
Optimizing Graph-based Approximate Nearest
Neighbor Search: Stronger and Smarter

Jun Liu1, Zhenhua Zhu1, Jingbo Hu1, Hanbo Sun1, Li Liu2, Lingzhi Liu2,
Guohao Dai1, Huazhong Yang1, Yu Wang1

1 Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China
2 Heterogeneous Computing Group, Kuaishou Technology, Palo Alto, CA, USA

{liu-j20, zhuzhenh18, hjb19, sun-hb17}@mails.tsinghua.edu.cn,
liliu@kwai.com, liulingzhi@kuaishou.com, daiguohao1992@gmail.com, {yanghz, yu-wang}@mail.tsinghua.edu.cn

Abstract—Approximate Nearest Neighbor Search (ANNS) is
widely used in many fields (e.g., recommender systems). In
recent years, the graph-based ANNS methods have attracted
the attention of many researchers due to their superiority
compared to non-graph-based methods. Compared with tradi-
tional recommender systems, mobile recommender systems have
higher latency requirements. The graph-based ANNS method
faces the following challenges that make it difficult to meet the
requirements. (1) Poor connectivity. Due to the limitation of the
construction algorithm, the connectivity of the graph is poor,
which in turn affects the search performance. (2) Redundant
search. The existing search algorithm uses sufficiently long search
steps for all queries to achieve high search accuracy. However, the
query search steps follow the long-tailed distribution that brings
the redundant search, e.g., for more than 40% of the queries,
87.4% of the search overhead is redundant.

We propose two optimization strategies to tackle the above
challenges. (1) Reverse connection enhancement strategy. In the
graph construction process, we increase the in-degree of the point
to be inserted to enhance the graph connectivity, while keeping
the out-degree low to maintain the high search efficiency. (2)
Query aware early termination strategy. We identify regional
features to predict the number of remaining search steps to
achieve dynamic search termination and reduce the redundant
search overhead. Finally, we verify the proposed solutions on
multiple representative datasets. Compared with the state-of-the-
art graph-based algorithm, our solutions can improve the search
speed up to 1.21x when the recall rate equals 0.95.

Index Terms—Approximate Nearest Neighbor Search, Recom-
mendation System, Data Retrieval, Big Data

I. INTRODUCTION

The Approximate Nearest Neighbor Search (ANNS) is
widely used in many fields. Compared with the brute method,
approximate methods reduce the search time by a few orders
of magnitude with a slight accuracy loss [1]. ANNS meets
the requirements of different scenarios by exploring the trade-
off between accuracy and latency. The graph-based ANNS
methods show great potential in recent years and achieve a
high recall rate in a short search time [2]. The graph-based
ANNS methods build an approximate nearest neighbor graph,
and then use the graph as an index for greedy search [3].

Compared with traditional recommender systems, mobile
recommender systems have higher latency requirements [4].
HNSW still faces the following challenges, which make it
difficult to meet the requirements. The first challenge is that

the connectivity of the graph is poor. 84.6% of the recall
rate loss is caused by poor connectivity of the graph. Poor
connectivity is mainly reflected in the existence of some points
with small in-degree on the graph. These small in-degree
points are hard to find, and if they belong to the ground
truth, they will cause recall loss. The second challenge is
the heavy redundant search overhead in the search process.
In order to achieve the high search accuracy of all various
queries (e.g., recall rate > 0.95), the existing search strategy
uses sufficiently long search steps as the search termination
condition. However, the number of minimum search steps
for different queries varies greatly and follows the long-tailed
distribution. When applying the sufficiently long search steps,
more than 40% of the queries only need 12.6% of the actual
search step, revealing heavy redundant search overhead.

To tackle these challenges, we propose two optimization
solutions to make the graph structure stronger and make
the search process smarter. The main contributions are
shown as follows:

1) For the challenge of unsatisfactory search results caused
by poor graph connectivity, we conducted a thorough
analysis of the existing construction algorithm. Then
we indicate that the existing construction algorithm
restricts the in-degree of each point, which leads to the
poor connectivity of the graph. We propose the reverse
connection enhancement strategy to increase the graph
connectivity while maintaining search efficiency.

2) For the challenge of the heavy overhead of redundant
search, we propose the query-aware early termination
strategy. We indicate that the redundant search problem
is caused by the region connection relationship near
the query, which can be represented by the distance
change during the search process. Then we predict the
number of remaining search steps by identifying the
region connection relationship.

3) We validate our method on multiple datasets. Our
method can improve the search speed up to 1.21x when
the recall rate equals 0.95.

II. GRAPH-BASED ANNS METHODS

In the graph-based ANNS methods, we treat the base vectors
X as points in d-dimensional space and then connect them

mailto:liu-j20@mails.tsinghua.edu.cn
mailto:zhuzhenh18@mails.tsinghua.edu.cn
mailto:hjb19@mails.tsinghua.edu.cn
mailto:sun-hb17@mails.tsinghua.edu.cn
mailto:liliu@kwai.com
mailto:liulingzhi@kuaishou.com
mailto:daiguohao1992@gmail.com
mailto:yanghz@mail.tsinghua.edu.cn
mailto:yu-wang@mail.tsinghua.edu.cn


Po
in

t n
um

be
r i

nc
re

as
e

HNSW0

HNSWL

layer0 query

layer1 query

layer2 query

starting point

Naïve
strategy

RNG-based
strategy

(a) HNSW

!!
!"

!#
!$

"%

!&

!'

!!
!"

!#
!$

"%

!&

!'

(b) Selection strategies
Fig. 1. (a) HNSW [6] is composed of multiple layers. The starting search
point of HNSW0 is determined by HNSWL. (b) The intuitive comparison of
neighbor selection strategies (naı̈ve strategy and RNG-based strategy).

through edges. These points and the edges between them
construct the graph. If there exists an edge from xi to xj in the
graph, then xj is a neighbor of xi. The search process means
that we start from a certain point (starting search point) on the
graph and iteratively search for points closer to the query along
these edges. The construction process is to connect edges
between these points. The main difference between different
methods lies in the algorithms used in the construction process.

A. NSG

Fu et al. [5] proposed Navigating Spreading-out Graph
(NSG) to re-select neighbors for each point on the pre-
constructed k-Nearest Neighbor (kNN) Graph. The neighbor
selection strategy based on the Monotonic Relative Neigh-
borhood Graph (MRNG) ensures that each step is closer
to the query than the previous step, but it would lead to
excessive construction complexity. Therefore, NSG adopts an
approximate MRNG strategy to fix the center point as the
starting search point. NSG is difficult to implement construc-
tion incrementally because it requires a pre-constructed kNN
graph.

B. HNSW

Hierarchical Navigable Small World graphs (HNSW) [6]
is one representative graph-based ANNS method, which is
widely used in commercial application scenarios due to its
excellent search performance and the support for incremental
graph construction. As shown in the Fig. 1(a), the HNSW is
composed of multiple graph layers, and there are connections
between points in the same graph layer (abbreviated it layer).

The construction process for each layer can be divided into
three stages: the get candidate stage, the forward connection
stage, and the reverse connection stage. The get candidate
stage is to find some nearest points for insertion point pc
as neighbor candidates Qin

cand. The forward connection stage
select Qin

sel as pc neighbors through the neighbor selection
strategies (as shown in Fig. 1(b)). The naı̈ve strategy connects
the nearest points. Another strategy based on Relative Neigh-
borhood Graph (RNG) [7] selects a part of points from the

(a) (b) (c)

Current search point (red: current step, purple: previous step)

The point whose distance from the query has been calculated

Fig. 2. Schematic diagram of searching query nearest neighbors on a graph.
(a)-(c) The first three steps of the search process.

candidates, and these points are as scattered as possible with
respect to pc. The RNG-based neighbor selection strategy (and
its variants) is widely used in graph-based ANNS construction
algorithms due to its high efficiency. In the reverse connection
stage, for all neighbors of pc, we use the same strategy to
reconnect their neighbors.

During the search process, HNSW uses a greedy search
algorithm to search for the k nearest points to the query in
the bottom layer. We sequentially show the search process
of the first three steps in the bottom layer through (a) to (c)
in Fig. 2. At the beginning of the search process, there is
only the starting search point ps in the search queue Qsn. For
each step of the search process, we pop the point nearest to
the query (pentagram) from the search queue as the current
search point pf (red). Then we calculate the distances between
all neighbors of the current search point and the query and add
these neighbors to the search queue and result queue Qr. The
search queue consists of all green points, and the result queue
always keeps the efs points nearest to the query in non-gray
points (green, red, and purple). The purple point represents the
current search point from the previous step. Then we perform
the next step until the termination condition is met. Finally,
the k points nearest to the query in the result queue Qr are
used as the search results.

III. REVERSE CONNECTION ENHANCEMENT

A. Motivation

In the graph-based ANNS methods, the connectivity of the
graph is crucial to the final search results. If some points
belong to the ground truth but are not found during the search
process, this case will lead to a lower recall rate. Obviously,
if the in-degree of a point is smaller, then it has a greater
negative impact on the recall rate. We find the recall rate loss
due to this situation accounts for 84.6% of the total recall rate
loss. Then we indicate that the poor connectivity of graph is
due to the restriction of the existing construction algorithm
through degree analysis.

B. Degree Analysis

The construction process is to add the point (insertion point)
in the base vectors X to the graph one by one. As shown in
Fig. 3, at time tc, the corresponding insertion point is xc, the
corresponding graph is Gc. The whole construction process
can be divided into two parts: before tc and after tc. Then,



Empty graph

𝑡!

Part graph 𝐺! Full graph 𝐺"

𝑥! 𝑥!

Before 𝑡! After 𝑡!

𝐼𝐹1"! = 1 𝑂𝐹1"! = 2 𝐼𝐹2"! = 1 𝑂𝐹2"! = 1

Fig. 3. The in-degree (out-degree) of point xc is composed of two parts
IF1(OF1) and IF2(OF2). IF1(OF1) comes from the point (blue) in the
graph before tc, and IF2(OF2) comes from the point (green) added to the
graph after tc.

the in-degree IDG(xc) and out-degree ODG(xc) of xc are
correspondingly expressed in two parts, as shown below:

IDG(xc) = IF1xc + IF2xc (1)

ODG(xc) = OF1xc +OF2xc (2)

• OF1xc
: It is the out-degree of xc before time tc. To be

specific, some nearest points of xc found in the graph
Gc (before tc) are called candidates. We select some of
these candidates as neighbors of xc (Neighbor(xc)) by
the RNG-based neighbor selection strategy. The number
of these neighbors is OF1xc

.
• IF1xc

: It is the in-degree of xc before time tc. To be
specific, for each point in Neighbor(xc), we also need
to add xc as their neighbor when the number of their
neighbors is less than maxM0. The number of points
that finally successfully added xc as a neighbor is IF1xc

,
obviously IF1xc

≤ OF1xc
.

• IF2xc
: It is the in-degree of xc after time tc. To be

specific, when xc is already in the graph (after tc in
Fig. 3), xc may also become a candidate of other insertion
points (the green points). These number of these insertion
points, which add the edge from them to xc, is IF2xc

.
• OF2xc

: It is the out-degree of xc after time tc. To be
specific, when xc is already in the graph (after tc in
Fig. 3), and there are some points (yellow points) added
xc as a neighbor. Then we also need to add these points
as the neighbor of xc when the number of Neighbor(xc)
is less than maxM0. The number of new neighbors for
xc is OF2xc

.
As shown in Fig. 3, IF2xc

and OF2xc
depend on whether

xc can be found by other points (green points). Obviously, the
greater the in-degree IF1xc at tc, the greater the probability of
xc being found after tc. If IF1 of some points is small, then
their final in-degree IDG(·) are also small. The connectivity
of the point xc in the full graph GN largely depends on IF1xc

.
At the same time, there is a restrictive relation between
IF1xc

and OF1xc
, i.e., IF1xc

≤ OF1xc
. The RNG-based

neighbor selection strategy can maintain the high efficiency of
the graph [6], which also results in 80.5% of the points with
OF1 less than 2/5 of maxM0. The existence of restrictive

𝑥!
𝑥"

𝑥#

𝑥$

𝑥%

Fig. 4. Diagram of the reverse connection enhancement strategy. Before
enhancement: we can only find the point xc through point x1. After
enhancement: we can find the point xc by either point x1 or point x2.

relation between IF1xc
and OF1xc

leads to poor connectivity
of the graph GN .

C. Our Method

In order to solve the above problem, we propose the reverse
connection enhancement strategy. We add some connections
to points with small in-degrees, which makes IF1 break the
restrictive relation with OF1. Specifically, the incoming edge
of point xc is not only selected from its neighbors but also
from a part of its candidates. Fig. 4 visually shows our method,
xc is the insertion point in the construction process, and the
points (x1, x2, and x3) are the candidates of xc. Then we
select x1 and x3 as the neighbors of xc through the RNG-
based neighbor selection strategy. The difference between our
method and the previous method is mainly reflected in the
following IF1xc

. Since x2 and x4 are closer to x3 than xc, so
xc does not belong to Neighbor(x3). Due to the restriction
of OF1xc

to IF1xc
, the previous method can only find xc

through x1, which means that it is difficult for other points to
find xc. Our method breaks the restrictive relationship between
IF1xc and OF1xc , we select some points (such as x2) from
the candidates of xc and then taking xc as the neighbor of x2

(connected by purple edges). Then we can find xc by either
point x1 or point x2. Compared with the previous method,
our method greatly improves the connectivity of the graph.
The detailed comparison results are shown in Section V.

IV. QUERY AWARE EARLY TERMINATION

A. Motivation

The existing search algorithm incurs heavy redundant search
overhead, which is widely used in most graph-based ANNS
methods [5], [6]. Here we define the minimum search steps as
follows:

Definition 1. (minimum search steps) Assuming the query qi
uses efs = s to search on the graph, its recall rate is Recalli.
There is a minimum value that keeps the recall rate of qi does
not decrease. Then the minimum value is the minimum search
steps for qi.

We find that for different queries, their minimum search
steps vary widely. For example, the average number of search
steps for these queries is 309, but more than 40% of the queries
have the minimum search steps of less than 39. For these
queries, 87.4% of the search overhead is redundant (34.9%
redundant overhead for the whole). Next, we will analyze the
causes of this problem in detail and propose our solutions.



𝒙𝟎𝟓

𝒙𝟎𝟎

𝒙𝟎𝟏

𝒙𝟎𝟒

𝒙𝟎𝟐

𝒙𝟎𝟑

𝒙𝟑𝟓

𝒙𝟑𝟎

𝒙𝟑𝟏

𝒙𝟑𝟒

𝒓𝟑

𝒓𝟏

𝒙𝟏𝟓

𝒙𝟏𝟎

𝒙𝟏𝟏

𝒙𝟏𝟒

𝒙𝟏𝟐

𝒙𝟏𝟑

𝒙𝟐𝟓

𝒙𝟐𝟎

𝒙𝟐𝟏

𝒙𝟐𝟒

𝒓𝟒

𝒓𝟐

𝒙𝟒𝟓

𝒙𝟒𝟎

𝒙𝟒𝟏

𝒙𝟒𝟒

𝒙𝟒𝟐

𝒙𝟒𝟑

𝒙𝟓𝟓

𝒙𝟓𝟎

𝒙𝟓𝟏

𝒙𝟓𝟒

𝒙𝟓𝟐

𝒙𝟓𝟑
𝒒𝒂

𝒙𝟎𝟓

𝒙𝟎𝟎

𝒙𝟎𝟏

𝒙𝟎𝟒

𝒙𝟎𝟐

𝒙𝟎𝟑

𝒙𝟑𝟓

𝒙𝟑𝟎

𝒙𝟑𝟏

𝒙𝟑𝟒

𝒓𝟑

𝒓𝟏

𝒙𝟏𝟓

𝒙𝟏𝟎

𝒙𝟏𝟏

𝒙𝟏𝟒

𝒙𝟏𝟐

𝒙𝟏𝟑

𝒙𝟐𝟓

𝒙𝟐𝟎

𝒙𝟐𝟏

𝒙𝟐𝟒

𝒓𝟒

𝒓𝟐

𝒙𝟒𝟓

𝒙𝟒𝟎

𝒙𝟒𝟏

𝒙𝟒𝟒

𝒙𝟒𝟐

𝒙𝟒𝟑

𝒙𝟓𝟓

𝒙𝟓𝟎

𝒙𝟓𝟏

𝒙𝟓𝟒

𝒙𝟓𝟐

𝒙𝟓𝟑
𝒒𝒃

(a) (b)

Current search point (red: current step, purple: previous step)

The point whose distance from the query has been calculated

Fig. 5. Schematic diagram of searching query nearest neighbors on a graph.
(a) When query qa is located in a symmetric connection region, we can easily
find all its nearest neighbors. (b) When query qb is located in an asymmetric
connection region, we need more search steps to find all the nearest neighbors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6di
st
an
ce

to
qu

er
y

search step

d_pop d_topk

0.6

0.8

1

1.2

1.4

1.6

1.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1di
st
an
ce

to
qu

er
y

search step

(a)

(b)

Fig. 6. The changes of dpop and dtopk for two representative queries during
the search process (on the DEEP1M dataset). (a) The query is located in a
symmetric connection region, and its minimum search steps is 6. (b) The
query is located in an asymmetric connection region, and its minimum search
steps is 200.

B. Analysis

The redundant search problem is caused by the region
connection relationship in the graph. The region means a part
of the graph near the query. According to the connection
relationship, regions can be divided into two types: symmetric
connection region (Fig. 5(a)) and asymmetric connection re-
gion (Fig. 5(b)). The symmetric connection means the neigh-
bors of a certain point are evenly distributed in space. The
asymmetric connection means the neighbors of a certain point
are non-uniform distributed in space.

The asymmetric connection region requires more search
steps to achieve the same recall rate compared with the
symmetric connection region. When the current search point
is very near to the query, for the symmetric connection region,
the current search point can quickly perform a complete
exploration of the nearby region of the query. Therefore, the
symmetric connection region can find all the nearest points
of the query with fewer search steps. For the asymmetric
connection region, due to the lack of connection between the
points near the query, the current search point takes some
“detours” to find all the nearest points of the query. As shown
in Fig. 5, the minimum search steps for qa is only 7, and the

Train data (Learning data) Train feature and label

Predict modelinput output

feature label
0
1
0
0
0
1
0

…… …
1
0

Graph

train

Query
predicted remain steps

input output
feature

Graph

inference Predict model

(a) Training workflow

(b) Inference workflow

Fig. 7. Workflow for query-aware early termination strategy: (a) Training
workflow and (b) Inference workflow.

minimum search steps for qb is as high as 17. If we want to
get the same high recall rate, there is redundancy in the search
overhead of qa.

Since the connection relationship in high-dimensional space
is very complex, it is difficult to solve this problem from the
construction algorithm. Therefore, we address this problem
from the search algorithm perspective. We define two variables
dpop and dtopk to identify the connection relationship of the
region. The distance here refers to the distance between a
certain point and the query. For each step of the search process,
dpop represents the distance of the current search point, and
dtopk represents the distance from the k-th nearest point in the
result queue. We identify these two types of regions by the
changes in dpop and dtopk during the search process. For the
symmetric connection region, the curve dpop is smooth relative
to the curve dtopk. For the asymmetric connection region, there
will be some fluctuations in the curve dpop.

We illustrate that further with Fig. 5. For query qa, when
point r1 is used as the current search point, since the con-
nection of the region a is symmetric, the search process will
spread outward with qa as the center. The change of the
distance between the current search point and query qa on the
region a is similar to the curve dpop in Fig. 6(a). For query qb,
when point r1 is used as the current search point, since the
connection of the region b is asymmetric (point r2 is not in
the search queue), the search process will spread in the lower
right and upper right directions relative to qb. We can’t find r2
until the distance between point x24 and query qb is calculated.
The change of the distance between the current search point
and query qb on the region b is similar to the curve dpop in
Fig. 6(b).

C. Our Method

In order to solve the problem of redundancy in the search
process, we propose the query-aware early termination strat-
egy. Based on the above analysis, we indicate that the curve
feature of dpop relative to that of dtopk can be used to identify
the region during the search process. We design a prediction
model to decide whether to stop early by analyzing the curve
smoothness of dpop relative to dtopk during the search process.
To remove the effect of inconsistent distances between each
query and its nearest neighbors, we additionally consider the
dtop1 feature.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

di
st

an
ce

to
qu

er
y

search step

d_pop d_topk d_top1

1. finding the 𝑠𝑡!"#$%&

-0.1

-0.05

0

0.05

0.1

0

0.1

0.2

0.3

0.4

0.5

va
lu
e

di
st

an
ce

to
qu

er
y 4. comparing the variance with threshold

2. obtaining sequence

3. difference-by-difference

variance = 0.004 threshold = 0.01

if variance > threshold:
“continue search”

else:
“terminate search”

Fig. 8. The entire pipeline of prediction model. It consists of 4 steps: (1)
finding the ststable, (2) obtaining sequence, (3) difference-by-difference, and
(4) comparing the variance with threshold.

For the complete workflow (as shown in Fig. 7), we do
not need to add any additional structure to the graph. In the
training stage (Fig. 7(a)), we use the learning vectors as the
training set (and also divide it apart as the validation set). For
each data in the training set, we will all perform a complete
search process according to the above search algorithm. In the
inference stage (Fig. 7(b)), we collect the dynamic features
in the search process and predict the remaining search steps
through the trained prediction model.

The training process of the prediction model mainly decides
whether to stop the search process by analyzing the smooth-
ness of the dpop sequence. As shown in Fig. 8, the specific
process is as follows: (1) finding the rising intersection step
of dpop curve and dtopk curve. If from the ststable-th step,
dpop is greater than dtopk, then ststable is called the rising
intersection step. (2) obtaining the dpop sequence. Starting
from the ststable-th step, dpop is added to the dpop sequence
in next each step until the difference between dpop and dtopk
is greater than the difference between dtopk and dtop1. (3)
difference-by-difference operation for the dpop sequence. For
the dpop sequence, we do n difference-by-difference operations
on it (similar to the n-order derivative for the continuous
curve). (4) comparing the variance of the dpop sequence
with threshold. Finally, we calculate the variance of the dpop
sequence and compare it with a certain threshold thdist. If it is
greater than the threshold, output “continue search”, otherwise
output “terminate search”. During the actual search process
(inference stage), we can easily collect these distances as the
feature for prediction.

V. EXPERIMENT

A. Experiment Setup

1) Datasets: The datasets we used are shown in the Table. I,
which are widely used in ANNS methods.

• DEEP1M/10M [8]: DEEP dataset comes from a deep
classification image model GoogLeNet.

• Turing1M/10M [9]: Turing dataset consists of Bing
queries encoded by Turing AGI v5.

2) Compared algorithms: For all algorithms, we adopted
their code on Github and set the relevant parameters as they

TABLE I
INFORMATION OF THE EXPERIMENTAL DATASETS, INCLUDING THE

DIMENSIONS (D), THE NUMBER OF BASE VECTORS, THE NUMBER OF
LEARNING VECTORS, AND THE NUMBER OF QUERY VECTORS.

Dataset D Base vectors Learning vectors Query vectors

DEEP1M/10M 96 1,000,000/
10,000,000 100,000 10,000

Turing1M/10M 100 1,000,000/
10,000,000 - 100,000

1.05 1.09 1.10 

10

100

1000

10000

0.0

0.5

1.0

1.5

2.0

0.7 0.8 0.9

Q
PS

Sp
ee
d
up

R@1

1.03 1.07 1.08 

10

100

1000

10000

0.0

0.5

1.0

1.5

2.0

0.7 0.8 0.9

Q
PS

Sp
ee
d
up

R@10
Fig. 9. The acceleration of different strategies relative to the baseline.

recommended. During the search process, we all employ a
single thread to compare the algorithms.

• HNSW is a well-known graph-based algorithm based on
a structure named Hierarchical NSW graph.

• NSG is based on a kNN graph, and builds a spreading-out
graph with a navigating node as the starting point.

B. Overall performance

We experiment on state-of-the-art algorithms (HNSW and
NSG) and our method on multiple datasets that are widely
used in ANNS algorithms (as shown in Fig. 10). We compare
the search performance at R@1 and R@10 on four datasets
(DEEP1M, DEEP10M, Turing1M, and Turing10M), respec-
tively. On the DEEP dataset (Fig. 10(a) and Fig. 10(b)), our
method performs better than HNSW in the case of R@1. Our
method almost matches the search performance of NSG and
HNSW in the case of R@10. On the Turing dataset (Fig. 10(c)
and Fig. 10(d)), our method is 1.21x and 2.71x faster than
HNSW and NSG in search speed, respectively.

C. Ablation studies

1) Reverse connection enhancement: In the reverse con-
nection enhancement strategy, there are two enhanced modes:
from the random connection part of the candidate and the
point where the insertion point cannot be reached. As shown
in Fig. 9, we compare these two strategies with the baseline
on the Turing1M dataset. We plot the speed up of the two
strategies relative to the baseline search speed and the actual
search speed of the baseline (the red curve). In the case of
R@1, our method can speed up to 5%, 9%, and 10% compared
to the baseline, respectively. This indicates that our connection
enhancement strategy can achieve better connectivity on graph
than the random strategy.

2) Scalability for query-aware strategy: To demonstrate the
scalability of our query-aware early termination strategy. As
shown in Table. II, we separately list the NDC when HNSW
and our method achieve a high recall rate on the DEEP dataset,



400

4000

0.8 0.85 0.9 0.95 1

N
DC

Recall@1

NSG
HNSW
Ours

400

4000

0.9 0.92 0.94 0.96 0.98 1

N
DC

Recall@10

NSG
HNSW
Ours

400

4000

0.4 0.5 0.6 0.7 0.8 0.9 1

N
DC

Recall@1

NSG
HNSW
Ours

1000

10000

0.6 0.7 0.8 0.9 1

N
DC

Recall@10

NSG
HNSW
Ours

400

4000

0.8 0.85 0.9 0.95 1

N
DC

Recall@1

NSG
HNSW
Ours

1000

10000

0.9 0.92 0.94 0.96 0.98 1

N
DC

Recall@10

NSG
HNSW
Ours

400

4000

0.4 0.5 0.6 0.7 0.8 0.9 1

N
DC

Recall@1

NSG
HNSW
Ours

1000

10000

0.6 0.7 0.8 0.9 1

N
DC

Recall@10

NSG
HNSW
Ours

(a) (b) (c) (d)
Fig. 10. Ours vs. HNSW and NSG on (a) DEEP1M, (b) DEEP10M, (c) Turing1M, and (d) Turing10M (down right is better).

TABLE II
A COMPARISON OF THE NUMBER OF DISTANCE COMPUTATIONS (NDC) REQUIRED TO ADOPT THE QUERY-AWARE EARLY TERMINATION STRATEGY WITH

THE BASELINE WHILE ACHIEVING THE SAME RECALL RATE.

Recall rate
DEEP1M-R@10 DEEP1M-R@100 DEEP10M-R@10 DEEP10M-R@100

dist. compution speed up dist. compution speed up dist. compution speed up dist. compution speed upHNSW Ours HNSW Ours HNSW Ours HNSW Ours
0.99 2637.87 2475.86 1.07 4905.17 4611.04 1.06 5865.32 5368.36 1.09 10362.2 9709.18 1.07

0.995 3347.81 3067.41 1.09 6553.21 5965.97 1.10 7429.83 6659.18 1.12 14424.3 13233.8 1.09
0.999 7110.67 5500.62 1.29 12125.8 10328.2 1.17 15712.9 13204.6 1.19 27463.4 24713.9 1.11

and the proportion of search speed up. We find that the greater
the recall rate, the greater the proportion of search speed up.
In particular, our strategy can speed up the search process
by 1.29x when the recall rate R@10 = 0.999 on the DEEP1M
dataset. And in other cases, there are varying degrees of search
speed up.

VI. CONCLUSION

In this paper, we present a study of the graph-based
approximate nearest neighbor search (ANNS) problem. We
indicate two challenges in existing ANNS methods: poor
connectivity and search redundancy. The poor connectivity is
due to the existence of in-degree constraints of the points in the
construction algorithm. Search redundancy is due to the fact
that search algorithm (which are widely used) is not aware of
the minimum search steps for the query. Therefore, in order
to make the graph structure stronger, we propose a reverse
connection enhancement strategy. We add some connections
by judging whether the insertion point is reachable, so that
the in-degree of the insertion point is no longer restricted.
In order to make the search process smarter, we propose a
query-aware early termination strategy. We reduce the search
redundancy overhead by collecting dynamic distance features
during the search process and assigning different search steps
to each query. Finally, extensive experiments show that our
method can improve the search speed up to 1.21x when the
recall rate equals 0.95.

VII. ACKNOWLEDGEMENT

This work was supported by National Natural Science Foun-
dation of China (No. 62104128, U19B2019, 61832007); China

Postdoctoral Science Foundation (No. 2019M660641); Na-
tional Key R&D Program of China (No. 2017YFA02077600);
Tsinghua EE Xilinx AI Research Fund; Beijing National
Research Center for Information Science and Technology (BN-
Rist); Beijing Innovation Center for Future Chips; Kuaishou
Technology.

REFERENCES

[1] M. Zhang and Y. He, “Grip: Multi-store capacity-optimized high-
performance nearest neighbor search for vector search engine,” in Pro-
ceedings of the 28th ACM International Conference on Information and
Knowledge Management, pp. 1673–1682, 2019.

[2] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks: A
benchmarking tool for approximate nearest neighbor algorithms,” in
International Conference on Similarity Search and Applications, pp. 34–
49, Springer, 2017.

[3] M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor
search,” arXiv preprint arXiv:2101.12631, 2021.

[4] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, “Mobile
recommender systems in tourism,” Journal of network and computer
applications, vol. 39, pp. 319–333, 2014.

[5] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neighbor
search with the navigating spreading-out graph,” Proceedings of the VLDB
Endowment, vol. 12, no. 5, pp. 461–474, 2019.

[6] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 4, pp. 824–836, 2018.

[7] G. T. Toussaint, “The relative neighbourhood graph of a finite planar set,”
Pattern recognition, vol. 12, no. 4, pp. 261–268, 1980.

[8] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale datasets
of deep descriptors,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2055–2063, 2016.

[9] H. V. Simhadri et al., “Billion-scale approximate nearest neighbor search
challenge,” 2021.


	Introduction
	Graph-based ANNS Methods
	NSG
	HNSW

	Reverse Connection Enhancement
	Motivation
	Degree Analysis
	Our Method

	Query Aware Early Termination
	Motivation
	Analysis
	Our Method

	Experiment
	Experiment Setup
	Datasets
	Compared algorithms

	Overall performance
	Ablation studies
	Reverse connection enhancement
	Scalability for query-aware strategy


	Conclusion
	Acknowledgement
	References

