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Abstract—Nowadays, Graphics Processing Unit (GPU), as a kind of
massive parallel processor, has been widely used in general purposed
computing tasks. Although there have been mature development tools, it
is not a trivial task for programmers to write GPU programs. Based on
this consideration, we propose a novel parallel computing architecture.
The architecture includes a parallel programming model, named Gemma,
and a programming framework, named April. Gemma is based on
generalized matrix operations, and helps to alleviate the difficulty of
describing parallel algorithms. April is a high-level framework that
can compile and execute tasks described in Gemma with OpenCL. In
particular, April can automatically 1) choose the best parallel algorithm
and mapping scheme, and generate OpenCL kernels, 2) schedule Gemma
tasks based on execution costs such as data storing and transferring.
Our experimental results show that with competitive performance, April
considerably reduces the programs’ code length compared with OpenCL.

I. INTRODUCTION

In the battle to achieve higher computing performance, Graphics

Processing Unit (GPU) emerges as a novel type of processor for

parallel computing. Because of the inherent parallelism of graphics

rendering algorithms, which deal with a large number of independent

pixels, GPU is a massive parallel architecture with great floating

points computing power. These features make modern GPU different

from the mainstream general purpose processors in both structure and

performance.

The architecture of GPU is suitable for not only graphics rendering

algorithms, but also general parallel algorithms in a wide variety of

application domains. On the other hand, current high-end GPUs have

much more computation power and memory bandwidth than a high-

end CPU. Therefore, more and more general-purpose computation

applications are mapped to graphics hardware.

However, as a result of its highly specialized parallel architecture,

difficulties such as parallel task partitioning, threads communication

and synchronization, load balancing, and memory access mode,

emerge when implementing GPU-based parallel programs. Designing

an efficient GPU program is not easy, and it requires programmers’

knowledge of low-level architecture of the underlying chip. Such

difficulties extend the development cycle and raise the threshold of

GPU parallel programming.

To lower the complexity of parallel programming on GPU while

maximizing efficiency, we propose a novel parallel computing ar-

chitecture, which can help alleviate the difficulties of programming

on GPUs. Our architecture includes a parallel programming model,

named Gemma, and a corresponding programming framework,

named April. Gemma is based on generalized matrix operations,

by which programmers can easily transform tradition algorithms
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into parallel programs. Then, the framework April can automatically

execute Gemma tasks using OpenCL.

This paper is organized as follows. Section II provides our motiva-

tions and previous works. In Section III, we present a novel parallel

programming model based on general matrix operations - Gemma.

In Section IV, we discuss the implementing and optimization of

April, our parallel computing framework based on OpenCL. Several

application examples with test results and analysis are provided in

Section V. Section VI concludes our work and makes the future

research plans.

II. MOTIVATION AND RELATED WORKS

A. OpenCL: Open Computing Language

OpenCL is a programming language widely supported since 2009

[1]. It is promoted to unify the GPGPU programming process

of AMD and NVIDIA, the programming of multi-core CPU and

customized accelerators. That is to say, programs written following

the OpenCL specifications can be executed on most mainstream

multi-core CPU and GPGPU.

OpenCL is comprised of compilation chain and run-time library.

OpenCL compilation chain can compile OpenCL programs statically

or dynamically. The run-time library administers the load and execu-

tion of programs, initiates the data transmission and so on.

The programming model of OpenCL is intrinsically related to the

architecture of GPGPU. For instance, the Work Item in OpenCL

corresponds to thread in ATI Stream programming model, the Work

Group to thread group and the Local Memory to LDS (Local Data

Share) [2], [3].

B. Motivation for General-Purpose GPU Computing Architecture

Although GPGPU is powerful in computing and there is a well-

build programming environment, it is still difficult to write effective

GPGPU accelerating application programs. Firstly, in order to paral-

lelize their algorithms and map the parallel algorithms to the GPGPU

threads, programmers must be familiar with the hardware architec-

ture. Besides, the design of the synchronization of GPU threads and

data transmission directly influences the effectiveness of the program.

In addition, it is complicated to call runtime library which is designed

for high generality. Figure 1 shows the programming flow based on

OpenCL.

For the reasons above, a general computing architecture is nec-

essary. A general computing architecture can be divided into three

layers. The first layer is the Programming Model, which reduces the

difficulty of designing parallel algorithm that needs to be mapped to

GPGPU directly. The second layer is the Compiler, which compiles

the program with the right Programming Model into the next layer of

the framework. The last layer is the Runtime Library, which executes

the program and schedules instructions such as data transmission.
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Fig. 1: OpenCL Programming Flow
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Fig. 2: Program Design Flow using ideal architecture based on OpenCL.

An excellent architecture could significantly simplify programmers

work. Fig.2 shows the workflow of developing a GPGPU program

using an architecture under ideal circumstances.

In our novel architecture, Gemma represents the general par-

allel Programming Model and April consists the next two layers

- Compiler and Runtime Library. We design the GPU computing

architecture to simplify the programming process of effective high

performance GPU programs.

C. Previous work on General-Purpose GPU Architectures

There is a lot of previous work about building up general purpose

architectures of different designing goals. For example, MapReduce

[4] is a well-known programming model, in which algorithms can

be simply represented in two stages, Map and Reduce, both suitable

for parallel systems. Programmers only need to map their algorithms

to the model and define the two operations, Map and Reduce. Then

MapReduce framework schedules the whole parallel system to com-

plete the algorithm. Drayd [5] is a similar computing model, which

generalize the two limited Map and Reduce stages in MapReduce

to multiple stages. Drayd uses DAG(Directed Acyclic Graph) to

represent operations, in which edges represent transmissions of data.

There are other general computing frameworks for GPU, such

as [6]–[8]. Mars [7] has a high compatibility with MapReduce of

computer cluster, but targeting at variable-length strings, this frame-

work is not effective with general computing. Catanzaro’s architecture

[6] is a high performance GPU implementation of MapReduce,

but the formats and regularity of data are strictly demanded, thus

impair the generality. Tarditi’s architecture [8] is based on GPU Pixel

Shader, which works effectively but its generality is restricted for the

limitation of Pixel Shader.

III. GEMMA: A MATRIX MULTIPLICATION-LIKE PARALLEL

PROGRAMMING MODEL

Gemma is a parallel programming model based on generalized

matrix multiplication. In this section, we first introduce the basic

idea and definition of the model, and then use several examples to

illustrate how general algorithms get mapped to the model.

A. Generalization of Matrix Multiplication

Based on the common operations, we can define general matrix

multiplication. If two matrices 𝐴(𝑈)𝑚×𝑛 and 𝐵(𝑉 )𝑛×𝑝 and two

mappings
⊗

: (𝑈, 𝑉 )→ 𝑆 and
⊕

: (𝑆, 𝑆)→ 𝑆 follow the rules:

1) < 𝑆,
⊕

> is a monoid, and the identity element is 𝑂𝑆

2) We can always find 𝑂𝑈 ∈ 𝑈,𝑂𝑉 ∈ 𝑉 , which makes ∀𝑣 ∈
𝑉,𝑂𝑈

⊗
𝑣 = 𝑂𝑆 ∀𝑢 ∈ 𝑈, 𝑢

⊗
𝑂𝑉 = 𝑂𝑆

then we define matrix 𝐶(𝑆)𝑚×𝑝

𝐶(𝑆)𝑚×𝑝 : 𝑐𝑢,𝑣 =

𝑛⊕
𝑖=1

(
𝐴𝑢,𝑖

⊗
𝐵𝑖,𝑣

)
(1)

as product of matrices 𝐴 and 𝐵 using
⊗

𝑎𝑛𝑑
⊕

, denoted by 𝐶 =
(𝐴×𝐵)⊗,

⊕.

In the definition above, 𝑂𝑈 , 𝑂𝑉 are called zero elements in 𝑈
and 𝑉 . According to the definition, if 𝑈 = 𝑉 = 𝑆 = ℝ and⊗

,
⊕

are respectively multiplication and addition of real numbers,

general matrix multiplication is same with matrix multiplication of

real numbers with 𝑂𝑈 = 𝑂𝑉 = 𝑂𝑆 = 0.

If we define 𝑈, 𝑉, 𝑆 and
⊗

,
⊕

following certain rules, the general

matrix multiplication above can solve a large number of computing

problems. In programming, sets 𝑈, 𝑉, 𝑆 can be data structures and⊗
,
⊕

are binary functions. Especially,
⊕

should follow the Com-

bination Law, because < 𝑆,
⊕

> is a monoid.

The generality of Gemma can be substantiated using the MapRe-

duce Model. By the discussion above, the ’multiplication’ of matrix

elements can be referred as ’Mapper’, and ’addition’ of multipli-

cation results can be referred as ’Reducer’. We further extend the

compatibility of our model by introducing functional matrix, which

is discussed in Section III-C. Therefore, algorithms that can be

transformed to the MapReduce structure, can be mapped in the model

of Gemma. Furthermore, Gemma supports multiple outputs , since

the result of matrix multiplication can be vectors or matrices. This

further expands the generality of our model beyond MapReduce.

To illustrate the compatibility of our model, we provide several

examples are given in the next subsection to show how to do parallel

computing using general matrix multiplication.

B. Application Examples

The first example of generalized matrix multiplication is seeking

the maximum element. Given 𝑛 elements 𝑎𝑖, (𝑖 = 1, 2, .., 𝑛), 𝑎𝑖 ∈
ℝ, (𝑖 = 1, 2, .., 𝑛), we define function 𝑀(𝑥, 𝑦) as follow:

𝑀(𝑥, 𝑦) =

{
𝑥, if 𝑥 > 𝑦

𝑦, otherwise
(2)



Define matrix 𝐴(ℝ)1×𝑛: 𝑎1,𝑗 = 𝑎𝑗 and matrix 𝐵(ℝ)𝑛×1: 𝑏𝑖,1 = 1. The

operation "×" is multiplication of real numbers. Then 𝑐 = 𝐶(ℝ)1×1 =
(𝐴×𝐵)×,𝑀 is the maximum one of the 𝑛 elements.

The next example is comparing and swapping. Take a pair of

numbers (𝑥1, 𝑥2) for example. To sort the numbers in a small-to-

large order, we construct matrix 𝐶{0,1}2×2 as follows:

𝑐1,1 = 𝑐2,2 =

{
1, if 𝑥1 < 𝑥2

0, otherwise
(3)

𝑐1,2 = 𝑐2,1 =

{
1, if 𝑥1 ≥ 𝑥2

0, otherwise
(4)

Then the product matrix 𝑌 = 𝑋𝐶 is the result of sorting.

C. Further Generalization of Matrix Multiplication

If all n-dimension function with range of 𝑆 form a set, denoted by

𝐹𝑛,𝑆 , then matrix defined on 𝐹𝑛,𝑆 is called n-dimension Function
Matrix. If values of 𝑛 variables form the set 𝑃 , then function matrix

𝐴(𝐹𝑛,𝑆) is the same with a common matrix, denoted by 𝐴(𝑆)(𝑃 )
or 𝐴(𝑃 ), which is a matrix defined on 𝑆. If two function matrices

𝐴(𝐹2,𝑈 )𝑚×𝑛 and 𝐵(𝐹𝑛,𝑉 )𝑛×𝑝 and two mappings
⊗

: (𝑈, 𝑉 ) → 𝑆
and

⊕
: (𝑆, 𝑆)→ 𝑆 follow the rules:

1) < 𝑆,
⊕

> is a monoid, and the identity element is 𝑂𝑆

2) We can always find 𝑂𝑈 ∈ 𝑈,𝑂𝑉 ∈ 𝑉 , which makes ∀𝑣 ∈
𝑉,𝑂𝑈

⊗
𝑣 = 𝑂𝑆 ∀𝑢 ∈ 𝑈, 𝑢

⊗
𝑂𝑉 = 𝑂𝑆

Then we define matrix 𝐶(𝑆)𝑚×𝑝 as the product of function matrices

𝐴 and 𝐵 using
⊗

𝑎𝑛𝑑
⊕

, denoted by 𝐶 = (𝐴×𝐵)⊗,
⊕.

𝐶(𝑆)𝑚×𝑝 : 𝑐𝑢,𝑣 =

𝑛⊕
𝑖=1

(
𝐴(𝑢, 𝑣)𝑢,𝑖

⊗
𝐵(𝑢, 𝑣)𝑖,𝑣

)
(5)

In comparison with the definition in Section III-A, here we gen-

eralize the common multiplier matrices to function matrices. When

calculating value of the element at position 𝑢, 𝑣 of output matrix 𝐶,

matrices involved in calculating are the value of function matrices

at the position 𝑢, 𝑣. In other words, matrices involved in operation

differ according to different objectives calculated.

For instance, suppose we have a matrix of real numbers 𝐷(ℝ)2×𝑛.

To seek the maximum number in row 1 and the minimum number in

row 2 simultaneously, define function column vector 𝐴𝑛×1(𝑢, 𝑣) as

follows:

𝑎𝑖,1(𝑢, 1) =

{
1, if 𝑢 = 1

−1, if 𝑢 = 2
(6)

The values of 𝑗 and 𝑣 are always 1. Using the function 𝑀(𝑥, 𝑦)
defined in III-B, we can get the result immediately: (𝑐1, 𝑐2)

𝑇 =
𝐶 = (𝐷 × 𝐴)×,𝑀 . The maximum number of row 1 is 𝑐1 and the

minimum of row 2 𝑐2.

IV. APRIL: AN OPENCL BASED PARALLEL COMPUTING

PROGRAMMING FRAMEWORK

April is a computing framework based on Gemma and the OpenCL

framework. As discussed in Section II-B, April consists two layers

of a general computing framework. The first one is the Compiler,

which generates OpenCL codes from the representations of Gemma-

based matrix operations (MOPs). The second layer is the Runtime

Library, which control the data flow and execution the OpenCL

program compiled from the generated codes. April also includes

the optimization schemes corresponding to the two layers. In the

Compiler layer, April simplifies the programming codes by letting

user describing the application into MOPs by Gemma. In the Runtime

Library layer, April optimizes the arrangement of each MOP by

traversing a Directed Acyclic Graph (DAG) constructed by MOPs.

April also selects the best matrix representations for each MOP by

comparing their performance models.

Plan is the unit of April programs, which is formed by matrix

operations organized by a linear fashion. An operation can be matrix

construction (definition), rearranging multiplication and output. The

linearity of Plan excludes the branch and loop structures, which need

to be designed by users. The workflow of April is showed in Fig.3.

The first procedure, Operations Defining, is controlled by users. The

rest three procedures, Decision Making, Kernel Codes Producing and

Program Executing, can be automatically completed by April.

!��������"�
��	������

#����	�$��
���
 �
�	

 ��%	��	��!������
��	�������

!�����	�����������	�&

 ��%	��	������
�	�
�	���
������
��������

�������	������	���
���

#����	��!�

�	�	���	�' �����
	�����	������

���	��' ������	��
�����	���

�����' ����	�������
�	�	���	���	�����	��	��

�������

!�����	������
$��	

(����������	�������
��	�����	��	���������

 �����	�����������������	�
�������

)

*

+��

�
	���	��

�	�������
,����!

�����	�
	��

�
	�	���	�'	��	�����	�

+"	�����

Fig. 3: April Workflow

A. Matrix Representation

The key to April is effective methods of matrix storing. The matrix

representation methods are the foundation of April’s Runtime-level

optimization. In this section, we give four methods to store a matrix.

BUF: The BUF method is for dense matrix storage. In BUF mode,

a matrix is stored in a continuous space in the memory. Matrices

stored as BUF can be easily accessed but demand a larger storage

space. Function matrices cannot be represented as BUF.

XY: In XY mode, we use a function with two arguments 𝑥,𝑦 1

to describe a matrix. Stored with the method of XY, matrices can

be accessed randomly, and it can represent function matrices. The

storage space depends on the function describing the matrix. If the

matrix is special and regular, such as diagonal matrix and triangular

matrix, then representing it in XY will require much smaller space.

To describe a function matrix using method XY, we need to make

a function getXY with input arguments 𝑥, 𝑦, 𝑢, 𝑣, which returns the

value of element(function) at position 𝑥, 𝑦 of matrix (at point 𝑢, 𝑣).

CSR: We usually use the CSR (Compressed Sparse Row) method

to store sparse matrix [9], which only stores non-zero element in the

order of row priority. We need three functions to represent a matrix

using CSR:

1) rowsize(𝑦), returning the number of non-zero elements in

row 𝑦 + 1.

1In this article, 𝑥 is for column and 𝑦 is for row beginning with 0



2) col(𝑦, 𝑖𝑑𝑥), returning the column index of the (𝑖𝑑𝑥 + 1)th
non-zero element in row 𝑦 + 1.

3) val(𝑦, 𝑖𝑑𝑥), returning the value of the (𝑖𝑑𝑥 + 1)th non-zero

element in row 𝑦 + 1.

𝑦, 𝑖𝑑𝑥 and return value of function col all begin with 0.

We can only obtain the value and position of non-zero element of

matrix stored with CSR. CSR is better at representing special matrices

with higher sparsity. As zero element can be skipped, the speed of

sparse matrix multiplication can be greatly improved.

CSC: Similarly with CSR, CSC (Compressed Sparse Column) is

a storing method for sparse matrix in the order of column priority.

CSR and CSC are different in the order of storing and accessing

non-zero element and thus making CSR matrix better for pre-

multiplication and CSC matrix for post-multiplication.

B. Plan Definition

A MOP is constructed by users as an independent object. There

are three kinds of MOPs. The first one is the Construction Operation,

which has one output matrix and no input matrix. All kinds of data

can be bound to the matrices constructed. The second one is the

Computing Operation, which has one output matrix and one or more

input matrices. The typical example is matrix multiplication with

two input matrices and one output matrix. The last one is the Output

Operation which has one input matrix and no output matrices. The

typical example is writing a BUF matrix to memory or getting the

OpenCL Buffer Handle directly.

In all three operations, users can define data structure and interface

function with one or more matrix representation methods, such as

BUF, XY, CSR and CSC. For general operations, April can support

all the possible representation methods. From the supported and user-

defined representation methods, April will choose the best one to

minimize operation costs.

When a MOP is added to a Plan, a vertex represents that MOP is

added to a DAG. In the DAG of operations, every vertices represent

MOPs and each directed edge represents the relationship between

MOPs or their data flow. For example, an edge from 𝑉1 to 𝑉2

represents that the input matrix of operation 𝑉1 is the output of

the operation 𝑉2. The out-degree of each vertex equals the number

of input matrices of the operation and the in-degree the number of

outputs. Each edge of the DAG indicates the representation method

of the destination vertex’s output matrix. Different representation

methods can result in different performance, which is discussed in

Section IV-F. Figure 4 shows an example of a DAG which depicts the

construction and computing operations of three matrices, as well as

two output operations. By each edge in the graph is the representation

method of matrix.

C. Arrangement of MOPs

After the addition of operations, April begins to arrange the execu-

tion order and IO matrix representation methods of these operations.

We rearrange the order of operations to get rid of unnecessary

operations. The output operation is focused first and then begins the

breadth-first post-order traversal to arrange the operations in DAG

that depend on the output operation in order. If there are more than

one output operations, then start the traversal from them and skip the

nodes accessed. In the meantime, the last position accessed of every

node is recorded, so that the memory space can be freed when the

output data are no longer needed.

As showed in Figure ??, the breadth-first Postorder Traversal

begins from node 6 and we get a sequence:

1, 2, 3, 4, 5, 6

Then traverse from node 8 and we get:

7, 8

After linking, we get the final operation order:

1, 2, 3(2), 4, 5(3, 4), 6, 7(1, 5), 8(7)

The nodes in the brackets are no longer needed(𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑁𝑜𝑑𝑒𝑠).

D. Kernel Codes Generation

With operations in Plan and the matrix representation methods

settled, the kernel codes can be generated. An independent kernel

program is based on a series of operations with an output matrix

represented by BUF. Output matrices represented by the other three

methods can only be used as input matrices by the following

operation, but they cannot be the output matrices of a kernel program.

To describe the operations of layered structure in Plan, April

uses Kernel Template(KT), which is a group of codes containing

template variables that can be replaced. We can generate the real

codes by replacing the template variables. The template variables can

be replaced by other KT, thus forming the layered template structure.

E. Plan Execution

A Plan can be executed after all the kernel codes of matrix

operations in the Plan are generated. The execution of a Plan includes

data transferring, I/O arguments binding and program executing.

Each operation is executed in the order that rearranged as it is

described in Section IV-C. There are three procedures in the Plan

Execution, prepare, execute and cleanup, which respectively

allocate the output space, execute the operation and free the output

space. The allocation and deallocation of input space are accom-

plished by the parent node.

F. Optimizations

We begin by the performance model of a April Plan. Different

matrix representations have the different running cost and output cost.

The cost of a node is estimated according to the number of elements

accessed in memory when outputting an element, and calculated

based on the output method and the output costs of the child nodes.

Assume each operation has a running cost 𝑐𝑟 and an output cost

𝑐𝑜, and all the matrices are 𝑛 × 𝑛 square. When the output mode

of node 𝑝 is BUF, the output matrix is calculated by multiplying

two dense matrices, and the output matrix is written to the memory

instantly. So the output cost 𝑐𝑜(𝑝) = 1 and the running cost is

𝑐𝑟(𝑝) = 𝑛3 ∗
∑

for each child node 𝑖 of𝑝

𝑐𝑜(𝑖) (7)
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Fig. 4: DAG of Matrix Operations. Different costs of different I/O matrix
representation methods



When the output mode of node 𝑝 is XY, the output matrix is only

a function of the input matrices, so the running cost 𝑐𝑟(𝑝) = 0 and

the output cost is

𝑐𝑜(𝑝) = 𝑛 ∗
∑

for each child node 𝑖 of𝑝

𝑐𝑜(𝑖) (8)

The performance model of CSR and CSC mode is estimated by the

definition of rowsize, col or row and val in the same way with

BUF and XY. The total Plan running cost is the sum of running costs

of all the nodes.

Take the Plans in Fig.4 for an example. Assume that operation

3,5,7 are all matrix multiplications, the computing time of
⊗

,
⊕

can be ignored, matrices are all square matrix of order 𝑛 and the

sparse matrix constructed by operation 2 is a diagonal matrix.

For plan (a), The total cost is:

𝑐𝑟(𝑎) =
∑

for each node 𝑛

𝑐𝑟(𝑛) = 5𝑛3 + 3𝑛2 + 𝑛 (9)

For Plan (b), the only difference is the output mode of node 5.

Therefore, the total cost of the Plan is:

𝑐𝑟(𝑏) =
∑

for each node 𝑛

𝑐𝑟(𝑛) = 3𝑛4 + 𝑛3 + 3𝑛2 + 𝑛 (10)

April traverse all the possible representation methods of I/O

matrices, estimate the cost of each combination and choose the most

effective one. Therefore, in the example above, April will choose

Plan (b) instead of (a).

V. EXPERIMENTAL RESULTS

In this section, we present some of our experimental results to

discuss the advantages of our generalized computing architecture:

Gemma and April.

A. Experiment Platform and Test Methods

The following experiments are conducted by the same test com-

puter, equipped with AMD PhenomII 965 64-bit 3.4GHz quad-core

processor, 8GB DDR3 1333MHz RAM and ATI Radeon HD 5870.

The interface between the graphics card and processor is PCI Express

x8 with bandwidth of 2.5GB/s. The operating system kernel is Linux

2.6.31 and we use GCC 4.4 as compiler. The driver for GPU is

Catalyst 10.5 and the version of OpenCL SDK is ATI Stream SDK

2.1.

All testing programs are executed repeatedly and we calculate the

average performance. The executing time of the Plan, including time

of data transmission and API, reflects the computing performance of

April, but the compiling time is excluded.

B. Improvement of Code Amount

In the section, we discuss code amount differences between pure

OpenCL and April. The application is a simple 1024× 1024 matrix

multiplication program.

𝑅 = 𝐴𝐵 (11)

𝐴 and 𝐵 are 1024×1024 matrix with single-precision floating-point

elements.

Table I shows the code amount of matrix multiplication on different

platforms. Compared with pure OpenCL, April significantly reduces

the amount of code, because April can automatically finish much

work, such as initialization, setting and scheduling. In this case,

matrix multiplication is the basic operation of April. Users do not

need to write any kernel codes by themselves. In fact, even if it

is necessary for users to write some kernel codes, the difficulty of

programming can be reduced by April.

TABLE I: 1024× 1024 Float Matrix Multiplication Code Amount

Platform Scheduling Codes Kernel Codes(Computing Codes)
C 10 10
April 40 34(auto-generated)
OpenCL 1050 96

TABLE II: Comparison I of Different Output Describing Methods

Plan Time(ms) Performance(GFLOPs) Cost
(a) 65.8 32.637 2152726528
(b) 90.3 23.782 4297064448
(c) 163.8 13.110 5370806272

C. Comparison of Different I/O Methods

As discussed in Section IV-F, April can choose for every operation

the best output methods among BUF, XY, CSR and CSC. In this

section, we discuss the influence of different output methods on

computing performance.

Take the computing task of matrix multiplication for example.
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Fig. 5: DAG of Different Output Methods

We use DAG to represent the computing task, as showed in Figure

5. There are three different Plans among which Plan (a) is chosen by

April. Table II shows the performance and cost estimated by April of

three different Plans. We find a big difference among different Plans

and April chooses the best one.

Take the computing task showed in Figure 4 for another example:

𝑅 = 𝑀1 ((𝑀1𝑀2)𝑀4) (12)

All matrices are 512 × 512. Matrix 𝑀2 is a diagonal matrix with

constant diagonal elements, so 𝑐𝑜(𝑀2) = 0. The cost of the

computation is 2(2𝑛3 − 𝑛2) + 𝑛2 = (4𝑛3 − 𝑛2)FLOPs.

Table III shows the result of this experiment. We can see the

performance of different Plans are different and April chooses the

best one.

D. Full Example: Bitonic Sort

Bitonic Sort [10] is a sorting algorithm of high parallelism. For a

group of data 𝑣𝑖, 𝑖 = (0, 2, .., 2𝑏−1) with the length 𝑁 = 2𝑏, Bitonic

Sort can finish the sorting by 𝑏 steps. Each step 𝑠 includes 𝑠 parallel

sorting procedures and each procedure includes 𝑁/2 comparison

and swapping. As a result, the complexity of the algorithm is

𝑂(𝑁(log𝑁)2).
The algorithm of Bitonic Sort can be mapped to the Programming

Model of Gemma. Assuming 𝑁 = 2, we can finish the sorting in the

TABLE III: Another Comparison of Different Output Methods

Plan Time(ms) Performance(GFLOPs) Cost
(a) 20.6 26.049 537395200
(b) 3094 0.173 137573695488



order from small to large:(
𝑟0 𝑟1

)
=

(
𝑣0 𝑣1

)
𝑋(1,1)

(13)

The matrix 𝑋(1,1) is defined as follow:

𝑋(1,1) =

⎧⎨
⎩

(
1 0

0 1

)
, if 𝑣0 < 𝑣1(

0 1

1 0

)
, otherwise

(14)

The best performance is achieved if this swapping matrix is

described with CSC. The method CSC needs three functions defined,

colsize, row and val. Obviously, there is only one element

with value 1 in each column of a swapping matrix. Algorithm 1

shows how to define the three functions of the swapping matrix

of Bitonic Sort 𝑋(𝑠,𝑝). 𝑠 and 𝑝 are current step and procedure,

𝑠 = 1, 2, .., 𝑏; 𝑝 = 1, 2, .., 𝑠, as showed in Algorithm 1.

Algorithm 1: Swapping Matrix of Bitonic Sort with CSC: Step

𝑠 and Procedure 𝑝

function colsize(x)
Return 1 ;

end
function row(x, idx)

𝑥′ ← 𝑥 XOR 2𝑠−𝑝 ;

𝑐1 ← (𝑣𝑥 < 𝑣𝑥′) ;

𝑐2 ← (𝑥 AND 2𝑠−𝑝 == 0) ;

𝑑← (𝑥 AND 2𝑠 == 0) ;

if 𝑐1 XOR 𝑐2 XOR 𝑑 then Return 𝑥 ;

else Return 𝑥′ ;

end
function val(x, idx)

Return 1 ;

end

When programming Bitonic Sort using April, we input the original

data by row vector and each procedure is a matrix described with

CSC. For each Bitonic sort 𝑝 in each step 𝑠, we initialize the sort

matrix 𝑋(𝑠,𝑝) and add the MOP to the Plan. All the MOPs are added

to Plan by loop structure.

Figure 6 shows the performance comparison of GPU Bitonic Sort

based on April, quad-core CPU and GPU. The quad-core CPU and

GPU implementation is based on OpenCL, and all the input data

is floating point. As is illustrated in the figure, when the amount of

data is small, April’s performance is less than CPU and GPU. This is

mainly because 1) it takes time to transmit data between main RAM

and VRAM and 2) there are several procedures in Bitonic Sort, each

one is a GPU kernel program, so the cost of calling API cannot be

ignored. However, when the data scale increases, the performance of

April becomes better than CPU. Eventually, April’s performance is

approximate to optimized GPU implementation [11].

VI. CONCLUSION AND DISCUSSIONS

In this article, we propose a novel parallel computing architecture.

The architecture includes Gemma, a general parallel programming

model, and April, a programming framework based on Gemma and

OpenCL. Gemma uses matrix operation, especially matrix multipli-

cation, to describe general computing tasks. Because the Gemma

model is based on matrix, the parallelism is unrelated with the

hardware platform. In other words, computing tasks described by
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Fig. 6: Performance comparison between quad-core CPU, GPU and

April implementation of Bitonic Sort. Blue line with circle label is the
performance of quad-core CPU, read line is GPU and green line is April.

Gemma can be applied to any platform including multi-core CPU or

GPGPU. April can choose the proper combination of output methods

of matrices, so that the cost of the whole plan is optimized.

In the future, we have the following research objectives. Firstly, we

will further justifies the generality and compatibility of Gemma by

implementing more applications using April. Secondly, the compu-

tation can be automatically divided into several parts and controlled

by scheduling schemes, especially when the data scale exceeds the

Video RAM (VRAM) capacity. Finally, our performance modeling

techniques based on DAG can be improved and more detailed. We can

further apply the technique to enable April to utilize heterogeneous

platforms for task scheduling.
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