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Abstract—Feature-point extraction is a fundamental step in
many applications, such as image matching and Simultaneous
Localization and Mapping (SLAM). The CNN-based feature-
point extraction methods have made significant signs of progress
in both feature-point detection and descriptor generation com-
pared with handcrafted processes. However, the computational
and storage complexity makes it difficult for CNN to run on
real-time embedded systems. In this paper, we aim to deploy
the advanced CNN-based feature-point extraction methods onto
real-time embedded FPGA systems. We optimize the softmax
data flow so that the computation of softmax and NMS can
be reduced by 64×. We generate the normalized descriptors
after picking the feature-points with the highest confidence so
that the computation cost of normalization is reduced by 1500×.
We use fixed-point in both of the CNN backbone and the post-
processing operations, and implement them on the ZCU102
FPGA platform. The experimental results show that our proposed
hardware-software co-design CNN-based feature-point extraction
method outperforms the handcrafted techniques. Our feature-
point extraction on the embedded platform runs at the speed of
20 fps, meeting the real-time requirement.

I. INTRODUCTION

Simultaneously Localization and Mapping (SLAM) is the
essential task of many moving robot applications, such as
terrain exploration and indoor navigation. The visual odometer
calculates the trajectory or position of the robot by com-
paring the relative positions of the feature points of each
frame, which is a crucial module in SLAM. The feature-
point extraction method usually has two steps: 1) feature-point
detection and 2) feature descriptors generation. The descriptors
of the same feature-point in different input images should be
similar. SIFT [1] and ORB [2] are two popular open-source
handcrafted methods for feature-point extraction. Compared
with the handcrafted methods, the CNN-based feature-point
extraction methods, such as DeepDesc [3] and SuperPoint [4],
have made significant progress in both feature-point detection
and descriptor generation. SuperPoint is one of the state-of-
the-art CNN based methods, which includes both feature-point
detection step and descriptor generation step in a single for-
ward pass, and surpasses the traditional handcrafted methods
in accuracy. Figure 1 shows the structure of SuperPoint.

However, due to its high computational complexity and
memory footprint, it is challenging to deploy the CNN-based
feature-point extraction method to the real-time embedded
system. Previous works [5] [6] designed CNN accelerators
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on FPGA. The DPU [7] is one of the state-of-the-art CNN
accelerators and is known for its energy efficiency in running
various CNN structures with the help of end-to-end compiler
DNNVM [8]. We adopt the DPU in this paper and quantize the
CNN backbone of SuperPoint to 8-bit fixed-point number with
neglectable accuracy loss. In addition to the CNN backbone,
there are many post-processing operations in CNN-based
feature-point extraction networks, such as Non-Maximum
Suppression (NMS) [9] and confidence ranking in the feature-
point detection, as well as pixel-wise normalization in the de-
scriptors generation. These post-processing operations become
the bottleneck of embedded systems with CNN accelerators.
To deploy the entire process of feature-point extraction on
real-time embedded systems, we propose a hardware-software
co-design CNN-based feature-point extraction structure and
accelerate the entire process on the Xilinx ZCU102 platform
[10] with the following contributions:

• We optimize the software data flow to make the post-
processing operations, including the normalization, rank-
ing, and NMS operations, consume less computational
complexity and friendly to hardware.

• We quantize both of the CNN backbone and the post-
processing operations to 8-bit fixed-point numbers and
change the base of the power in the softmax operation
from e to 2 with neglectable accuracy loss for one of
the state-of-the-art CNN-based feature-point extraction
methods, SuperPoint.

• We design the hardware architecture to accelerate the en-



tire process of SuperPoint, including the CNN backbone
and the post-processing operations, making the feature-
point extraction method run in real-time (20 fps) on
embedded FPGA platform ZCU102 [10].

We evaluate our hardware-software co-design feature-point
extraction method in a real-time (20 fps) SLAM system. The
experimental results show that our method surpasses state-of-
the-art SLAM methods.

The rest of the paper is organized as follows: We in-
troduce the SuperPoint and the MPSOC in Section II. We
present our hardware-software co-design for SuperPoint in
Section III. The experimental results on the feature-point
testbench (HPatches) [11] and the SLAM datasets (TUM )
[12] are presented in Section IV. Finally, conclusions are
discussed in Section V.

II. PRELIMINARY

Figure 1 shows the overview of the feature-point extrac-
tion and matching method based on SuperPoint. The CNN
backbone of SuperPoint maps the input image I ∈ RH×W to
a tensor X ∈ RHc×Wc×65 for feature-point detection and to
a tensor D ∈ RHc×Wc×D for descriptors generation, where
Hc = H/8 and Wc =W/8.

The feature-point detector calculates X ∈ RHc×Wc×65

and outputs coordinates of the k feature-points with the
highest confidence. The 65 channels correspond to local, non-
overlapping 8× 8 pixel grid areas plus a background channel.
After a channel-wise softmax, the points in different grid
areas have equal confidences. Then the background channel
is removed, and a RHc×Wc×64 ⇒ RH×W reshaping is
performed. The tensor of size RH×W corresponds to the
confidence of each pixel of input image I ∈ RH×W . The
higher the confidence, the more likely the pixel is a feature-
point. Non-Maximum Suppression (NMS) [9] is then applied
to the detection to help ensure that the feature-points are evenly
distributed throughout the image. The detector ranks the points
by the confidence and selects k feature-points with the highest
confidence. The output is the coordinate of the k feature-points
with the highest confidence.

The descriptor generator first performs the bi-cubic inter-
polation of a semi-dense grid of descriptors D ∈ RHc×Wc×D

to obtain a dense grid of descriptors of size RH×W×D and
then L2-normalizes all the descriptors to unit length for further
matching. A selector arranges the k descriptors corresponding
to the k feature-points into the output vector according to the
result of the detector.

III. HARDWARE-SOFTWARE CO-DESIGN

A. Softmax Optimization

The flow path of our SuperPoint-based feature-point ex-
traction method is shown in Figure 2. Each pixel in the
feature-map of the detector branch has 65 elements (noted
as z = [z1, z2, ..., zK ],K = 65 ), including the unnormalized
confidence of an 8× 8 area in the original input image and a
background channel. The standard softmax function is defined
as σ(z)i in Equation (1). σ(z)i is the normalized confidence

Wc

Hc

65

Hc

D

Wc

Softmax

Wc

Hc

1

NMS Rank

Data 
Mover

(x1,y1,z1)

…

(xn,yn,zn)

3

n

(x1,y1)

…

(xk,yk)

2

k

(d’11, …,d’1D)

…

(d’k1, …,d’kD)

k

D

SuperPoint Backbone

H

W

1

Input

Normalize

(d11, …,d1D)

…

(dk1, …,dkD)

k

D

Feature-Point Detector

Descriptor Generator

Wc

Hc

65

Softmax

Wc

Hc

1

NMS Rank
(x1,y1),z1

…
(xn,yn),zn

n
(x1,y1)

…
(xk,yk)

k

SuperPoint
Backbone

H

W

1

Input

Hc

D

Wc

Selector
(d’11, …,d’1D)

…
(d’k1, …,d’kD)

k

D

Normalize
(d11, …,d1D)

…
(dk1, …,dkD)

k

D

Feature-Point Detector

Descriptor Generator

Fig. 2. Optimized Feature-point Extraction Method Based on SuperPoint

of the ith point in the original 8 × 8 area. Since the results
of the softmax function are all positive, we can calculate the
reciprocal of the softmax function ( 1

σ(z)i
) as the normalized

confidence, without affecting the results of the NMS and the
ranking process. We change the base of the power from e to 2
to make it more hardware friendly. Since the divisor is a power
of 2, we can also implement division by the shift operation.

σ(z)i =
ezi∑K
j=1 e

zj
, i = 1, . . . , 64;⇒ 1

σ′(z)max
=

∑K
j=1 2

zj

2zmax

(1)
The original softmax operation computes the softmax results
of each element in z. Thus, there are #SoftDivori division
operations in the original SuperPoint:

#SoftDivori = Hc ×Wc × 64 (2)

In most cases, only the point with the highest confidence
in each grid region can be selected after ranking because
softmax normalizes the confidence within each grid region.
Performing the softmax operation only at the maximum
point in the grid area can reduce the overhead of storage
and computation and simplify the complexity of subsequent
computations. Therefore, as shown in Equation (1), we only
calculate the corresponding softmax result of the maximum
element, which consumes only 1 division operation. There are
total #SoftDivopt divisions after the softmax optimization:

#SoftDivopt = Hc ×Wc × 1 (3)

Our method can significantly reduce the number of divisions
by 64×, making it easy to accelerate softmax operation on
FPGA.

We quantize the output feature-map of CNN (i.e., zi) to 8-bit
fixed-point numbers while still achieving comparable accuracy
[5]. Figure 3(a) shows an overview of the softmax module. It
consists of three parts: adder tree, comparer tree, and divider.
Softmax reads 65 numbers from a grid region at once. Adder
tree computes input to the power of 2 using shift operation and
calculates their sum. The comparer tree reads the values of the
first 64 channels and returns the maximum value, as well as
its channel number which contains the position information.
The divider uses the shift operation to calculate the reciprocal
of confidence ( 1

σ′(z)max
).

B. NMS Optimization

Non-Maximum Suppression (NMS) causes feature-points to
be scattered throughout the whole input image. For each pixel
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in the original input image, NMS compares the confidence of
this pixel with that of the pixels in a square neighborhood
whose edges include εori pixels. If the confidence of the
central target pixel is not the maximum in its neighbors, this
point will be eliminated from the valid feature-points. The
output of the NMS is a list of coordinates and confidences for
each feature-point (zn in Figure 2).

There are Hc ×Wc × 64 points, and the NMS does ε2ori −
1 comparison operations for each point in the original NMS
method. The εori is set to 9 in the original SuperPoint. Thus,
there are totally #NMSCompori comparison operations:

#NMSCompori = Hc ×Wc × 64× (ε2ori − 1)

= Hc ×Wc × 5120
(4)

The softmax optimization introduced in Section III-A al-
ready gives the pixel with maximum confidence of each
8 × 8 block. Thus, we only need to compare each output
pixel of softmax to its adjacent blocks. The comparison area
is a square box with an edge of εopt pixels and εopt =
2 × d(εori − 1)/16e + 1 = 3. There are only Hc ×Wc × 1
points. Thus, there are totally #NMSCompopt comparison
operations after NMS optimization:

#NMSCompopt = Hc ×Wc × 1× (ε2opt − 1)

= Hc ×Wc × 8
(5)

The total number of comparisons is reduced by 640×.

C. Ranking Optimization

The ranking operation is to find out the top k feature-points
with maximum confidence. The output is a list of coordinates
for the k feature-points. In the original implementation, the
confidence of all valid feature-points after NMS is sorted, and
only the first k feature-points are used in the applications like
SLAM and image matching. There are Nnms valid points after
NMS. The time complexity to sort all these Nnms points is
O(Nnms · log(Nnms)).

We create a heap of size k and then look for the k feature-
points with the highest confidence [13]. We do not compute the
order of these k points. The time complexity of the optimized
ranking method is O(Nnms · log(k)). In our experiments,
Nnms ≈ 3000 and k = 200. The running time is reduced
by 8×, and detailed results are given in Section IV.

TABLE I
HARDWARE CONSUMPTION OF THE PROPOSED HARDWARE

#DSP #LUT #FF #BRAM
On-Board Resource 2520 418080 548160 912

DPU 1282 74496 171294 499
Softmax 0 4714 3205 0

Normalization 25 1389 935 0.5

TABLE II
RUNNING TIME COMPARISON OF EACH OPERATION

CNN Post-processing
backbone∗ Softmax NMS Rank Norm Total

CPU 24ms 31ms 27ms 0.97ms 42ms 100.97ms
Ours 1.97ms 0.7ms 0.12ms 1.44ms 4.23ms
* The CNN backbone runs on the accelerator.

D. Normalization Optimization

As mentioned in Section II, there are H ×W descriptors
that need to be normalized in the original SuperPoint. We
L2-normalize the descriptors after ranking the feature-points,
which means we only need to normalize k descriptors. So
we put the selector before the normalization operation, as
shown in Figure 2. In our experiments, we set H = 480,
W = 640, and k = 200, then the computational complexity
of the normalization process is reduced by 1500×.

The architecture of the normalization accelerator is illus-
trated in Figure 3(b). We also quantize the output feature-map
of the descriptor branch to 8-bit fixed-point numbers [5]. The
normalization module can read 8 numbers per clock cycle. The
normalization process is divided into three stages and requires
each descriptor to be read twice. In the first stage, we compute
the sum of the squares of the descriptors, which takes 32
clocks cycles when D = 256. Then the reciprocal of the square
root of the sum is computed as the normalization coefficient.
In the final stage, the descriptor is read a second time and
multiplied by the normalization coefficient. We quantize the
descriptors to 8-bit fixed-point numbers, so the accelerator
only uses very few hardware resources.

IV. EXPERIMENTS

We evaluate our method both on the feature-point testbench
(HPatches [11]) and the SLAM datasets (TUM [12]).

A. Hardware Resources Utilization and Optimization Effect

The proposed CNN-based feature-point extractor is imple-
mented and evaluated on the ZCU102 evaluation board [10],
which is provided by Xilinx. The CNN backbone is calculated
by the Xilinx AI accelerator, DPU [7], which is a hardware IP
implemented on the FPGA side of ZCU102 (Programmable
logic, PL side). The softmax and the normalization steps run
on our proposed accelerators, also on the PL side. The NMS
and the ranking steps are operated on the CPU side (Processing
System, PS side). The accelerators on the PL side, including
the DPU and the proposed ones in Section III, are running at
200MHz. Table I shows the hardware resources utilization of
DPU and our proposed accelerators. Our proposed accelerators
only use very few hardware resources compared with the DPU.



TABLE III
ACCURACY RESULTS ON THE HPATCHES [11] DATASET

Detector Repeatability Homography Estimation
Illumination Viewpoint Illumination Viewpoint

ORB 0.624 0.461 0.611 0.138
SIFT 0.597 0.486 0.807 0.264

Origin
0.61 0.445 0.873 0.206Superpoint

Ours 0.595 0.439 0.88 0.237
* Detector Repeatability is used to evaluate the accuracy of feature-point

detection. Homography Estimation is used to evaluate the performance
of descriptor generation. The higher, the better.

SuperPoint
Origin

SuperPoint
on FPGA

SIFT

ORB

Fig. 4. Results on HPatches. The green lines show correct correspondences.

We compare the running time of each operation in Su-
perPoint before and after the optimization. The results are
shown in Table II. The total running time of post-processing
operations is reduced by more than 20×.

B. Result on the Feature-point Testbench

To evaluate the performance of the SuperPoint network
after optimization, we compare detector repeatability and
homography estimation on the HPatches [11] dataset. We
evaluate our system against the original SuperPoint system and
well-known detector and descriptor systems ORB and SIFT.

Detector Repeatability is computed at 480×640 resolution,
with 300 points detected in each image. Results are shown
in Table III, the DetectorRepeatability column indicates the
performance of feature-point detection. There are mainly two
different vision changes of the input pair: the illumination
change and the viewpoint change. Our system performs on
par with the original SuperPoint system, ORB, and SIFT
on both of these vision changes. We compute a maximum
of 1000 points for all systems at a 480 × 640 resolu-
tion for homography estimation. Results are shown in the
HomographyEstimation column of Table III. Our system
outperforms ORB and performs on par with the original
SuperPoint system and SIFT.

Figure 4 illustrates the visual results of ORB, SIFT, the
original SuperPoint, and our design on HPatches. The feature-
points extracted by ORB and SIFT are clustered together, and

TABLE IV
ACCURACY AND RUNNING TIME RESULTS ON THE TUM [12] SLAM

DATASET

RPE(m/s) ATE(m) Run time(ms)
SIFT 0.0319 0.4219 2397
ORB 0.0577 0.6105 229

Origin Superpoint 0.0280 0.3671 259
Ours 0.0283 0.3976 59

* RPE is the mean Relative Pose Error to indicate the translational drift
per second. ATE is the root mean square Absolute Trajectory Error to
indicate the translational drift of the entire trajectory. The less, the better.

it is easy to obtain better results in Detector Repeatability tests.
SuperPoint tends to produce more correct matches, and the
feature-points are scattered throughout the whole input image,
which is consistent with intuitive human feelings. Our design
reaches a similar performance of the original SuperPoint.

C. Result on the SLAM Datasets
To evaluate the performance of the SuperPoint network in

visual odometer, we experimented on the TUM [12] dataset.
We evaluate SuperPoint against two well-known detector and
descriptor systems: SIFT [1] and ORB [2]. We apply the three
systems to the visual odometer. We also evaluate the perfor-
mance after optimization. We compute a maximum of 200
points for all systems at a 480× 640 resolution. We perform
nearest neighbor matching from descriptors in adjacent frames.
We use an OpenCV implementation (solvePnP()) [14] with all
the matches to compute the transform matrix, and use Bundle
Adjustment [15] to optimize results. All the computation of
ORB and SIFT is done on the CPU. And all the computation
of the original SuperPoint is done on the CPU except the CNN
backbone.

The results are shown in Table IV. In terms of accuracy,
SuperPoint outperforms ORB and SIFT. Our optimizations,
including fixed-point quantization, and post-processing accel-
eration, do not introduce a significant loss of accuracy. In terms
of calculation speed, SuperPoint takes less time than SIFT and
is equivalent to ORB. After optimization, the running speed
is increased by 4×, making real-time processing possible.

V. CONCLUSION

In this paper, we propose a hardware-software co-design
feature-point extractor based on the state-of-the-art CNN based
method, SuperPoint. The proposed feature-point extractor
accelerates the entire process of SuperPoint, including the
CNN backbone and the post-processing operations, making
the feature-point extraction method run in real-time (20fps)
on embedded FPGA platform ZCU102.
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