up by IIR is 2.09× on RTX 2080, 1.20× on Tesla
V100.

3) Benefits of Warp-merged Tiling: We propose the WMT
to reduce the communication overhead between threads while
merging the repetitive parts of the algorithm.

Machine RTX 2080 Tesla V100
Baseline cuSPARSE BIDMach cuSPARSE BIDMach
K=32 29.20 5.20 16.11 3.32
K=64 17.46 4.27 15.92 3.96
K=128 11.51 4.57 12.38 2.76
K=256 10.52 2.56 13.42 4.13
K=512 10.91 2.45 15.86 2.56
K=1024 11.24 2.42 - 2.53

TABLE II
AVERAGE SPEEDUP AGAINST THE BASELINES WITHOUT PREPROCESSING

(CUSPARSE [13] AND BIDMACH [21]).

As shown in Table I, we carry out comparative experiments
under the condition of K = 256. The baseline is set up as an
atomic add method across warps, with eight warps mapping
to a thread block.

C. Overall Performance of SDDMM Kernel

As described in the background Section IV-A3, the first
three kernels have no preprocessing format, while the latter
one utilizes an optimized reordering format. Thus, we first
compare kernels without preprocessing in the following part.

1) Comparison with non-preprocessed approaches: Fig.
7 shows the performance comparison of PRedS and non-
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Fig. 7. SDDMM results compared with non-preprocessed kernels. We choose to display data with K equal to 32, 128, 512.

preprocessed baselines on the SuiteSparse dataset. To summa-
rize, we list the average performance gain in Table II. PRedS
achieves a geometric speedup of 29.20× and 5.20× compared
to cuSPARSE and BIDMach on two GPUs. Our experiments
with Sputnik [22] results are shown separately in Table III.
The SDDMM kernel of Sputnik [22] is unusually slow when
K is equal to 32 so that we have an average speedup of 167.7×
compared with it. (test on machine Tesla V100).

Machine speedup
<10x 10-100x >100x

K=32 RTX 2080 3.6% 40.7% 55.7%
V100 2.0% 31.9% 66.1%

K=1024 RTX 2080 54.5% 44.2% 1.3%
V100 33.5% 61.9% 4.6%

TABLE III
SDDMM RELATIVE SPEEDUP PERCENTAGE COMPARED WITH

SPUTNIK [22].

2) Comparison with preprocess-based approaches: Be-
cause ASpT [14] only provides K=32 and K=128, we show
Table IV in these two cases. Note that ASpT relies on prepro-
cessing of the sparse matrix. If we implement the SDDMM
in the ML system, we must consider the overhead of prepro-
cessing, which takes up nearly 50 percent of the computing
time. However, in this work, we only calculate the computing
time compared to ASpT. Thus, we could perform much better
than ASpT when considering the system’s requirements.

The table shows the average and maximum acceleration for
ASpT’s computing time. Our kernel performs competitively
with the approach of ASpT, gaining up to 1.76x speedup on
average without reordering the sparse matrix.

Machine K=32 K=128
Average Max Average Max

RTX 2080 1.76 7.48 1.03 5.17
Tesla V100 1.23 8.14 1.30 8.31

TABLE IV
SPEEDUP AGAINST ASPT [14]

D. End-to-End Performance for ML applications

Our kernel could accelerate machine learning applications
with widely used formats that make it easy to implement in
existing frameworks. As introduced in Section I, we embed
PRedS in BIDMach. We test application speedup on LDA,
SFA which involve SDDMM operations with matrices in
Table V. The results of our embedded kernel are showed in
Fig. 8.

Matrices non-zeros # rows # columns
nytimes 69679427 102660 300000
nips 746316 12419 1500

TABLE V
THE TEST MATRICES IN THE MACHINE LEARNING ALGORITHM.

Although most of the time cost by data transmission, we
still reduce the LDA application time max of 44.8%, with an
average reduction of 19.8%. We reduce the SFA application
time max of 30.1%, with an average of 16.1%.

V. CONCLUSION

In this paper, we propose an efficient SDDMM design on
GPUs, PRedS considers requirements by Machine learning
applications with no preprocessing. PRedS introduces three
techniques: Vectorized Coarsen 1-D Tiling to reduce the
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Fig. 8. Optimized method stands for the system embedded with our PRedS.
Original method is the system with __dds kernel.[4] We record the total
time spent by applications such as LDA, SFA. Experiments are carried out on
RTX 2080. The Y-axis stands for the average running time of the application
divided by K.

cache miss, Integrated Interleaving Reduction to improve inter-
warp parallelism, and Warp Merged Tiling to reduce inter-
warp communication overhead. PRedS achieves a geometric
speedup of 29.20× compared to cuSPARSE. Also, PRedS
achieves up to 8.31× speedup compared to the state-of-art
implementation ASpT [14].
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