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ABSTRACT
Convolutional Neural Networks (CNNs) play a vital role in machine
learning. CNNs are typically both computing and memory inten-
sive. Emerging resistive random-access memories (RRAMs) and
RRAM crossbars have demonstrated great potentials in boosting
the performance and energy e�ciency of CNNs. Compared with
small crossbars, large crossbars show better energy e�ciency with
less interface overhead. However, conventional workload mapping
methods for small crossbars cannot make full use of the computa-
tion ability of large crossbars. In this paper, we propose an Over-
lapped Mapping Method (OMM) and MIxed Size Crossbar based
RRAM CNN Accelerator (MISCA) to solve this problem. MISCA
with OMM can reduce the energy consumption caused by the in-
terface circuits, and improve the parallelism of computation by
leveraging the idle RRAM cells in crossbars. The simulation results
show that MISCA with OMM can achieve 2.7⇥ speedup, 30% utiliza-
tion rate improvement, and 1.2⇥ energy e�ciency improvement
on average compared with �xed size crossbars based accelerator
using the conventional mapping method. In comparison with GPU
platform, MISCA with OMM can perform 490.4⇥ higher on average
in energy e�ciency and 20⇥ higher on average in speedup. Com-
pared with PRIME, an existing RRAM based accelerator, MISCA
has 26.4⇥ speedup and 1.65⇥ energy e�ciency improvement.
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1 INTRODUCTION
Recently, convolutional neural networks (CNNs) have made many
breakthroughs in the computer vision area. Despite the high accu-
racy that can be achieved by state-of-the-art CNNs, the training and
inference of state-of-the-art CNNs typically consume high energy
and long computation time. For example, the inference of VGG-16
for one image needs 4.3� energy consumption on GPU platforms
[12] [16]. In order to improve the energy e�ciency and the perfor-
mance of CNNs, many accelerators based on di�erent hardware
platforms have been proposed, such as FPGA [12] and GPU [14]
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Figure 1: RRAM Crossbar with Di�erent Sizes. (a) One 512 ⇥
512 RRAM crossbar (b) Four 256 ⇥ 256 RRAM crossbars

based accelerators. Though they o�er high performance for infer-
ence and/or training, the conventional von Neumann architecture
causes high energy consumption because of large data movements
between processors and memory. Thus, there are urgent needs
for developing new computer architectures to satisfy the power
e�ciency requirements of modern CNNs.

Emerging resistive random-accessmemories (RRAMs) and RRAM
based Computing Systems (RCSes) provide alternative solutions
to improve the energy e�ciency of inference or training of CNNs
[15]. As shown in Fig. 1, RRAMs can be used to build a crossbar
structure to e�ciently perform matrix-vector products. Convolu-
tion operations in CNNs can also be regarded as dot products (or
matrix-vector products). Therefore, recent work has demonstrated
that RRAM crossbars can improve the energy e�ciency by over
100⇥ compared with CPU- or GPU-based solutions [3] [13] [15].

The current RRAM architectures use small crossbars, e.g., 128 ⇥
128 crossbars in ISAAC [13]. When mapping a CNN to small cross-
bars, large convolutional (Conv) layers or fully-connected (FC) lay-
ers need to be split and mapped to multiple crossbars [3]. Therefore,
more interfaces, which mainly include analog-to-digital conver-
tors (ADCs) and digital-to-analog convertors (DACs), are brought
in. However, additional interfaces signi�cantly increase the cost
because interfaces typically dominate more than 85% energy in
RCSes [9]. Therefore, using large crossbars instead of small ones
can reduce the interface cost. For example, as shown in Fig. 1, with
the same number of RRAM cells, using one 512 ⇥ 512 crossbar
can eliminate at most 50% ADCs and DACs compared with four
256⇥256 crossbars. Consequently, using large crossbars is the future
trend for RCSes because of the reduction of energy consumption.
Besides, with the development of the RRAM fabrication technol-
ogy, crossbars will be larger. Recent work has demonstrated an
energy-e�cient RCS based on fabricated 512 ⇥ 512 crossbars [6].

However, the conventional mapping method used in [3] [15]
cannot make full use of the computation ability of large crossbars.
For example, according to Table 1, when mapping ResNet-18 [5]
and AlexNet [8] to 512⇥512 crossbars, the utilization rates are both
only 57%. Thus, more than 40% cells in the crossbars are "wasted".



Table 1: Energy consumptions of conv layers and utilization
rate of crossbars with di�erent crossbar sizes (working at
100MHz, using conventional mapping method[3][15])

CNN Model AlexNet ResNet-18
Crossbar Size 128 256 512 128 256 512

Energy Consumption
of Convolutions (mJ) 1.33 0.82 0.59 2.47 1.78 1.52

Utilization Rate 99% 79% 57% 99% 88% 57%
The low utilization rate of large crossbars is caused by two factors.
First, the conventional mapping method maps one kernel to one
column of a crossbar, but 60 ⇠ 90% output channels of CNNs are less
than 512, resulting in a waste of unused crossbar columns. Second,
in the conventional mapping method, a CNN kernel is unfolded
to a column vector, whose length is not an integral multiple of
the crossbar size. So the kernels cannot �ll one crossbar column,
causing a waste of unused crossbar rows. For instance, we need two
512 ⇥ 512 crossbars to store the kernel with size of 3 ⇥ 3 ⇥ 64 = 576
in ResNet-34 [5]. The number of unused rows is 512⇥2�576 = 448,
which causes more than 87.5% waste of the second crossbar.

In this paper, we analyze the reasons of the low utilization rate of
large crossbars when mapping CNNs, which are shown in Section 3.
In order to solve this problem, we propose an Overlapped Mapping
Method (OMM) in Section 4, which uses the idle cells in large
crossbars to improve the computational parallelism. However, the
performance of OMM is limited when using �xed size crossbars,
which will be discussed in Section 5.1 in detail. Inspired by this,
we present a MIxed Size Crossbar based RRAM CNN Accelerator
(MISCA) in Section 5. Then we design an area-constrained crossbars
allocation and mapping strategy for mapping CNNs on MISCA. The
main contributions of this paper include:

(1) We proposeOMM,whichmaps one kernel tomultiple columns
of a crossbar, and di�erent portions of the kernel are over-
lapped for reusing the input data. We demonstrate that OMM
can improve the speedup and the energy e�ciency of RCSes.

(2) We present MISCA, to leverage the advantages of the OMM
algorithm and break the performance limitation caused by
the �xed crossbars size.

(3) We propose an area-constrained mixed size crossbar based
mapping strategy for mapping an entire CNN model on
MISCA. To the best of our knowledge, this is the �rst work
to utilize mixed size crossbars to optimize the mapping of
1 ⇥ 1 convolutional layers.

(4) A set of CNNs are used to evaluate the performance of
MISCA with OMM. Compared with using �xed size cross-
bars, MISCA with OMM can achieve 2.7⇥ speedup and 1.2⇥
energy e�ciency improvement, and the utilization rate of
RRAM crossbars is increased from 56.75% to 91.26% on aver-
age. Compared with GPU, MISCA can perform 490.4⇥ higher
in energy e�ciency and 20⇥ higher in speedup. Compared
with PRIME[3], an existing RRAM-based accelerator, MISCA
has 26.4⇥ speedup and 1.65⇥ energy e�ciency improvement.

2 PRELIMINARIES AND RELATEDWORK
2.1 Convolutional Neural Network
Typical CNNs usually consist of several convolutional (Conv) layers
and fully-connected (FC) layers. The convolution operation is the
main operation in Conv layers, which can be expressed as Equ. (1):

fo (x ,�, z) =
K�1’
i=0

K�1’
j=0

Cin’
k=1

fi (x + i,� + j,k)kz (i, j,k) (1)

where 3-dimensional matrices fo and fi represent the input and
output feature maps, respectively. K is the kernel size and Cin is
the number of input channels. kz represents the zth 3-dimensional
convolution kernel with size of K ⇥ K ⇥Cin .

FC layers can be expressed as Equ. (2):

outputi = f (
’
j
(wi, j ⇥ inputj + bi )) (2)

wherewi, j represents the (i, j) element of weight matrixW , f (·) is
a nonlinear activation function, e.g. ReLU, max(0,x ).
2.2 RRAM and Its Crossbar Structure
An RRAM is a passive two-terminal device and its crossbar structure
can implement matrix-vector products e�ciently [9], as shown in
Fig. 1(a) (b). The input voltage vector V and the output current
vector I have the relationship expressed as Equ. (3) [9]:

iout,k =
N’
j=1

�k, j�in, j (3)

where �in, j is the j-th element of the input voltage vector V, �k, j
represents the conductance of RRAM device that in the k-th column
and the j-th row and iout,k is the k-th element of the output current
vector I. Thus, we can implement Conv and FC layers on crossbars.
The input data fi or inputj is represented by analog voltages on
the wordlines of a crossbar, and the kernel weights kz orwi, j are
represented by the RRAM cell conductances in the crossbar.

RRAM is an analog device and the analog output signals are
di�cult to store. Thus, ADCs and DACs are used as the interfaces
between crossbars and digital circuits, as Fig. 1 shows. In RCSes, [9]
has demonstrated that the interfaces occupy a signi�cant portion
(> 85%) of area and power consumption.
2.3 Existing RRAM based CNN Accelerators
Previous work has demonstrated several RRAM based CNN accel-
erators [3] [13] [15]. These architectures use �xed size crossbars in
their designs, e.g. 128 ⇥ 128 in [13] [15] and 256 ⇥ 256 in [3] .

All of the current RRAM based accelerators use the conventional
mapping method [15]. In this mapping method, 3-dimensional ker-
nels with size of K ⇥ K ⇥Cin are unfolded to a K2

Cin ⇥ 1 column
vector at �rst. Then the unfolded kernel is mapped to one column
of the crossbar. If the length of the column vector exceeds the size
of the crossbar, multiple crossbars are needed to store it and the
convolution results are accumulated by adding the outputs of these
crossbars. Di�erent kernels of one Conv layer are mapped to di�er-
ent columns, such that the convolution results of these kernels can
be computed in parallel. Assume that the crossbar’s size is S ⇥ S

and the number of output channels isCout , the number of required
crossbars can be calculated by Equ. (4):

N = Nx ⇥ N� =

⇠
Cout
S

⇡
⇥
⇠
K ⇥ K ⇥Cin

S

⇡
(4)

where Nx and N� represent the number of crossbars required in
the horizontal direction (denoted as x-direction) and in the vertical
direction (denoted as �-direction), respectively.

Similarly, the feature map data used for convolutions are un-
folded to a column vector and loaded into the input ports of the
crossbar. In the next cycle, the kernel window shifts to the right and
another set of the feature map data is loaded, as shown in Fig. 2(b).
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Figure 2: (a) An example of Conv layer with three kernels
(kernel A, B, and C); (b) The mapping result of the conven-
tional mapping method; (c) The mapping result of OMM.
3 MOTIVATIONAL EXAMPLE
The current RRAM based accelerators adopt small crossbars. How-
ever, when mapping CNNs to small crossbars, more interfaces are
brought in because we need to split the networks.

Based on Equ. (4), we can calculate the number of DACs and
ADCs required in an RCS accroding to Equ. (5):

NDAC =

⇠
Cout
S

⇡
⇥K⇥K⇥Cin ; NADC =

⇠
K ⇥ K ⇥Cin

S

⇡
⇥Cout (5)

Equ. (5) shows that the number of ADCs and DACs increases rapidly
with the decreasing of S . Previous work has demonstrated that
DACs and ADCs occupy more than 85% energy consumption of an
RCS [9]. Therefore, small crossbars are less energy e�cient because
of the peripheral circuits. As shown in Table 1, compared with
512 ⇥ 512 crossbars, 128 ⇥ 128 and 256 ⇥ 256 crossbars consume
1.94⇥ and 1.29⇥ higher energy, respectively. The data for energy
estimation are referred to [1] [2] [11]. The parameters of the CNN
models are determined by [5] [8]. All CNNs are mapped to crossbars
using the conventional mapping method illustrated in [15].

Furthermore, FC layers have the same problem as Conv layer,
which is caused by additional interfaces when using small crossbars.
For example, in AlexNet[8] and VGG[7], there exist several FC
layers with 4096 inputs and 4096 outputs. When utilizing 128 ⇥ 128
crossbars, we need 4⇥ ADCs and DACs compared with 512 ⇥ 512
crossbars, which means nearly 3.4⇥ energy consumptions.

In order to improve the energy e�ciency, large crossbars, e.g.,
512⇥ 512 in [6], are used in RCSes. However, the conventional map-
ping method does not make full use of the computation resources
of RRAM crossbars. We de�ne the utilization rate in Equ. (6). It
represents the ratio of the number of computing cells to the number
of cells in the entire crossbar.

U =
K ⇥ K ⇥Cin ⇥Coutl

K⇥K⇥Cin
S

m
⇥
l
Cout
S

m
⇥ S2

(6)

Table 1 shows that the utilization rate of a 512⇥512 crossbarwhen
mapping di�erent CNNmodels on it. The crossbar’s utilization rates
on AlexNet and ResNet-18 are both 57%. Thus, more than 40% cells
are "wasted" in the conventional mapping method.

The low utilization rate of large size crossbars comes from the
fact that either the number of output channels (Cout ) or the size of
a kernel (K ⇥ K ⇥Cin ) is not an integral multiple of the crossbar’s
size. For example, in Fig. 2(b), the kernel size is 2 ⇥ 2 ⇥ 1 with three
output channels and the size of the crossbar is 6 ⇥ 6. There are
three idle columns and two idle rows in the conventional mapping
method, which are the black RRAM cells in Fig. 2(b).

4 OVERLAPPED MAPPING METHOD
To overcome the drawbacks of the conventional mapping method,
we propose Overlapped Mapping Method (OMM) which takes full
advantage of idle cells of crossbars to improve the computational
energy e�ciency.
4.1 Description of OMM
Considering the sliding window in Conv layers, when the window
shifts to the right, some feature map data are reused in the next
convolution. Consequently, the input data used in di�erent cycles
can be merged to achieve equivalent e�ect of sliding window. As the
example shown in Fig. 2(a) (c), the yellow block data [(1, 2), (2, 2)]T
is reused in T = t and T = t + 1 for convolution. So we merge
the input data used in T = t , t + 1 to a long vector, i.e. the purple
frame in Fig. 2(c). Thereby, the corresponding kernel vectors are
staggered and overlapped, as shown in Fig. 2(c). Then, one kernel
is mapped multiple times to the di�erent columns on one crossbar.

The stride of the Conv layer is st and the length of overlapped
part lo�er lapped can be expressed in Equ. (7):

lo�er lapped =

(
(K � st ) ⇥ K ⇥Cin K > st

0 K  st
(7)

In the example, we can complete six convolutions in one cycle,
while we need two cycles in original mapping method.
4.2 Analysis of OMM
Speedup Analysis. As mentioned in Section 4.1, OMM boosts
the computation parallelism so that it improves the throughput of
the convolutional layer. Under the constraints that we do not add
additional crossbars, there are two factors limiting the parallelism:

The quantity of crossbars in x-direction limits the number of
columns which are used to represent the same kernel. The maxi-
mum speedup derived from x-direction is shown in Equ. (8) :

xspeedup =

6666664

l
Cout
S

m
⇥ S

Cout

7777775
(8)

The quantity of crossbars in �-direction limits the length of the
long column vector merged by multiple input vectors, which is
expressed in Equ. (9):

�speedup =

6666664

l
K 2⇥Cin

S

m
⇥ S � K

2
Cin

st ⇥ K ⇥Cin
+ 1

7777775
(9)

According to Equ. (8) and Equ. (9), the speedup (sp ) of the Conv
layer is calculated as follows:

sp = min(xspeedup ,�speedup ) (10)
Energy Consumption Analysis. Depending on OMM, we re-

duce the times of loading feature map data into the crossbars by
overlapping and reusing the input elements. Therefore, the number
of DACs decreases, reducing the energy consumption. Besides, the
number of Conv layer’s output data stays unchanged, leading to
the same energy consumption caused by ADCs as before.

According to Fig. 2(b) (c), in the conventional mapping method,
two cycles are needed for getting six results and four DACs are
used. In OMM, these results only need one cycle with six DACs.
Therefore, OMM can reduce the energy consumption caused by
DACs by 25%. In common CNNs, the overlapped part is much longer
than this example because of the large input channel (Cin ). Thus,
OMM can achieve better the energy e�ciency of RCSes for CNN.
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Figure 3: (a) An example of unbalanced mapping result; (b)
Balance the mapping with mixed size crossbars

Utilization Rate AnalysisOMMmakes use of the idle columns
of crossbars, which increases the utilization rate of large size cross-
bars, the new utilization rate can be calculated by Equ. (11):

UOMM =
[(sp � 1) ⇥ st ⇥ K ⇥Cin + K2

Cin ] ⇥ sp ⇥Coutl
K⇥K⇥Cin

S

m
⇥
l
Cout
S

m
⇥ S2

(11)

5 MISCA
The proposed OMM can improve the energy e�ciency, speedup
and, utilization rate, but the performance is limited by the size of
crossbars. In order to break this limitation, we design an architecture
based on RRAM, MISCA. In Section 5.1, we analyze the limitation
of OMM on existing RRAM based architecture. In Section 5.2, we
propose MISCA and its details. Then, the detailed mapping method
and crossbars allocation strategy on MISCA for Conv layers and FC
layers are introduced in Section 5.3 and Section 5.4, respectively.
5.1 Limitation of OMM on Existing RRAM

based Architecture
There exist three factors that limit the performance of OMM on
existing RRAM based architecture:

Limited improvement of utilization rate. Even if OMM can
improve the utilization rate, there still exists a waste of RRAM cells
in crossbars. For example, as shown in Fig. 4, the second Conv layer
of ResNet-18 containsCout = 64 kernels, each with 3⇥3⇥64 = 576
elements [5]. The blue bar represents the 64 kernels and the orange
border boxes are 512 ⇥ 512 crossbars. According to Equ. (7), the
length of overlapped part in the column direction is 2⇥3⇥64 = 384.
Therefore, there are 576 � 384 = 192 elements for each kernel that
cannot be overlapped. In other words, this un-overlapped part takes
up 192⇥Cout cells out of 192⇥512 array in the crossbar. The unused
cells in these 192 rows are shown in gray. Under this circumstance,
if we use one 256 ⇥ 256 crossbar to cover the un-overlapped part, a
higher utilization rate and smaller area can be obtained. Besides, the
small crossbars do not increase the energy consumption without
additional interfaces. As shown in Fig. 4(b), the number of ADCs,
which are circled by red, remains the same.

Speedup improvement is limited by the unbalanced map-
ping result. When the size of crossbars is not an integral multi-
ple of Cout , e.g., AlexNet contains layers with 96 and 384 output
channels, we get an unbalanced mapping result, which is shown
in Fig. 3. In this case, limited by the crossbar size, only a part of
the kernels can be overlapped. As the example shown in Fig. 3(b),
there are four kernels A,B,C,D while only the former two ker-
nels A,B can be overlapped mapping. In the �rst cycle, we load
[(1, 1), (2, 1), (1, 2), (2, 2), (1, 3), (2, 3)]T , and only kernel A and B

convolve with [(1, 2), (2, 2), (1, 3), (2, 3)]T . Thus, we need to reload
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Figure 4: Improve the utilization rate with mixed size cross-
bars
[(1, 2), (2, 2), (1, 3), (2, 3)]T for convolving with kernel C and D in
the second cycle. It increases the energy consumption. An e�ective
solution is proposed to use additional crossbars storing C , D to
"balance" the mapping, as shown in Fig. 3(b). Thus, if the additional
columns are less than 128, adopting smaller crossbars can solve
the unbalanced problem better compared with 512 ⇥ 512 crossbars
because of its higher utilization rate.

No speedup gains for 1⇥1 convolutions and FC layers. The
analysis of OMM shows that the speedup comes from overlapping
the reused input data, then the computational parallelism is im-
proved. On the one hand, FC layers do not have reused input data
according to Equ. (2), so there is no speedup for FC layers from
OMM. On the other hand, for 1⇥ 1 convolutions in some CNNs, e.g.
ResNet, the kernel size is 1 and the stride is 1 or 2. The length of
the overlapped part of input data is 0 according to equ. (7), which
means they can not be accelerated by OMM. Because of the branch
structure of ResNet, 1⇥1 convolutions may be the bottleneck of the
computation time. To tackle these problems, weight matrix dupli-
cations, which use multiple crossbars to store the same weight, are
adopted for higher parallelism. Therefore, how to improve the par-
allelism with the minimum duplication overhead is critical. Small
crossbar has advantages in area and �exibility. So it is suitable for
1 ⇥ 1 kernels’ duplications (e.g. more than 50% 1 ⇥ 1 Conv layers
of ResNet have input channels and output channels less than 128).
But FC layers have much more weight data than Conv layers. So
large crossbars are better for minimum interfaces overhead.

Inspired by these factors, a generalized architecture with mixed
size crossbars, MISCA, is designed to break the limitation caused
by the �xed crossbars.
5.2 Architecture of MISCA
The overall architecture of MISCA is shown in Fig. 5(a). The MISCA
consists of eight RRAM banks and a global bu�er. All the banks
and the global bu�er have a shared bus for loading and storing the
intermediate data between di�erent layers. Each RRAM bank is
composed of Input Data Rearrangement Circuits (IDRC), three Pro-
cess Element Arrays (PEA) with crossbars of di�erent sizes, Crossbar
Selection Circuits (Sel), SUM Circuits, Pooling and ReLU Circuits and
a Controller (Ctr), as Fig. 5 shows.

Input data rearrangement circuits are shown in Fig. 5(b),
which contains a input data block queue and a counter. As shown
in Section 4.1, the feature map data is merged to a long column
vector, which can be divided into dK/st e blocks. Each block contains
K ⇥ st ⇥ Cin input data. At the end of each clock cycle, the �rst
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Figure 5: (a) The overview of MISCA architecture; (b) Input Data Rearrangement Circuits (IDRC); (c) Process Elements Array
(PEA); (d) Crossbar Selection Circuits (Sel); (e) MISCA Controller (Ctr); (f) SUM Circuits (SUM); (g) Pooling and ReLU Circuits

block is pulled from the queue and another block is read from
the global bu�er or the Pooling and ReLU Circuits. The counter
indicates whether the sliding window shifts to the end of the row.
If the window reaches the end, the queue is �ushed and loads a new
data block as the window slides to the beginning of the next row.

Process Element Array (PEA) is shown in Fig. 5(c). There exist
three PEAs in one bank: large, medium, and small RRAM crossbars
array, which contains 512 ⇥ 512 crossbars, 256 ⇥ 256 crossbars,
and 128 ⇥ 128 crossbars. Each PEA has 32 ⇥ 2 = 64 crossbars, and
the whole system contains 64 ⇥ 8 = 512 large, medium, and small
crossbars, which are enough for mapping a large scale CNN (e.g.
ResNet-50). Input data is transfered from Sel to each crossbar. At
the falling edge of each cycle, convolution results are read from
crossbars and then sent to SUM circuits.

Crossbar Selection Circuits are aimed at selecting the exact
number of crossbars in PEAs and transferring the feature map data
to them. As demonstrated in Fig. 5(d), this part is composed of three
submodules connecting to three PEAs. The submodule contains a
decoder and a group of MUXs. Each MUX connects to a crossbar in
the PEA for selection. It sends zero input to the unused crossbars.

Controller receives instructions and signals from CPU and pro-
vides signals to peripheral circuits in RRAM bank as shown in Fig.
5(e). Its functions contain setting the threshold of counter in IDRC,
con�guring the settings of Sel, and controlling the data �ow.

SUM Circuits are shown in Fig. 5(f) for adding the outputs of
di�erent crossbars to get the convolution results, which are com-
posed of ADD decoders, adders, and an encoder. ADD decoders
receive control signal from controller, and determine which cross-
bars’ output should be sent to the adders. The outputs of adders are
transferred to the encoder. The encoder determines whether send
the results to Pooling and ReLU Circuits in this bank or transfer the
data to the shared bus.

Pooling and ReLU Circuits are shown in Fig.5(g). It imple-
ments the pooling and the nonlinear activation function after Conv
layers. There exist three parts of this circuit: ReLU part,max pooling
part, and average pooling part. ReLU part performs the nonlinear acti-
vation function y =max(x , 0), which can be composed by a compara-
tor and a transfer gate. Max pooling part implements the function
� = max(x1,x2, ...xN ). In MISCA, in order to reduce the area over-
head, we reuse the circuits of ReLU part to performmax pooling, and
use a tree structure to reduce the operation time. Average pooling
part computes the function � =avg(x1,x2, ...xN ) = ÕN

i=1 1/N ⇥ xi .
According to Equ. (3), we can use crossbars with the same weight

in each cell, i.e. 1/N , to perform average operations. In MISCA, we
use 64 4 ⇥ 4 crossbars to compute the average function.
5.3 Mapping Convolutional Layers on MISCA
In this section, we propose the crossbars allocation and mapping
strategy for mapping Conv layers on MISCA. As demonstrated in
Section 5.1, OMM cannot accelerate the 1 ⇥ 1 convolutions. So we
discuss the detailed mapping strategy for convolutions with kernel
size larger than 1 (we call them regular convolutions) and 1 ⇥ 1
convolutions separately in this section. Then we show the area-
constrained mapping strategy for the entire Conv layers, which
aims to achieve the highest speedup with little extra area overhead,
compared with �xed size crossbars based accelerator.

Mixed size crossbar based mapping strategy for regular
convolutions. In OMM, di�erent convolutions need di�erent num-
ber of crossbars to map. We introduce a square coverage model to
describe the mapping problem. CNN kernels are abstracted into
a rectangle with the size of [len�th,width] = [K ⇥ K ⇥Cin ,Cout ].
Given a speci�c speedup sp , the rectangle is duplicated for sp copies.
Then we arrange these copies in line, but the later one is staggered
with the former one. An example is shown in Fig. 4, the blue bars
are the Conv kernels with sp = 3. After that, the mapping process
has a problem that uses three kinds of squares with the size of 128,
256, and 512, to cover these rectangles. Considering the trade-o�
between energy consumption and utilization rate of crossbars of
di�erent sizes, we use the greedy method to improve utilization
rate for reducing the energy consumption. The coverage strategy
is composed of four steps:

(1) Use a grid to cover the duplicated rectangles. The grid consist
of I ⇥ � squares with the size of 128⇥128, (I , � ) are calculated
from Equ. (12).

I =

&
(sp � 1) · st · K ·Cin + K2 ·Cin

512

'
⇥4; � =

⇠
sp ·Cout

512

⇡
⇥4 (12)

Where st is the stride of the Conv layer. If the (i, j) (the ith
row, the jth column) square has covered a part of the kernels,
then we mark the (i, j) square with 1.

(2) Find a set of 16 (4⇥4) grid squares, which meet the following
conditions: a) Any square in the set does not be marked as
3; b) The sum of the marked number of these squares is
larger than eight, i.e. half of the squares have covered the
proportion of kernels, and the sum of marked number of
other sets. The number "8" means that the utilization rate
is nearly or more than 50% when using large crossbars, or
we need more than three middle crossbars. Compared with



one large crossbars, three middle crossbars have nearly 50%
extra energy consumption overhead. Then we mark these
squares with 3 and repeat this step until no more sets meet
these conditions.

(3) Similarly, �nd a set of 4 (2 ⇥ 2) grid squares, which meet the
following conditions: a) Any square in the set does not be
marked as 3 and 2; b) The sum of the marked number of these
squares is larger than four and the sum of marked number
of other sets. Then mark these squares with 2. Repeat this
step until no more sets meet these conditions.

(4) Use 512 ⇥ 512, 256 ⇥ 256, and 128 ⇥ 128 crossbars to map the
grid square marked with 3, 2, and 1, respectively.

Mixed size crossbar based mapping strategy for 1 ⇥ 1 con-
volutions. OMM does not work for 1 ⇥ 1 convolutions, so other
optimization methods should be considered for higher parallelism,
such as the weight matrix duplications. Table 2 shows the simula-
tion results of the area of di�erent Conv layers with di�erent sizes
of crossbars. From the results, we know that 1 ⇥ 1 convolutions
occupy small chip area. Therefore, duplicating the weight matrix to
multiple crossbars is feasible, and the smaller area means the higher
parallelism when using the same chip area. Furthermore, the last
row of Table 2 shows that the smaller crossbar does not mean the
smaller area cost in total because smaller crossbars leads to more
interfaces, which damage the area advantage of smaller crossbars.
Consequently, for achieving the smallest area for 1⇥1 convolutions,
we should not only use small crossbars for their area advantage,
but also consider large crossbars for the less interface overhead. We
modi�ed the mapping strategy for regular convolutions to map the
1 ⇥ 1 convolutions on MISCA with the smallest area:

(1) Abstract the 1 ⇥ 1 kernel into a rectangle with the size of
[len�th,width] = [Cin ,Cout ]. Use a grid to cover the kernel
rectangle. The grid consist of I ⇥ � squares with the size of
128 ⇥ 128, (I , � ) are calculated in Equ. (13).

I =

⇠
Cin
512

⇡
⇥ 4; � =

⇠
Cout
512

⇡
⇥ 4 (13)

If the (i, j) square has covered part of the kernels, then we
mark the (i, j) square with 1.

(2) Find a set of 16 grid squares, which meet the following con-
ditions: a) Any square in the set does not be marked as 3;
b) The sum of the marked number of these squares is larger
than 6.8 and the sum of marked number of other sets. We
choose the number "6.8" because the area of one 512 ⇥ 512
crossbar is 6.8⇥ of one 128 ⇥ 128 crossbar. We mark these
squares with 3 and repeat this step until no more sets meet
these conditions.

(3) Find a set of 4 grid squares, which meet the following con-
ditions: a) Any square in the set does not be marked as 3
and 2; b) The sum of the marked number of these squares is
larger than 2.5 and the sum of other sets’ marked number.
"2.5" means the area of one 256⇥ 256 crossbar is 2.5⇥ of one
128⇥ 128 crossbar. We mark these squares with 2 and repeat
this step until no more sets meet these conditions.

(4) Use 512 ⇥ 512, 256 ⇥ 256, and 128 ⇥ 128 crossbars to map the
grid square marked with 3, 2, and 1, respectively.

Area-constrainedmixed size crossbar basedmapping strat-
egy for the entire Conv layers. The former parts present the
mapping strategy for one Conv layer. Based on these, we design an

Algorithm 1 Area-constrained mixed size crossbar based mapping
strategy for the entire convolutional layers
Input: The CNN model.
Output: Speedup of the entire convolutional layers; number of

di�erent size crossbars for each layer.
1: Get run time Tf , area of regular conv layers Af 1, and area of

1 ⇥ 1 conv layers Af 2 @ �xed size crossbar;
2: Set {Speedupi } = 1, map on MISCA;
3: Calculate the number of large, middle, and small

crossbars:{N1(i),N2(i),N3(i)};
4: Get runtime of each layer {Tl (i)}, area of regular conv layers

Am1, and area of 1 ⇥ 1 conv layers Am2;
5: while Am1 < Af 1 or Am2 < Af 2 do
6: Calculate runtime of each level {TL(l)}, �nd the most time

consuming level: L;
7: Find the bottleneck layer l for level L;
8: if l is regular conv and Am1 < Af 1 then
9: Speedup(l) = Speedup(l) + 1;
10: Speedup with OMM;
11: Update Tl (l) and Am1;
12: Calculate N1(l),N2(l),N3(l);
13: end if
14: if l is 1 ⇥ 1 conv and Am2 < Af 2 then
15: Speedup(l) = Speedup(l) + 1;
16: Speedup with weight matrix duplication;
17: Update Tl (l) and Am2;
18: Calculate N1(l),N2(l),N3(l);
19: end if
20: end while
21: Calculate the entire speedup: Speedup = Tf /

Õ
i (Tl (i);

22: return Speedup, {N1(i),N2(i),N3(i)};

area-constrained mixed size crossbar based mapping strategy for
the entire Conv layers, as shown in Algorithm 1.

In this strategy, we �rst get results with �xed size crossbars, as
Line 1 shows. After that, we set the speedup of each layer to 1,
map each layer on MISCA, and get results. This initial procedure
is shown in Line 2 to Line 4. If the area is smaller than that of the
�xed size crossbars, we can do further optimization. Di�erent from
one-layer-acceleration, mapping the entire CNN model needs to
�nd the bottleneck of the critical path, then allocate more comput-
ing resources for it. We call all the branches with the same input
and output node in CNNs as a level, the runtime of each level is
determined by the critical path of it. In the mapping strategy, we
use the greedy method. In each iteration, we �nd the most time-
consuming level and the critical layer of this level (Line 6 and Line
7). According to the type of this layer, we use di�erent methods
to accelerate and map on MISCA, as shown in Line 8 to Line 18.
we repeat this procedure until the mapping reaches the area limit.
After that, we calculate the speedup of entire Conv layers and the
crossbars allocation scheme (Line 21 and Line 22).

5.4 Mapping FC Layers on MISCA
FC layers have much more data than Conv layers, in VGG, the
parameter’s number of FC layers is 8⇥ than that of Conv layers.



Table 2: Comparisons between the area and crossbars number of 1 ⇥ 1 convolutions (the area unit ismm2, and the number in
parentheses is the normalized area compared with the regular convolutions of CNNs)

Only Large Crossbars Only Middle Crossbars Only Small Crossbars MISCA

Area # of
Crossbars Area # of

Crossbars Area # of
Crossbars Area [# of Large, Middle,

Small Crossbars]
ResNet-18 0.117(5.70%) 8 0.053(2.59%) 10 0.051(2.49%) 24 0.038(1.85%) [0,4,8]
ResNet-34 0.117(2.77%) 8 0.053(1.26%) 10 0.051(1.21%) 24 0.038(0.90%) [0,4,8]
ResNet-50 2.079(93.4%) 142 2.100(94.3%) 396 3.208(144%) 1496 1.682(75.6%) [64,96,86]

Moreover, FC layers can be represented as one matrix-vector mul-
tiplication, so RRAM crossbar can compute them in one cycle, ac-
cording to the Equ. (2). Therefore, even if OMM does not work for
FC layers, FC layers is not the bottleneck of the whole system.

However, because of the huge number of parameters, we need
more crossbars to store the weights. If the entire FC layers can be
stored in crossbars, we store all the weights and complete the FC
layer in one cycle. Otherwise, we need to split the FC layers and
only store a part of them in crossbars. For instance, we need 948
large crossbars to map the FC layers of VGG, which exceed the total
crossbar number of MISCA. So we need to write new weights into
crossbars as soon as the computation �nished. Butmany researchers
have demonstrated that write crossbars is slower and consumes
more energy than read operations [1][18]. Therefore, there exists
a trade-o� between area and energy or runtime for mapping FC
layers. Fig. 6 shows the simulation results of this trade-o�, and the
data are normalized to Conv layers for simplifying the contrast,
which comes from simulation experiment which is discussed in
Section 6. The x-axis represents the number of crossbars we used.
According to Fig. 6, we choose 237 large crossbars to map the entire
FC layers, for the below considerations: a) In MISCA, the number
of large crossbars is 64 ⇥ 8 = 512, besides the 142 crossbars used
for Conv layers, at most we have 370 large crossbars; b) Compared
with using 316 crossbars, we can gain 25% area reduction with 10%
energy consumption overhead and 12% runtime increment.

In addition, according to [3], the endurance of RRAM is 1012 at
most. In one inference, our mapping strategy only need three times
of write operation for FC layers in VGG, we think the endurance is
enough for 1011 times of testing. If we need more inference or the
endurance of RRAM is limited, we decide to use more crossbars in
our architecture to avoid writing.
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Figure 6: Area, energy, and runtime of FC layers normalized
to Conv layers in VGG

6 SIMULATION RESULTS
In this section, we evaluate the performance of MISCA with OMM.
In Section 6.1, we describe the experiment setup. Section 6.2 anal-
yses the runtime of MISCA for di�erent networks. The energy

e�ciency of MISCA is analyzed in Section 6.3. Utilization rate
of MISCA is shown in Section 6.4. The area analysis is shown in
Section 6.5. Finally, we compare MISCA with PRIME, an existing
RRAM-based accelerator, in Section 6.6.
6.1 Simulation Setup
We use �ve CNN models to evaluate MISCA, i.e., AlexNet [8], VGG-
D [7], ResNet-18, ResNet-34, and ResNet-50 [5]. One dataset, Ima-
geNet, is used in these CNNs. The RRAM model we used refers to
[1], the cell area is ⇠ 0.03µm2, the read power of the cell is 65µW .
The ADC, DAC, SA, and comparator we refer to are shown in [11]
[2] [4] [10]. We use MICRON DDR4 SDRAM as global bu�er for
simulation, whose read bandwidth is 3200MT /s and the read power
is about 70mW . The work frequency of MISCA is set to 100MHz,
and the whole system is simulated by MNSIM[17].

All the results are compared with GPU NVIDIA TITAN X, and
RRAM based accelerators.
6.2 Runtime Analysis of MISCA
We compare the runtime of MISCA, RRAM based accelerator with
�xed size crossbars, and GPU, the results are shown in Table 3.
Compared with GPU, MISCA can achieve 4.7 ⇠ 30.94⇥ speedup,
the unsatisfactory result of VGG comes from the slow speed of
writing RRAM when mapping FC layers. Compared with �xed size
crossbars, MISCA can achieve 1.7 ⇠ 2.7⇥ speedup for the whole
system and 3.1 ⇠ 6.7⇥ speedup for Conv layers. The speedup of the
whole system is limited by the bandwidth of the bu�er. Fig. 7 shows
the runtime analysis for each CNN model. From the comparison,
the time of Conv layers is reduced and the time of data movements
becomes the bottleneck. Furthermore, in VGG, the time of FC layers
is signi�cantly higher than other CNN models, for the reason that
we only need write operations in VGG.

Table 3: The speedup compared with GPU
ResNet18 ResNet34 ResNet50 AlexNet VGG

512x512 6.24x 7.33x 7.35x 18.88x 2.33x
MISCA 17.18x 18.7x 13.10x 30.94x 4.7x

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 ResNet-18ResNet-34ResNet-50AlexNetVGGRuntimeforeachCNNmode/ms

Conv Layers FC Layers Data Movement Others

Left Bar:
Large Crossbars

Right Bar:
MISCA

Figure 7: The runtime analysis for each CNN model
6.3 Energy E�ciency Analysis of MISCA
The energy e�ciency of RRAM based accelerator compared with
GPU is shown in Figure 8. The results show that the energy e�-
ciency of MISCA and large crossbars is higher than that of small



Table 4: The utilization rate of each CNN model.
ResNet-18 ResNet-34 ResNet-50 AlexNet VGG1 ⇥ 1 Conv Regular Conv 1 ⇥ 1 Conv Regular Conv 1 ⇥ 1 Conv Regular Conv

512x512 16.80% 59.92% 16.80% 55.88% 88.02% 58.45% 57.16% 79.04%
MISCA 75.00% 92.23% 75.00% 93.65% 99.41% 91.91% 83.62% 94.91%

crossbars, as demonstrated in Section 3. Compared with GPU,
MISCA can achieve 139.26 ⇠ 1041.12⇥ energy e�ciency improve-
ment. Compared large size crossbars, MISCA can achieve 2% ⇠ 22%
energy e�ciency improvement. The improvement is limited be-
cause OMM can only reduce the energy consumption of DACs of
the Conv layers. The energy consumption distribution of MISCA
is shown in Figure 9(a), from which we know that ADCs/DACs
occupy a large part of the energy consumption of RCSes. Thus, the
energy e�ciency improvement is limited if only reduce the DACs
part.
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Figure 8: The energy e�ciency compared with GPU
6.4 Utilization Rate Analysis
The utilization rate of each CNN model is shown in Table 4. MISCA
with OMM can increase the utilization rate about 25% ⇠ 35% for
regular convolutions and 60% for 1 ⇥ 1 convolutions in ResNet-18
and ResNet-34. The 512 ⇥ 512 crossbars’ high utilization rate of
ResNet-50 comes from the large number of 1 ⇥ 1 kernels which
have input channel or output channel larger than 512.
6.5 Area Analysis
The area distribution is shown in Fig. 9(b). The PEAs occupy over
95% area, which contain crossbars and peripheral circuits. IDRC and
Pooling and ReLU Circuits take up 2% area. SUM Circuits contain an
array of 8-bit adders, which takes up 3% area. Besides, the last two
columns of Table 2 show that MISCA can map 1 ⇥ 1 convolutions
with smaller area.
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Figure 9: The energy (a) and area (b) distribution of MISCA
6.6 Comparison to PRIME
We compare MISCA with an existing RRAM based accelerator,
PRIME[3]. PRIME uses 256 ⇥ 256 crossbars for both computation
and storage, and it works at 533MHz. We use VGG-D as benchmark
to evaluate their performances. Simulation results show that com-
pared with PRIME, MISCA can achieve 26.4⇥ speedup and 1.65⇥
energy e�ciency. Note that the bu�er and peripheral circuits de-
signs of them are quite di�erent, the results show that MISCA has
the potential in improving the speedup and energy e�ciency. The
ideas of using mixed size crossbars, OMM, and the proposed map-
ping strategy are also suitable for other architectures like PRIME.

7 CONCLUSION
This paper proposes an Overlapped Mapping Method (OMM) to
make full use of the RRAM cells in crossbars when performing
the computation of CNNs. MIxed Size Crossbar based on RRAM
CNNArchitecture, MISCA, is proposed to leverage the advantage of
OMM algorithm. An area-constrained mixed size crossbars alloca-
tion strategy is proposed to optimize the performance. Simulation
results show that MISCA with OMM can achieve 2.7⇥ speedup,
30% utilization rate improvement, and 1.2⇥ energy e�ciency im-
provement on average compared with the �xed size crossbars based
accelerator using the conventional mapping method. In comparison
with GPU, MISCA can perform 92.6⇥ higher on average in energy
e�ciency and 20⇥ higher on average in speedup. Compared with
an existing RRAM-based accelerator, PRIME, MISCA has 26.4⇥
speedup and 1.65⇥ energy e�ciency improvement.
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