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Abstract—Convolution neural networks (CNNs) have been
widely used in many applications. Field-Programmable Gate
Array (FPGA) based accelerator is an ideal solution for CNNs
in embedded systems. However, the single event upset (SEU)
effect in FPGA device may have a significant influence on the
performance of CNNs. In this paper, we analyze the sensibility
of CNNs to SEU and present a fault-tolerant design for CNN
accelerators. First, we find that SEU in processing elements (PEs)
has the worst effects on CNNs since it produces proportional
errors and will not get refreshed. Furthermore, it is indicated
that the large positive perturbation contributes almost all of
the performance loss. Based on such observations, we propose
an error detecting scheme to locate incorrect PEs and give an
error masking method to achieve fault-tolerance. Experiments
demonstrate that the proposed method achieves similar fault-
tolerant performance with the triple modular redundancy (TMR)
scheme while the overhead is much lower than it.

I. INTRODUCTION

Convolution neural networks (CNNs) have been approved to
be an excellent solution for various applications. CNNs usually
involve massive computations and memory accesses, and thus
have high demands on the energy efficiency of the computing
platform. FPGA-based CNN accelerators (e.g., [1], [2]) have
been widely studied to offer high performance with low power
consumption. Moreover, they can be reconfigured to realize a
dedicated hardware architecture for a particular CNN.

In recent years, commercial off-the-shelf (COTS) devices
are increasingly utilized in spacecraft due to their high per-
formance [3]. However, it is well-known that particles in the
radiation environment can easily cause soft errors like Single
Event Upset (SEU), which mainly occurs in the memory and
flip-flops and leads to logic flip [4]. These faults may result in
severe performance degradation for CNN accelerators. Hence,
it is important to study the soft error issue in FPGA-based
CNN accelerators in the space environment.

In the literature, there have been many works concerning
the reliability of FPGAs. Refs. [5], [6], [7] discuss the op-
timal Triple Modular Redundancy (TMR) of FPGA critical
logic. Besides, several logic resynthesis techniques [8], [9],
[10] are proposed to mitigate SEU faults from the view of
synthesis tools. Recently, some researches [11], [12], [13]
on FPGA-based CNN accelerators are conducted to evaluate
the influence of SEUs. However, these works mainly focus

on naive neural networks with simple fully-connected layers
and concern more about streaming architecture. All of these
works have not concentrated on the modern FPGA-based CNN
accelerators with instruction-driven architecture (ISA), which
has massive parameters and complicated computing units.

In this paper, we analyze the SEU faults and propose a
novel scheme to detect and eliminate the SEU faults. Our
contributions are as follows.

• We give a detailed analysis of the possible faults of
processing elements (PEs) and RAMs caused by SEUs.
It shows the effects of faults in PEs are more severe than
that in data buffers.

• We conduct a software simulation of the influence of
bit-flip errors, and find that the errors leading to a large
positive perturbation are more critical.

• We propose an error detecting design for PE array by
making use of the free cycles of CNN accelerators. We
also propose an error masking method to handle faults.

• Our proposed method achieves similar fault-tolerant per-
formance with TMR while the overhead is much lower.

II. PRELIMINARY

A. General Fault-tolerant Methods

Triple modular redundancy is a commonly used fault-
tolerant approach. It triples the protected module and uses a
voter to get the majority of votes as the final output. TMR
can only mask the faults instead of eliminating them. So
scrubbing is generally used to reload parts of the configuration
of an FPGA to correct the fault bits. Recently, partial dynamic
reconfiguration [6], [14], [7] is widely studied, which could
correct fault bits without interrupting the process.

B. Neural Network Accelerator

FPGA-based CNN accelerators can be divided into two
types [15]: Streaming Architectures (SAs) and Single Com-
putation Engines (SCEs). SAs directly map layers to different
blocks of an FPGA to perform computations easily and
efficiently. Existing works [11], [12], [13] concentrate more
on the SEUs of SAs. However, since CNN architectures are
developing rapidly, SCEs [16], [2], [17] are more and more
popular now. With ISAs, they can handle different neural



network architectures and parameters without reconfiguring
the FPGA. For SCEs, the core module is the PE, which deals
with almost all the computations of the accelerator.

The accelerator usually has (N ×H ×W ) PEs, where N ,
H , W are parallelism parameters and refer to the number of
output channels, the height and width of feature map in the
convolution layer, respectively. That is to say, N × H × W
calculations are taking place simultaneously.

C. Fault Model

The calculations of CNNs mainly contain addition and
multiplication operations. Generally, adders are implemented
with look-up tables (LUTs) and multipliers are implemented
with DSP slices in FPGA. There are some configuration bits in
LUTs and DSPs to determine their functions. Besides, there
are some flip-flops (FFs) to store the immediate results. If
SEUs occur in the configuration bits, the wrong bits would
not be refreshed like that in the FFs. A PE with wrong bits
would handle 1

#PE of the total computations, and spread the
errors into these results.
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Fig. 1. Fault injection of PEs and RAMs.

2019/4/8 Tsinghua University 1

Parallelism:
! × # × $ ×%

!

Output
features

$

%
$&

#&

$

%

#

%'

$'
#'

Input
features

#

%(

#'$(

!
Weights

$×%

!

PE array SEU

0001

0011

Processing Element

0100

%&

0011

0001 0001

i1 i2 c o c'
… … … … …
1 1 0 1 1
… … … … …

Fig. 2. How faults in PEs influence results.

Like Figure 2 shows, in every cycle, the accelerator per-
forms convolution operations on C × H × W input features
with N×C×Hk×Wk weights. These calculations are mapped
onto N ×H ×W PEs. For example, one fault occurs in LUT
and the output of the adder flips from 0 to 1. So there is
one incorrect value in each N × H × W output features.
Actually, this fault can be any output bit of the adders flipped
or the configuration of DSPs invalid. The former equals to the
original results plus/minus 2n, where n represents the position
of the bit in the fixed-point data. The latter refers to a fault of
the calculation mode. In our experiments, we directly inject
faults to one of the N ×H ×W outputs for simplicity.

It should be noted that our work concentrates on the user
level. So we can only realize our design at the register transfer
level (RTL), not at the gate level or inside the IP cores.

III. SIMULATION EXPERIMENTS

A. Experiments Setup

We train MobileNetV2[18], ResNet-20[19], and
GoogLeNet[20] on the CIFAR-10[21] dataset to conduct
the experiments. To fit the implementation of FPGA-based
CNN accelerator, we use 8-bit signed fixed-point integers to
represent the weights and feature maps. The accuracies of
various neural network models are shown in Table I.

TABLE I
ACCURACY OF 8-BIT MODELS ON CIFAR-10

Model MobileNetV2 ResNet-20 GoogLeNet
Baseline 92.12%1 91.25%[19] 93.64%2

8-bit fixed-point 92.02% 93.82% 92.53%

B. Comparison of Different Bits

To compare the influences of different injection positions,
we perform experiments on PE faults and take an 8-bit adder
as an example. We carry out the simulation with 16×8×1 PEs.
Since there are four types of input patterns in LUTs, we simply
assume that the affected value has a 25% probability of being
modified. The results are shown in Figure 3(a). Numbers on
the x-axis represent the values we add to the original values.

Positive perturbation on the higher bits
has great influence to the results

Other faults are
almost negligible

Fig. 3. (a) Influence of different injected bits. (b) Multiple errors injection
into the lower bits.

From the results, we can see that the influence of positive
perturbation is more significant, and the larger the perturba-
tion, the higher the impact. We further inject multiple errors
into the lower bits, and find that the lower four bits still
cannot influence the results as Figure 3(b) shows. So the most
important thing to design fault-tolerant architectures is to solve
the large positive perturbation.

C. Comparison of PEs and RAMs

We inject the maximum disturbance to the original value to
compare faults of PEs and RAMs in the worst cases. That is to
say, we add 2n−1 to the chosen value, in which n represents
the data width.

Fig. 4. Comparison of different types of fault injection

The results are shown in Figure 4, where injection index
refers to the index of experiments since we randomly choose

1Our implementation.
2From https://github.com/conan7882/GoogLeNet-Inception-tf



positions to inject faults. And we can see that there is a limited
influence of one single weight fault or feature fault on classifi-
cation accuracy for ResNet-20 on CIFAR-10. While once the
CNN inference encounters fault propagation caused by PEs’
faults, the classification results will be affected dramatically.

IV. FAULT TOLERANT DESIGN ON PE ARRAYS

Based on the above fault injection analysis, conclusions can
be drawn that FPGA-based CNN accelerators are sensitive
to the persistent faults in PE. Thus in this section, we will
introduce our fault-tolerant design on PE arrays.

A. Free Cycles of CNN FPGA Accelerators

To the best of our knowledge, there is no FPGA-based
CNN accelerator that can reach its peak computing capacity.
Actually, the average utilization ratio is usually below 85%
[22]. It means the hardware resources have scheduling redun-
dancy in CNN accelerators, i.e., the computing units have free
cycles during inference. Some specific examples describing
free cycles of PEs are as follows:

• Padding processing: Padding processing is an essential
operation for most convolution layers. During padding
processing, not all of the H×W PE groups are occupied.

• Residual edge operations: Since the dimension of a CNN
layer cannot always be an integer multiple to the hardware
parallelism, there will be free cycles for the residual edge
operations. But such a situation does not always exist.

• Memory bandwidth mismatch: Though well designed
CNN accelerator has considered the matching between
memory bandwidth and computing throughput, it is still
impossible to match them all through. For data-intensive
layers, such as fully-connected (FC) layers, computing
units will hang up until all the required data are loaded.

With different parallelism parameters, we have tried to
evaluate the PEs’ average free cycles during a single inference
for various CNN models on CIFAR-10, as shown in Table II.
In Table II, only free cycles introduced by padding processing
are considered, since they only depend on the model size and
thus are more stable. Based on the observation that PEs have
plenty of free cycles, we propose an error detecting scheme,
which can locate the PE with persistence errors.

TABLE II
FREE CYCLES FROM PADDING OF PES

Model(N,C,H,W) MobileNetV2 ResNet-20 GoogLeNet
(8,8,1,4) 27584 94464 198400

(16,16,1,8) 6816 23680 49600

B. Error Detecting Schemes for PE Arrays

In this part, we first analyze the problems of PE error de-
tecting. Then we give a traversal algorithm and corresponding
hardware structure for error detecting.

1) Problems of PE Error Detecting: The adders mainly
consist of LUTs and CARRYs [23], as shown in Figure 5.
But for multipliers, it is more complicated since multipliers
can be implemented by DSP slices, LUTs or DSP-LUT mixed
in Xilinx FPGAs. For adders and multipliers, logic flipping in

LUTs and DSP configuration ROMs will introduce persistent
errors as they are configured at the moment of loading pro-
gram file and will not get refreshed normally. For the DSP
configuration ROMs, error detecting is easier, since the error
will change DSP cores to different functions. But for LUTs,
the problem is more difficult. It is known that a LUT realizes
its function by storing all possible logical results of the inputs
in advance. Soft errors occur in a LUT will only tamper one
of these results. Therefore, errors can be detected only if we
trigger the exact input combination, otherwise the error will
be masked.

2) Traversal Error Detecting Algorithm: We design a
traversal detecting algorithm for PE arrays. For simplicity, we
divide the traversal into two parts, to detect multipliers and
adders errors separately. To check the multipliers, we could
simply set one of the inputs as 1, and traverse the other input.
Full traversal of multipliers requires 2n cycles, n represents
the data width of fixed-points. To check the LUTs in adders,
since the LUTs are only used as XOR function, there are only
four possible error patterns. That is to say, we can finish a
traversal of an adder in four cycles. For an m inputs adder-tree,
there are m−1 adders in log2(m) layers. We can traverse the
adder-tree layer-by-layer: After the adders in the lower layer
are checked, we can traverse the adders in the higher layer
by setting the output of lower adders as zeros, like Figure 6
shows.

The total overhead of traversal is 2n+4×log2(m) cycles. As
we mentioned in Section IV-A, this overhead can be confined
within the free cycle quantity easily.

3) Structure of Error Detecting on PEs: In this part, we
will introduce the hardware structure of our proposed error
detecting scheme.

As shown in Figure 7, we add a PE Group Enable signal
to control the input data of PE Array Group. If the PE Array
Group is not in its free cycles, it would get data from CNN
Data Buffer. While the PE Array Group is free, we load pre-
defined check data to detect errors. It should be noted that we
would not store the correct results of these check data. Instead,
we just use a comparator to compare the results of different
PEs and regard the minority as errors. In case that the free
cycles of PEs are not balanced, there are extra data paths and
multiplexers to rearrange PEs.
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V. RESULTS

A. Simulation of Error Masking Capacity
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Fig. 8. Accuracies of random 0-injection and +128-injection

When it is not convenient to reconfigure LUTs immediately,
we recommend to set the outputs of LUTs with SEU as zeros
to mitigate faults. There is an experiment to show the error
masking capacity. We randomly inject faults to the output of
each convolution layer at a certain ratio, and get an accuracy-
ratio curve. We compare the results of zero injection and 128
positive perturbation injection on the 8-bit fixed-points like
Figure 8 shows. The x-axis refers to the injection ratio and
the y-axis refers to the accuracy. For positive perturbation
injections, when the injection ratio reaches 1.5 × 10−4, the
accuracy of ResNet-20 has dropped below 90%. The accura-
cies of MobileNetV2 and GoogLeNet are even as low as 70%.
For zero injection, before the fault ratio reaches 3× 10−2, the
accuracy of ResNet-20 keeps above 90%.

B. Analysis of Error Detecting Capacity

In this section, we will discuss the capacity of our error
detecting design for SEU. SEU is the most common soft
error mode for FPGA implementation. As we have introduced
some additional circuits in PE arrays, we will analyze the
effectiveness of the proposed design by introducing SEUs in
various circuit parts, including these additional circuits.

• SEU in PE Array: When the SEU occurs in the PE
array, it is just the error mode we have anticipated. The
proposed design will correctly execute traversal checking
and locate the faulty PE.

• SEU in Pre-Defined Check Data Buffer: Since only one
upset is considered, there will be no error in the PE, it
will not affect the correctness of the comparator’s results.

• SEU in Comparator: If the SEU occurs in the comparator,
the outputs of the comparator will contain a great deal
of error detected marks, which is different from the
phenomenon of SEU in PE array. In the worst case, we
can just regard such incorrect detecting as a False Alarm.

• SEU in Multiplexers: When the SEU occurs in these
multiplexers, one of the PE will get incorrect check
inputs, and the comparator will locate this PE as well.

In conclusion, our proposed error detecting design will
not produce Missing Alarms for the SEU mode. While there
will be possibilities of False Alarm when SEU occurs in the
multiplexers and the comparators. Since the pages are limited,
we do not analyze MBU here while it also has an extremely
low probability of causing Missing Alarms.

C. Overhead

We implement our proposed PE error detecting design with
RTL codes and in this section, we will provide some overhead
results by EDA synthesizing.

In our synthesis of PE arrays, we use Xilinx Vivado 2018.2
tool and choose the board of Xilinx ZCU102 as the target
device. We mainly list the consumption of LUT and FF
resources for various parallelism parameters of PE arrays by
Vivado synthesizing, as shown in Table III.

From Table III, we can see that the overhead of LUT
is below 17% from parallelism (N,C,H,W )=(8,8,1,4) to
(16,16,1,8), while the overhead of FF is below 9%. The
overhead of both resources are much lower than that of
traditional module redundancy schemes.

TABLE III
OVERHEAD OF THE PROPOSED ERROR DETECTING DESIGN

Resources LUT FF

N=8,C=8
H=1,W=4

Conventional 12925 10629
Proposed 14959 11497
Overhead 15.74% 8.17%

N=12,C=12
H=1,W=4

Conventional 23889 22037
Proposed 27745 23513
Overhead 16.14% 6.70%

N=16,C=16
H=1,W=8

Conventional 73950 66821
Proposed 86435 70541
Overhead 16.88% 5.57%

VI. CONCLUSIONS

In this paper, we explore the influence of SEU on FPGA for
neural network inference. From our results, SEUs occurring
in PEs are more critical than in RAMs. Considering 2n−1

positive perturbation, if the FPGA accelerator has one PE
failure in around 6000 PEs, the accuracy of GoogLeNet and
MobileNetV2 would decline over 20%. So we must pay
attention to SEU in PEs in practical applications.

To solve this problem, we propose a fault-tolerant design to
detect and mitigate SEUs. We utilize the free cycles of neural
network accelerators to reduce the overhead. The overhead
of LUTs and FFs is below 17% and 9% respectively in our
proposed design, which is much smaller than Xilinx TMR
schemes. Besides, we can just traverse the higher bits and use
zero settings to efficiently tolerance the errors temporarily.
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