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Abstract—Neural network (NN) computing is energy-
consuming on traditional computing systems, owing to the in-
herent memory wall bottleneck of the von Neumann architecture
and the Moore’s Law being approaching the end. Non-volatile
memories (NVMs) have been demonstrated as promising alter-
natives for constructing computing-in-memory (CiM) systems to
accelerate NN computing. However, NVM-based NN computing
systems are vulnerable to the confidentiality attacks because the
weight parameters persist in memory when the system is powered
off, enabling an attacker with physical access to extract the well-
trained NN models. The goal of this work is to find a solution
for thwarting the confidentiality attacks. We define and model
the weight encryption problem. Then we propose an effective
framework, containing a sparse fast gradient encryption (SFGE)
method and a runtime encryption scheduling (RES) scheme,
to guarantee the confidentiality security of NN models with a
negligible performance overhead. The experiments demonstrate
that only encrypting an extremely small proportion of the weights
(e.g., 20 weights per layer in ResNet-101), the NN models can be
strictly protected.

I. INTRODUCTION

Deep learning has recently made significant advances in the
field of artificial intelligence (AI) [1]. However, the trends
toward widening and deepening neural network (NN) architec-
tures have put a tremendous pressure on the computing hard-
ware. Conventional von Neumann architecture is constrained
by the inherent memory wall bottleneck, i.e., spending sub-
stantial time and energy on moving data between the memory
and the processors. Moreover, the Moore’s Law is moving
towards the end [2], restricting the further optimization of
CMOS technologies. Thus, many researchers have turned their
attention to the fields of emerging devices and architectures.

Non-volatile memories (NVMs), such as resistive random-
access memory (RRAM) and phase change memory (PCM),
have emerged as promising alternatives for future NN acceler-
ation [3], [4]. Among the advantages of the NVMs, the non-
volatility allows the system to fast restore from hibernation.
The high density and low leakage power of the NVMs also
provide larger capacity and incur less power consumption.
Most importantly, NVMs can construct crossbars to perform
matrix-vector multiplications at the location of memory to
avoid data moving [5], which is referred to as computing-
in-memory (CiM). Many studies have explored CiM-based
architectures, especially for NN inference [4] and training [6].

This work was supported by National Key Research and Development
Program of China (No. 2017YFA0207600), National Natural Science Foun-
dation of China (No. 61832007, 61622403, 61621091), Beijing National
Research Center for Information Science and Technology (BNRist), and
Beijing Innovation Center for Future Chips.

Despite the desirable characteristics of NVMs, there are also
significant disadvantages and security vulnerabilities in CiM-
based NN computing systems. One disadvantage is that the
data persist in the memory even when the system is powered
off, rendering a security risk of leaking NN models. An
attacker with physical access can simply read the memory and
extract the weight parameters of the NN models even without
powering up the systems [7]. Another disadvantage is that
many NVMs have disappointed endurance, typically ranging
from 106 to 1010 [8], [9]. Therefore, the NVM-based systems
are vulnerable to frequent and massive write operations. Even
under normal use, the lifetime of NVM-based memory and/or
computing systems rarely reach the expectation [10], [11].

There are two general encryption approaches to protect the
data confidentiality. One approach is bulk encryption, which
encrypts the entire memory when the systems are powered
down and decrypts all when the systems continue working.
However, such approach incurs large energy overhead and long
encryption/decryption latency. Another approach is incremen-
tal encryption, which argues that the amount of data involved
in an application is much smaller than the entire data set, so
only a small percentage of the memory needs to be decrypted
when the program runs [7]. However, the computation of NN
requires all the weight parameters involved because the inputs
are propagated through all the layers. Thus, the system needs
to decrypt the entire weights before starting work, and encrypt
them again after the work completed. Taking VGG-16 [12]
as an example, approximately 138M parameters need to be
encrypted/decrypted, introducing large performance overhead.
Moreover, both the encryption and decryption incur one write
operation in per weight location. Such tremendous writes may
also threaten the lifetime of the CiM system. Therefore, there
must be a method to substantially reduce the complexity and
amount of the weight encryption.

Some researchers have also made efforts on designing
encryption techniques to thwart the data confidentiality attacks
for NN models. For instance, at the hardware level, P3M [13]
has been proposed based on the physical unclonable functions
(PUFs) and processing-in-memory mechanism, which aims to
protect the NN models in edge accelerators embedded with
eDRAMs. Through their approach, only the authorized device
can decrypt the model and make it work normally. However,
two drawbacks prevent P3M from being transferred to the
NVM-based NN accelerators: 1) P3M is dedicated for the
eDRAM-based accelerators; and 2) the encryption/decryption
still operate on all weights. At the algorithm level, encryption
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methods such as homomorphic encryption [14] have also been
proposed to protect the privacy of NN models. However, these
methods are inappropriate for normal NNs and NVM-based
accelerators, and are usually with high complexity.

The goal of this work is to find an efficient solution for
protecting CiM- and NVM-based NN accelerators from the
vulnerability of lingering NN models. The contributions are
summarized as follows.
• We analyze the principles of designing the protective

solution. To search an approximate optimal solution, we
also define and model the weight encryption problem.

• We propose a sparse fast gradient encryption (SFGE)
method for efficiently encrypting the weights with negli-
gible overhead to strictly protect the NN models.

• We propose a runtime encryption scheduling (RES)
method which disperses the time of encryption/decryption
of different layers and pre-decrypts the weights, to ensure
the security of NN models at all time.

• We propose an efficient and robust protecting framework
for thwarting the NN confidentiality attacks based on
SFGE and RES. Thorough experiments have been made
and demonstrate only encrypting an extremely small
proportion of the weights can prevent the attackers from
obtaining the NN models.

II. PRELIMINARIES AND RELATED WORK

A. NVM-based Neural Computing

An NVM cell has multiple resistance states, and multiple
cells can construct crossbar arrays. By mapping a matrix
onto the conductance of the NVM cells in the crossbars,
and a vector onto the input voltages, the NVM crossbar
can perform the matrix-vector-multiplications (MVMs) in an
extremely high parallelism, without any moving of the matrix
data. Assuming the crossbar size as R×C, the relationship of
the input voltages and the output currents can be formulated
as: iout(c) =

∑R
r=1 g(r, c) · vin(r), where vin denotes the

input voltage vector (indexed by r = 1, 2, ..., R), iout denotes
the output current vector (indexed by c = 1, 2, ..., C), g(r, c)
denotes the matrix data (i.e., the conductance of the cell) which
is in the rth row and cth column of the crossbar. The MVMs
dominate the main operations in NN computing because both
convolution and fully-connected layers can be decomposed to
multiple MVMs. This leads to tremendous opportunities for
the NN acceleration by using the NVM crossbars.

B. Compensation for the NVM Vulnerabilities

Previous studies have also tried to compensate for the
vulnerabilities of the NVMs which mainly include the risk of
data leakage and limited endurance. There are two main types
of solutions for dealing with the limited endurance problem.
One type is reducing the write frequency, such as Flip-N-write
scheme [15]. The other type is using wear leveling techniques
to make the writes uniform across the entire memory, e.g.,
the Start-Gap wear leveling scheme [11]. There are also
studies aiming at the NN application, in particular for the NN
training. For example, Yi et al. proposes a structured gradient
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Fig. 1: The goal of the confidentiality protection for NN
models. When the weights are mapped on the NVM crossbars
in plaintext form, the system will be vulnerable to the confi-
dentiality attacks. Our goal is to encrypt the fewest possible
weights to make the NN model misclassified.

sparsification (SGS) scheme which reduces write frequency,
together with an aging-aware row swapping (ARS) method for
the wear-leveling [10]. These approaches provide satisfactory
compensation for the limited endurance of NVM under normal
use. In addition, there are also approaches that protecting the
NVM systems from the malicious wearing-out attacks[16],
[11]. So far, the limited endurance is not a major vulnerability
that threatens the NVM-based system security.

There are also many attempts on protecting the linger-
ing confidentiality in the NVMs [7]. However, to our best
knowledge, all the prior approaches are proposed for the main
memory applications, which are not adapt for the CiM archi-
tecture and NN application. The NN computation involves a
large amount of weights. Thus, the bulk encryption will incur
tremendous performance overhead, especially when deploying
large models with heavy weights. Therefore, to implement the
encryption at a negligible overhead, the amount of encryption
operations should be substantially reduced. As shown in Fig.1,
the goal is to encrypt fewest possible weights to make the
NN model disabled. Then even if the weights are stolen, the
attackers get only a bunch of meaningless numbers.

III. ATTACK MODEL

A. Goal of Security Protection

The attack considered in this paper is that an attacker
with the physical access to a CiM system can extract the
NN weights and infer the architecture by bypassing the OS
protection and physically reading the memory [17], [7]. With
the AI devices becoming increasingly ubiquitous and mobile,
the attackers have many opportunities to obtain the physical
access to the CiM hardware. The leakage of NN models will
lead to serious consequences. On one hand, from a business
perspective, the NN model is definitely a core IP. On the other
hand, an attacker can launch white-box adversarial attacks
to force the NN to make wrong decisions. Therefore, it is
necessary to find solutions for protecting the confidential
NN models before the CiM-related AI hardware entering the
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Fig. 2: The sensitivity of different channels in ResNet-18 versus the channels indexes. The validation accuracy presents the
performance of the encrypted models. The attached algorithm shows the process of the sensitivity analysis.

market. The protection goal is to thwart the threat of leaking
the deployed NN models at negligible overhead. Therefore,
the principles listed below should be followed.

B. Principles of Security Solution

A satisfactory solution to protecting the NN models in CiM
systems should satisfy the following principles:

(1) Functionality. The functionality and performance of
the NN models shall be guaranteed under normal use, which
means that when performing the computation at some memory
locations, all corresponding weights should be decrypted.

(2) Fast Restore. The solution must preserve the instant-on
benefit of the non-volatility, i.e., once powered up, the system
must fast restore and start working instantly. Since the NN
computation always starts from the front layers to the end, it
is preferable to encrypt fewest weights in the front layers.

(3) Low Overhead. The solution should not incur large
performance overhead. The typical steps of an en/decryption
contain: reading the weight from the memory, sending it to
the cryptographic engine, executing the en/decryption, and
writing the en/decrypted weight back to the memory. Each
en/decryption incurs one read, two data moving, and one write.
Thus, the amount of encrypted weights should be restricted.

(4) Security at All Time. The solution should keep the
system secure at all time, i.e., at any moment, some parts of
the NN models are encrypted. Whenever the attackers interrupt
the system, they are unable to obtain the entire weights.

(5) Hard to Crack. The solution should be strong enough
to prevent being easily cracked. Therefore, two basic re-
quirements must be satisfied. One requirement is that the
encrypted elements should be sufficiently concealed to make
the encrypted weights undetectable. Another requirement is
that the encryption should disable the NN models, and ensure
that the attacker cannot reproduce the original models.

IV. MOTIVATIONAL EXAMPLES

A. Where and How to Encrypt

As mentioned before, since we cannot encrypt all the
weights due to the unacceptable overhead, we must identify the

significant weights to keep the NN model secure. A straight-
forward idea of identifying the significant weights is analyzing
the sensitivity of the accuracy to each weight by exhaustive
search. Here the sensitivity is defined as the influence on
the recognition accuracy. However, such exhaustive approach
is not practical due to the extremely high complexity and
unsatisfying encryption effect.

On one hand, the exhaustive search incurs a high complex-
ity. For example, if we divide the weights into G groups and
encrypt them independently to observe their sensitivities, the
complexity of the analysis will approach O(G) · O(Test),
where O(Test) represents the complexity of a validation
round. As the group number G increases, the time required
for the search will be substantially enlarged. For instance, to
analyze a VGG-16 on the ImageNet dataset, per validation
round needs to test 50,000 pictures. Assuming the throughput
of the validation system (e.g., GPU) as 200 FPS, per analysis
round will consume 250G seconds. Even at relatively coarse
grouping case that each group contains 1, 000 weights in
VGG-16, without considering the overlapping, the analysis
will consume 250x138k=34.5 million seconds, approximately
399 days. While if too coarsely grouping the weights, it is quite
possible to introduce quantities of ineffective encryption on the
insignificant weights. The situation will become much more
complicated if considering irregular and cross-layer grouping.

On the other hand, the encryption effectiveness is not sat-
isfactory. We have made experiments of encrypting a ResNet-
18 network [18] trained on the CIFAR-10 dataset, as shown
in Fig.2. The adopted encryption methods include encrypt-
at-0, 1, and random, which encrypt the target weights into
zero, maximum values, and random values respectively. Due
to the sparsity nature of NN, encrypting a single channel at
zero has little impact on the recognition results. The encrypt-
at-1 method can identify the sensitivities of different channels
most significantly. However, two problems are raised. First,
encrypting an entire channel will be easily detected by the
attackers. Second, the analysis does not tell the sensitivity of
the back layers, because the channel number increases with the
layer depth so that each channel shares limited contribution to
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the computation. Therefore, we must find an efficient method
to identify the significant weights.

B. When to Encrypt

Another critical problem is when to encrypt the weights. We
consider a typical application scenario often encountered in
internet of thing (IoT), wearable devices and edge computing
with intermittent working mode. When an external signal
wakes up the system, it begins to restore and handle the
incoming tasks. As shown in Fig.3, in volatile memory-based
systems, at most given time, the NN models are protected,
because when powered up, there is a software security solution
for the data protection; when powered down, the data will
not linger. While an encrypted NVM-based system needs
to first decrypt the data, then execute the task, and encrypt
the data again after the work done. One drawback is that
the fast-restore benefit is removed. Another drawback is that
there exists an attack window when the system starts working
and the weights will remain in plaintext form at this time.
Therefore, an attacker still has opportunity to obtain the
network weights. An ideal encrypted CiM can keep secure at
all time, simultaneously preserve the instant-on property. Due
to the staggered computing of different layers, the encryption
can be scheduled at run-time to ensure the security at all time.

V. DESIGNING SECURE NVM-BASED NN COMPUTING
SYSTEMS

Motivated by the aforementioned observations, we design an
efficient solution for protecting the NN models in the NVM-
based NN computing systems. The overall framework is shown
in Fig.4, which contains two main parts: the sparse fast gra-
dient encryption (SFGE) method for deciding where and how
to encrypt, and the runtime encryption scheduling (RES) for
deciding when to encrypt. The whole process goes as follows.
Before deploying the NN models, we first perform the SFGE
to generate the encryption keys, in which the significant weight
location and corresponding fast gradient sign are contained.
For each NN model, the SFGE operation needs only to be
performed once offline. Then, the keys will be kept in the key
store (can be double encrypted to enhance the security level).
During run-time, the RES module will determine the time of
encryption/decryption, take the keys from the key store, and
implement the cryptographic operations.
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Fig. 4: Overall framework of the encryption solution, which
contains two parts: the sparse fast gradient encryption (SFGE)
for deciding where and how to encrypt, and the runtime
encryption scheduling (RES) for deciding when to encrypt.

A. SFGE: Sparse Fast Gradient Encryption

Inspiration. The fast gradient sign method (FGSM) [19]
was first proposed to generate misclassified adversarial ex-
amples. An intriguing discovery has been made that a wide
variety of NN models are vulnerable to adversarial perturba-
tion on the input because of their linear nature. By adding
a small vector whose elements are equal to the sign of
the gradient of the cost function with respect to the input,
the NN will misclassify the target absolutely. Inspired by
that, it is reasonable to argue that the NN models are also
vulnerable to the adversarial perturbation added on the weight
parameters. Recall that a critical problem of the encryption is
to identify the key weights in an NN model, then make small
changes on the weights to cause rapid deterioration on the NN
classification performance. The fast gradient method can help
to find the most significant gradient descent direction.

Another interesting discover which may help us to design
the encryption algorithm is the sparse nature of the gradient
with respect to the weights. Many studies have explored
the gradient sparsification approaches [20] to mitigating the
bandwidth requirements in distributed NN training system. For
example, deep gradient compression (DGC) [20] demonstrates
that one can only preserve approximately 0.1% of the gradients
to achieve comparable accuracy with normal training. This
enlightens us that the fast gradient can also be sparsified.
Recall that the third principle of solution design is not in-
troducing large overhead. Therefore, it is necessary to apply
a sparsification on the fast gradient.

Problem Formulation. Let Θ be the weight parameters of
an NN model, Θ̃ be the perturbation matrix (whose elements
are also the encryption keys) added on the original weights, χ
be the validation dataset, x be the input to the models sampled
from χ, y be the corresponding label associated with x, and
J(Θ, x, y) be the cost function used to train the NN. There are
also constraints proposed by the design principles. First, the
amount of weight encryption should be within an acceptable
boundary. Here we denote the encryption amount as N . We
set a selection matrix Mask which contains only 0 and 1, to
generate the sparse encryption matrix Θ̃. Thus, the number



of 1s in Mask should be less than N . Second, the modified
weights should not significantly change the distribution of the
weights, otherwise there will be outliers which can be easily
detected. Therefore, the values of Θ̃ should be constrained, and
we assume the max perturbation intensity as ε. In summary,
since our goal is to find the optimal Θ̃ to degrade network
performance, the encryption problem be modeled as below:

max
∑

(x,y)∈χ

J(Θ + Θ̃, x, y)

s.t.


Θ̃ = Θ∗ �Mask

1(Mask) ≤ N
max(|Θ̃|) ≤ ε

(1)

Fast Gradient. Due to the black-box nature of the NN, it
is of great difficulty to find an optimal solution for the above
optimization problem. Therefore, we give an approximate
solution for the problem. In the NN optimization, the most
utilized optimization method is gradient backpropagation. The
fast gradient with respect to the weights can be obtained by
the following equation:

Θ∗ =
∑

(x,y)∈χ

5ΘJ(Θ, x, y) (2)

However, the fast gradient Θ∗ is still dense. Since there is an
encryption amount constraint in the optimization problem, we
need further sparsify the gradients to preserve a small portion
of them.

Sparsification. A critical problem of sparsification is how to
find the significant gradient that impacts the performance most.
Because the partial derivatives for some variable contained
in Θ is the rate of change of the function J(Θ) along the
direction, the magnitude of the partial gradient can reflect the
descent speed of the cost function along the corresponding
variables. Therefore, preserving the gradients with the largest
magnitudes can enable a sparse gradient to enlarge the loss. We
sort the fast gradients by their absolute values, and preserve
the top-N for each layer. Let thr be the threshold of the
top-N gradients. At final, to reduce the complexity of the
keys, we only preserve the sign of corresponding fast gradient.
Therefore, the fast gradients preserved becomes:

Mask ← |Θ∗| ≥ thr (3)

Θ̃ = ε · sign((
∑

(x,y)∈χ

5ΘJ(Θ, x, y))�Mask) (4)

Opposite to the normal neural network training which aims at
minimizing the loss function, the encryption goal is to enlarge
the loss to make the NN misclassified. Therefore, we add
the generated sparse fast gradient on the vanilla parameters,
then the encryption will be done. We refer to this method
as the “sparse fast gradient encryption” (SFGE). Algorithm 1
concludes the overall algorithm and process.

The Composition of the SFGE Keys. The keys of the
encryption are composed of two parts: the encrypted loca-
tion and the encrypted sign. Each key requires dlog2(L)e +
dlog2(M)e+1 bits to record the encryption information, where
the L represents the layer number of the NN model, the M

Algorithm 1 Sparse Fast Gradient Encryption

Input: Validation dataset χ and size b
Input: Neural network weights Θ (L layers)
Input: Cost function: J(Θ, x, y) (cross entropy loss)
Input: Constraints: encryption amount per layer N , encryption intensity ε
1: Θ∗ ← 0
2: for (x, y) in enumerate(χ) do
3: Θ∗ ← Θ∗ +5ΘJ(Θ, x, y)
4: end for
5: for Θ∗

i in enumerate(Θ∗) (i = 1, 2, ..., L) do
6: Select threshold : thri ← top N of |Θ∗

i |
7: Mask ← |Θ∗

i | ≥ thri
8: Θ̃i ← ε · sign(Θ∗

i �Mask)
9: end for

10: for Θi in enumerate(Θ) (i = 1, 2, ..., L) do
11: Θi ← Θi + Θ̃i

12: end for

represents the number of the weights in this layer, and 1 bit
for indicating the encryption direction of the weight (+ or -).

Decryption. The only operation introduced by the encryp-
tion is the addition on the weights. Therefore, the decryption
only needs to add a negative item of the sparse fast gradient
key on the encrypted weights, then the NN model will work
normally. Thus, the decryption keys can be obtained by simply
flipping the last bit (sign bit) of the encryption keys.

Complexity Analysis. Since the SFGE only needs to
perform once for each NN model, the complexity will be
O(Test) +O(Sort), where O(Test) refers to the complexity
of one validation round which has already been defined
before, and O(Sort) represents the complexity of the sorting
operations to select the gradients with largest absolute values.
Concurrently, the optimal solution for selecting top-N gradi-
ents from M ones has a complexity of O(M log2(N)).

Trade-offs. There are two constraints that need to be consid-
ered. One constraint is the encryption budget N , i.e., the max
number of weights that are allowed to be encrypted. Another
constraint is the perturbation intensity limitation, which should
not exceed an ε to enhance the concealment. There exist trade-
offs for balancing the overhead and the encryption effective-
ness. An increasing N will incur more overhead, because
each en/decryption needs to write on the corresponding weight
location. While intuitively, encrypting more weights certainly
results in a higher security level. Concurrently, the encryption
intensity ε also affect the encryption effectiveness significantly.
Larger ε has greater impact on the performance, while it
also increases the probability of being detected because the
encrypted weights will exceed the original weight distribution
range and become outliers. Therefore, ε must be carefully
designed based on the actual weight distribution.

B. RES: Runtime Encryption Scheduling

A runtime encryption scheduling is highly demanded to
keep the CiM system secure at any given time. The conven-
tional way, which decrypts before starting work and encrypts
after ending the work, has security holes that the attackers
still have opportunities to steal the model by interrupting the
system during run-time. As is known that the NN computing
always starts from the first layer, and end in the last layer.



There are dependencies between the layers, i.e., the input of
a layer is the output of its previous layer. Commonly-seen
computation scheduling among the layers includes the layer-
by-layer scheduling and cross-layer co-scheduling.

The layer-by-layer scheduling performs the computation of
each layer in sequence, i.e., a layer starts computing when
its previous layer has finished the computation. Such working
order provides much convenience for the runtime encryption
scheduling. In this scenario, the encryption can also be simply
done layer-by-layer. The whole process is shown as Fig.4,
the layer will only be decrypted when the program comes,
and be encrypted after the work has been done. Therefore, at
any time, there is only one single layer remaining in plaintext
form. In addition, pre-decryption can be performed to hide the
decryption latency during run-time.

Another commonly-seen method is cross-layer scheduling,
which fully utilizes the parallelism across the layers [21].
There exist a parallel potential to accelerate the processing, be-
cause sliding windows are used to convolve the feature maps.
Hence, a layer can start computing when fetching a window of
the outputs from the previous layer. Although the parallelism
of different layers can be exploited, their computation time
slices are always staggered due to the dependencies. Therefore,
we can profile the working and idle cycles, then fully utilize
the idle cycles to perform the cryptographic operations and
ensure the security. While we only consider the layer-by-layer
scheduling in the following experiments.

Discussion. RES will incur write operations for the en/de-
cryption in every inference round. This raises concerns about
the lifetime of the systems. Because the SFGE keys are fixed,
frequently operating on the same cells will certainly wear
out them. Therefore, two solutions can help overcome this
problem: 1) applying the RES only in the intermittent working
mode with infrequent activities, such as the energy-harvesting
edge devices or some embedded applications (e.g., face iden-
tification module in phones); and 2) applying wear-leveling
techniques to uniform the writes across the whole memory. It
is not difficult to design the wear-leveling strategy because the
writing behavior incurred by RES is totally predictable.

VI. EXPERIMENTS

A. Experiment Settings

We investigate the accuracy influence and protection effec-
tiveness of our solution. The experiments are constructed on
the ResNet [18] (with 18, 50, and 101 layers) and VGG-
16 models [12] with the ImageNet dataset. The evaluation
metrics include: 1) the accuracy influence; 2) the concealment
and robustness; and 3) the latency overhead. There are two
main parameters involved in the experiments: the encryption
amount per layer N and the encryption intensity ε added
on the weights. Considering that the number of weights in
the front layer is usually smaller than the back, we set the
encryption amount as min(0.1%×M,N), where M represents
the number of weights in corresponding layer.
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Fig. 5: The validation accuracy of the encrypted NN models
versus N (ε = 0.1).The accuracy first declines as N increases,
then will saturate when reach a turning point. The declining
trend also becomes faster when the NN depth increases. More-
over, VGG-16 demonstrates much better adaptability under
encryption than the ResNets due to the heavy weights.
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Fig. 6: The validation accuracy of the encrypted ResNet-18
models versus N under different intensity ε. As the ε increases,
the accuracy decline trend becomes faster.

B. Accuracy Influence of SFGE

Encrypting the NN models by SFGE has a significant impact
on the accuracy performance. We have evaluated the impact
of N and ε respectively. Recall that our goal is to destroy the
classification ability of the NN models, more influence on the
accuracy indicates more effective encryption.

Fig.5 shows the validation accuracy of the NN models
versus the encryption amount per layer N . Four interesting
conclusions can be figured out from the results. First, the
accuracy influence increases with N . This is a predictable
conclusion because with encryption amount increases, the
encrypted weights will increasingly vary from the original
weights. Hence, more computational errors will be introduced.
Second, there exists a turning point on the accuracy curves.
For example, in the curve of ResNet-101, when N approaches
15, continuing to enlarge N will not be profitable because
the performance has been already fully deteriorated. Third,
the trend of accuracy dropping is closely related to the NN
depth. See the results of ResNet-18, 50, and 101, the ResNet-
101 demonstrates the fastest accuracy decline trend. And
the decline speed becomes slower when the layer number
decreases. A reasonable explanation is that the errors caused
by the encryption will grow when propagating through the
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before and after the encryption. The encryption configurations
are N=20, ε=0.2. The mean and variance of the weight
distribution remains insignificantly changed after encryption.

layers. Therefore, deeper NNs are influenced more because
the errors will be explosively accumulated. Forth, heavy model
shows less sensitivity to the encrypting perturbation. ResNet-
18 and VGG-16 have similar layer numbers, while VGG-16
shows much better adaptability than ResNet-18. This may
be resulted from the 10× heavier weights of VGG-16 than
ResNet-18. In this scenario, increasing N or the intensity ε
can improve the encryption effects.

Fig.6 shows the validation accuracy of encrypted ResNet-
18 versus the encryption intensity ε. The performance of
encrypted models with larger ε degrades more quickly than the
ones with smaller ones. However, there still exist an intensity
limit to enhance the encryption concealment, as will be further
discussed below.

C. Security Analysis

SFGE encrypts the weight parameters of neural network
models by using the generated SFG keys to protect the well-
trained models from the confidentiality attacks. To analyze the
security level, we consider four aspects as following.

Concealment of the Encrypted Weights. The SFG keys
should be tightly concealed to make the encrypted weights
undetectable. The concealment is crucial because once the
attackers know the exact locations of encrypted weights, they

can exhaustively crack the encryption with a very low com-
plexity. An important indicator of the concealment is that the
values of encrypted weights should be within the distribution
range of the original weights. We show the weights of ResNet-
18 in Fig.7, in which each weight is figured as one point. With
a small encryption intensity, such as ε = 0.1, the encrypted
weights will still fall within the original range. It is almost
impossible for the attackers to detect the encrypted weights
from the chaotic weight parameters. However, while larger ε
brings better encryption effect, it also increases the risk of
being detected. As shown in Fig.7, when ε reaches 0.5, many
encrypted weights will jump out the normal range and become
outliers. Thus, the intensity ε should lie in a reasonable range.

Impact on the Statistical Distribution. A robust encryp-
tion requires the weight distribution remaining insignificant
changed. We draw the statistical probability distribution of the
original and encrypted weights of layer2.0.conv2 in ResNet-
18, as shown in Fig.8. there are extremely small fluctuations
on the mean µ and variance σ. Moreover, we also calculate the
norm squared difference of the original distribution histogram
and the encrypted one, which reaches only 5.43×10−5. There-
fore, an attacker cannot distinguish the encrypted weights by
observing the distribution difference.

Recall of the Encrypted Weights. Another indicator of
the concealment is the recall of the the encrypted weights.
The “recall” is defined as the rate of searched encrypted
weights when performing the fast gradient generation again
on the encrypted model. Besides, we define top-100(1000)
recall which limited the search range to the weights with top-
100(1000) largest gradients, because it will be meaningless to
continue enlarging the search space as the search complexity in
top-1000 has already approached

(
1000
20

)
≈ 3.4× 1041 (taking

ResNet-101 as an example). This concern is raised based on
the consistency of the gradient that may make the encrypted
model still sensitive to the same weights, so the attackers
may collide with the encrypted weights by performing the



TABLE I: Experimental Results of the Encryption for Different Neural Network Models.

Model Dataset

Classification Accuracy FGSM Adv. (top-1)
Mean RecallEncrypted Baseline Encryption (Intensity: 0.05)

Top-1 Top-5 Top-1 Top-5 Config. Encrypted Plaintext top-100 top-1000

ResNet-18 ImageNet
0.704% 2.452%

69.75% 89.07% N=20, ε=0.2 46.34% 10.47% 0.27% 9.44%(-69.05%) (-86.62%)

ResNet-50 ImageNet
0.438% 1.540%

76.13% 92.86% N=30, ε=0.1 58.74% 21.27% 4.2% 13.0%(-75.69%) (-91.32%)

ResNet-101 ImageNet
0.144% 0.758%

77.38% 93.54% N=20, ε=0.1 60.49% 24.39% 4.2% 14.3%(-77.24%) (-92.78%)

VGG-16 ImageNet
0.818% 3.478%

71.59% 90.38% N=30, ε=0.2 37.59% 11.66% 16.4% 40.8%(-70.77%) (-86.90%)

fast gradient generation again. The mean recall represents the
mean value of the recall rates of all layers. As shown in Table
I, the recall of ResNet models are extremely low. Although the
VGG-16 shows much larger recall, it is difficult to restore the
vanilla weights. Thus, it is almost impossible to re-generate
the same gradient keys through the encrypted models.

Defence against Adversarial Examples. An important
goal of our protection is to defend the white-box adversarial
attacks. Thus, we evaluate the defence effectiveness against
the adversarial examples respectively generated based on the
encrypted weights and the original weights by using the
FGSM. The intensity we apply in the attacks is set as 0.05.
As shown in Table I, the NN models are vulnerable to
the adversarial examples generated by performing FGSM on
the weights in plaintext form. The situation will be greatly
improved under the adversarial examples generated based on
the encrypted weights. While the performance still degrades,
which mainly results from two aspects: 1) the transfer ability
of the adversarial examples; and 2) the partially preserved NN
characteristic. Therefore, the white-box adversarial attacks can
be well defended under the SFGE.

D. Impact on the Latency

Considering the layer-by-layer scheduling, the latency is
mainly introduced by the decryption of the first layer in NN
when the system starts, because RES will perform the decryp-
tion of the following layers during runtime to hide the addition
latency. As presented in NVSim [22], the write latency of PCM
and RRAM achieves 416.2ns and 100.6ns respectively. The
decryption only incurs one write on each encrypted weight,
therefore the overall decryption latency will be expected to
reach 416.2Nns (PCM-based) and 100.6Nns (RRAM-based)
respectively. Taking the ResNet-101 as an example, the en-
cryption amount of the first layer is min(7x7x3x64x0.1%,
20)≈10. Thus, the latency will be 4.16µs and 1.01µs respec-
tively, which is negligible in the inference process.

VII. CONCLUSION

We have modeled the NN encryption problem and presented
an efficient protecting solution to thwart the confidentiality
attacks which threatens the privacy of the well-trained NN
models deployed in CiM- and NVM-based computing systems.
An efficient framework has been proposed based on the SFGE
method for efficient encryption of the weights and the RES
scheme for the runtime scheduling of the weights encryption.

Experimental results have demonstrated the effectiveness and
robustness of our methods.
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