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Abstract—The capabilities of large language models (LLMs)
in text comprehension and generation are advancing artificial
intelligence. However, the growing number of parameters and
computational demands challenge the efficient deployment of
inference services. High-performance GPU clusters in the cloud
can meet these requirements but incur high service costs and
network stability issues, which struggle to meet service-level
agreements (SLAs). The “cloud-device collaboration” approach
leverages the heterogeneous hardware on both the cloud and
device sides to satisfy SLAs efficiently. However, the varying
operational intensity among different LLM operators and their
dynamic nature complicate load scheduling for cloud-device
systems.

To address these challenges, we optimize LLM inference de-
ployment on cloud-device systems through three aspects: schedul-
ing algorithm, hardware modeling, and compilation deployment.
For the scheduling algorithm, we analyze the LLM computation
network, evaluate the computation-to-memory access ratio under
different sequence lengths, and propose a greedy algorithm-based
operator-level scheduling strategy. For the hardware modeling,
we establish a relationship between operational intensity and
GPU resource utilization to estimate operator running time.
Finally, we designed a cloud-device LLM compiler framework for
quantitative evaluation and efficient deployment across various
hardware combinations and inference tasks. In specific inference
scenarios, our framework satisfies the need for inference latency
and achieves an average cost reduction of 20.7% compared to
cloud-side-only inference.

Index Terms—Large Language Models, Cloud-Device Collab-
oration System, Efficient Inference

I. INTRODUCTION

In recent years, large language models (LLMs) have revo-
lutionized natural language processing tasks, such as language
understanding, generation, and question answering, achieving
widespread adoption across various industries [1]–[3]. How-
ever, the substantial computational requirements and parame-
ter sizes of LLMs pose significant challenges for their efficient
deployment. For example, GPT-3 released by OpenAI [4] has
175 billion parameters and requires about 350GB of memory
(using FP16 data type), with approximately 660TOPs needed
to complete one inference. Despite the efforts to optimize
LLMs through techniques such as quantization and pruning
to reduce the computational and memory requirements for
inference, the end-side devices are still hard to deploy these
LLMs. High-performance GPU clusters in the cloud can
satisfy these requirements but incur significant hardware costs
and rely on stable network connectivity. This dependency can
hinder real-time performance and limit service accessibility in
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Fig. 1. device-side-only, cloud-side-only and cloud-device collaborative
inference schemes.

remote or disconnected environments, which means a struggle
to meet service-level agreements (SLAs).

To address the limitations of cloud-side and device-side,
a cloud-device heterogeneous system can be adopted to effi-
ciently deploy LLMs, as shown in Fig. 1. For Convolutional
Neural Networks (CNNs), some efforts have been made to
optimize the deployment on cloud-device systems, typically
through large-small model collaboration and computation of-
floading [5]. Large-small model collaboration relies on tech-
niques such as early stopping, where only a portion of the
model is computed under constrained resources. However,
this approach is not suitable for current LLMs. Computation
offloading, which includes layer-wise and tensor-wise parti-
tioning strategies, also fails to achieve optimal performance
for LLMs. The diverse characteristics (e.g., computation-to-
memory access ratios) of operators and the dynamism of
workload characteristics (e.g., the length of input and output
texts) make effective partitioning and offloading difficult. It is
necessary to propose an approach to adaptively partition and
distribute computational tasks based on real-time workload
demands and resource availability.

In this paper, we propose a framework to efficiently de-
ploy LLMs inference services in cloud-device systems un-
der diverse hardware configurations and varying inference
workloads. This framework divides computational tasks at
the operator level for scheduling. Specifically, we conduct
a quantitative analysis of the computation-to-memory access
ratio of different operators (e.g., attention and linear layer) in
LLMs and their dynamic changes relative to the input and
output text lengths. Based on this analysis, we propose a
cost- and latency-aware greedy-based scheduling algorithm.
To evaluate the execution time of operators efficiently, we
develop a hardware simulation model that considers band-
width, computing power, and the computation-to-memory
access ratio. Finally, we design a compilation framework
that enables rapid evaluation and efficient deployment across
different hardware combinations and dynamic inference tasks.
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Fig. 2. The overview of our design. Our goal is to ensure that the inference
latency (TTFT and TPOT) is within the inference SLA, while minimizing the
inference cost.

We demonstrate an overview of this framework in Fig. 2
and summarize the contributions as follows:

1) We introduce a novel framework for efficient deploy-
ment of LLMs in cloud-device systems. Specifically, we
partition the computation load at the operator granularity
and propose a cost-latency balancing scheduling algo-
rithm based on greedy algorithm.

2) We develop a hardware simulation model that enables
rapid evaluation of the computation time for opera-
tors with varying computation-to-memory access ratios
across diverse hardware platforms.

3) We present a compilation framework that facilitates
quantitative evaluation and efficient deployment of di-
verse inference tasks and cloud-device hardware com-
binations. Experimental results demonstrate that our
approach satisfies the need for inference latency and
reduces costs up to 20.7% compared to cloud-side-only
deployment.

II. BACKGROUND AND RELATED WORK

A. Large Language Models (LLMs) Inference

In this section, we introduce the LLMs inference com-
putation workflow and SLAs. A standard LLM generative
inference process comprises two stages [6]: i) the prefill
stage, where a given prompt sequence is used to generate
the key/value cache (KV cache) for each transformer layer
within the LLM; and ii) the decode stage, which leverages and
updates this KV cache to produce tokens one by one, with the
current token generation depending on previously generated
tokens. In both stages, the generation of each token requires
passing through the entire model, typically constructed by
stacking multiple transformer blocks [7]. Transformer blocks

comprise two primary operators: the attention operator and
the Feed-Forward Network (FFN) operator.

During prefill stage, denote the input features of the i-
th layer as Xi ∈ Rb×s×h, where b denotes the batch size,
s denotes the input sequence length, and h denotes the
hidden dimension of the transformer. For attention operator,
the computation is:

Qi = XiW
Qi ,Ki = XiW

Ki , Vi = XiW
Vi (1)

Ai = softmax(
QiK

T
i√

h
)Vi, Oi = AiW

Oi +Xi (2)

where WQi ,WKi ,WVi ,WOi ∈ Rh×h are weight matrices.
The computation equation of FFN operator is:

Xi+1 = fact(OiW
i
1)W

i
2 +Oi (3)

where W i
1 ∈ Rh×h′

and W i
2 ∈ Rh′×h are weight matrices (h′

is the hidden dimension of the second MLP layer).
During decode stage, each iteration is designed only to

consider the current token. Different from prefill stage, the
matrix-vector multiplications (MV) operations are the major-
ity for decoding instead of the matrix-matrix multiplications
(MM). Denote the feature of the current generated token in
the i-th layer as ti ∈ Rb×1×h. The equations for this process
are below:

qi = ti ·WQi , ki = ti ·WKi , vi = ti ·WVi (4)
Ki ← Concat (Ki, ki) , Vi ← Concat (Vi, vi) (5)

ai = softmax(
qiK

T
i√
h

)Vi, oi = ai ·WOi + ti (6)

ti+1 = fact(oi ·W i
1)W

i
2 + oi (7)

For LLMs inference services, SLAs commonly employ two
metrics [8]: i) Time to the First Token (TTFT), which refers to
the latency incurred from a query is input until the first output
token is generated, and ii) Time Per Output Token (TPOT),
which measures the average time required to generate each
subsequent output token after the first one. TTFT is related to
prefill stage and TPOT is decided by decode stage.

B. Cloud-Device Inference System

Existing approaches to deploying model inference services
in cloud-device systems can be broadly categorized into two
categories: i) large-small model collaboration [9]–[12], which
leverages the collaboration between large models deployed
in the cloud and small models residing at the devices, and
ii) computation offloading [13]–[17], which dynamically allo-
cates computational tasks between the cloud and the devices.

For large-small model collaboration, one common tech-
nique is the early-exit mechanism, which allows the model
to terminate its inference process prematurely when a certain
level of confidence or accuracy threshold is met. For exam-
ple, SPINN [9] dynamically selects the exit points and task
division between devices and clouds based on resources and
network conditions. Another common method is knowledge
distillation, where a large, complex model in the cloud is



TABLE I
OPERATOR COMPUTATION, MEMORY ACCESS AND COMPUTATIONAL INTENSITY IN PREFILL AND DECODE STAGES.

Operator Name Stage Computation (OPs) Memory Access (Bytes) Compute-to-Memory Access Ratio (OP/Byte)

Q/K/V/O (Linear) Prefill∗ sinh
2 2sinh+ h2 sinh/(h+ 2sin)

Decode∗∗ h2 2h+ h2 h/(h+ 2)

S · V (Attention) Prefill s2inh 2sinh+ s2in sinh/(2h+ sin)

Decode (sin + 1)h h+ (sin + 1)h+ sin + 1 (sin + 1)h/[h+ (sin + 1) · (h+ 1)]

FFN Prefill sinhh
′ sinh+ sinh

′ + hh′ sinhh
′/[sin(h+ h′) + hh′]

Decode hh′ h+ h′ + hh′ hh′/(h+ h′ + hh′)

LM Head Decode hhv 2h+ hhv hhv/(2h+ hhv)

∗ sin represents the prefill size.
∗∗ The decode here is the first stage after the prefill stage.

used to train a smaller, more efficient model on the device-
side. However, for LLMs, which are characterized by immense
size and complexity, it is hard to construct a model supporting
early-exit or distilling knowledge.

For computation offloading, the two primary methods are
tensor parallelism and pipeline parallelism. For example, Co-
Edge [13] proposes a tensor offloading strategy, which divides
the computation workloads at the tensor level and allocates
them between clouds and devices. Some works partition tasks
in tensor and model levels [15]–[17], using tensor parallelism
and pipeline parallelism simultaneously. However, these works
cannot fully consider the different computation-to-memory
access ratios of different operators and the dynamics of
workloads, which compromises the efficiency of the service.

III. METHODOLOGY

In this section, we present our proposed framework for the
efficient deployment of LLM inference services. We introduce
our innovative scheduling strategy (Sec. III-A), tailored to
dynamically allocate computational tasks between the cloud
and devices, ensuring optimal performance under varying
workloads. Then we elaborate on our hardware modeling
and simulation methodology (Sec. III-B). Lastly, we outline
our compilation and deployment system, which streamlines
the process of adapting and deploying LLMs across diverse
architectures (Sec. III-C).

A. Schedule Optimization Based on Operator Properties

Instead of layer-wise partition of the computational work-
load, we segment the load at operator granularity. That is
because of the heterogeneity observed in the characteris-
tics of various operators during the computation process of
LLMs. When confronted with the SLAs violation imposed by
resource-constrained devices, our algorithm would prioritizes
the migration of operators with high computational intensity
and memory access requirements to the cloud. This is driven
by the fact that GPUs on the cloud side exhibit significantly
higher utilization when handling operators with substantial
workloads. This strategic relocation not only mitigates the
resource limitations at the device-side, but also strives to
minimize the associated cloud costs, ensuring that the SLA
targets are met with minimal overhead.
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Fig. 3. The proportion of computing time requirements of different operators
in the prefill and decode stages varies with the length of the processed text.
The horizontal axis represents the length of the processed text.

Fig. 3 illustrates the computation timeshare of different
operators in inference for LLMs. It can be observed that
the linear and attention operators dominate the inference
process and that the distribution is affected by the inference
stages and the length of text. In the context of short text
inference requests, linear operators predominantly contribute
to the overall latency during both the prefill and decode
phases. However, the share of attention computation gradually
increases as the text sequence grows in length, with this trend
being more pronounced in the decode stage.

Table I lists the equation of computation load, memory
access volume and computation-to-memory access ratio for
linear and attention operators. It can be observed that the
computation load of attention operators is correlated with the
square of the text length. In contrast, it grows linearly with
the length of the text for linear operators, which also explains
the change in the workload proportion of Fig. 3. Regarding
the performance constraints, the prefill phase is characterized
by a computational bottleneck, whereas the decode stage
is marked by a bandwidth bottleneck. For prefill stage, the
computation-to-memory access ratio is usually much greater
than 1. In contrast, for decode stage, the computation-to-
memory access ratio of the linear operators is approximately
equal to 1 and independent of the text length. Similarly, as
the text length increases, the computation-to-memory access
ratio of the attention operators also converges to 1. Moreover,



Algorithm 1 Greedy-based algorithm for tasks scheduling on
cloud-device system

1: Input: The LLM inference computation tasks set in cur-
rent iteration S, parameters of cloud and device platforms
Dcloud,device, target latency τ .

2: Output: Cloud-side tasks subset Scloud, device-side tasks
subset Sdevice.

3: Sort S by linear and attention.
4: Scloud ← ∅
5: Sdevice ← S
6: T ← 0
7: for s ∈ S do
8: T = T + f(s,Ddevice)
9: end for

10: for s ∈ S do ▷ Traverse linear first, then attention
11: if T < τ then
12: break
13: else
14: Sdevice ← Sdevice \ s
15: Scloud ← Scloud ∪ s
16: T = T − f(s,Ddevice) + f(s,Dcloud)
17: end if
18: end for
19: return Scloud, Sdevice
the computational complexity and memory access volume of
operators during the prefill stage significantly exceed those in
the decode stage, primarily due to the fact that the prefill stage
processes multiple input tokens simultaneously, whereas the
decode stage handles a single output token at a time.

Based on the above observations, we propose a greedy-
based scheduling algorithm, as illustrated in Alg. 1. The
objective of the algorithm is to allocate operators (S) re-
quired by LLM within a specified iteration cycle, aiming to
minimize the cost, i.e., minimize the use of cloud hardware,
while satisfying latency constraints (τ ). Initially, the algorithm
assumes all tasks are assigned to the device (Sdevice = S) and
estimates the total latency T using a function f(s,Ddevice).
This function is obtained from hardware modelling, which
computes latency considering operator and hardware parame-
ters. Following this, the algorithm iterates through the task set,
assessing whether the cumulative latency T would exceed the
target τ under the current task assignment. If so, the algorithm
offloads the current task to the cloud by moving it from Sdevice
to Scloud and updates the T . This process continues until the
latency constraint τ is met. In this algorithm, we prioritize
traversing and assigning linear operators to the cloud before
attention operators. This decision stems from the strategic
objective of migrating operators with higher computational
and memory access requirements to the cloud.

Regarding the communication between the cloud and the
device, when the cloud processes linear operators, only ac-
tivations need to be transmitted, resulting in a relatively
low communication volume that can be effectively concealed
through pipelining. When the cloud computes attention op-
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erators, given that we have already prioritized the placement
of linear layers on the cloud, the KV cache required by the
attention operators is expected to be already resident in the
cloud. As a result, only activations need to be transmitted
maintaining a manageable communication overhead.

B. Hardware Modeling for The GPU

Modern GPU architectures are uniform in design and have
commonalities in the operation mechanism. Considering the
GPU’s pipeline design [18], the theoretical computation la-
tency of the GPU can be calculated using the following Eq. 8:

TGPU =

Nop∑
i=0

max(T
(i)
Compute, T

(i)
Memory)

=

Nop∑
i=0

max(
Operationi

Pi × Parallelismi
,
Data Sizei

BWi
)

(8)

where Nop is the number of operators of the task, Operationi

is the computation amount of different operations within the
operator, Pi is the computing power of the operation specified
by the GPU, and Data Sizei indicates the amount of data
accessed, and BWi indicates the bandwidth of data accessed.

Fig. 4 shows the roofline model of the GPU and the at-
tainable performance in running different inference operators.
It is demonstrated that for operators with low computational
intensity, the attainable performance of GPUs falls short of
their theoretical peak performance. As a result, when theo-
retical models are used for derivations, substantial deviations
can occur in inference tasks.

In this paper, we employ spline interpolation on empirically
measured data to formulate an accurate hardware modeling
approach. Specifically, by applying spline interpolation to
the collected data points, we define a practical modeling
formula that accurately reflects the hardware’s performance.
Notably, under diverse task loads, the average absolute error
of the simulation for a single operator is found to be 4.78%,
demonstrating the effectiveness and accuracy of our modeling
strategy.
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C. Development Design for Cloud-Device Collaboration
In conjunction with the cloud-device collaboration sys-

tem, LLMs’ inference scenarios exhibit diverse and complex
trends, primarily manifested in the interplay between hard-
ware (device-side computing power and inference cost) and
inference task (prefill size and decode size). This necessitates
the deployment of convenient tool frameworks to facilitate
software-to-hardware mapping.

We design a two-layer intermediate representative (IR)
compilation process to achieve a more fine-grained optimiza-
tion purpose. This process implements a structural analysis of
the model, an operator dependency analysis, and an optimiza-
tion of the cloud-device scheduling strategy, as summarized
in Fig. 5.

In the layer computation graph IR, the compiler can re-
alize the abstract representation of the computation layers
and complete the dependency analysis. Further, the layer
computation graph IR lowers for the operator computation
graph IR, where the compiler will define specific operator
computation properties, access properties, and data control
properties for different computation monolayers, which can
be directly utilized by the hardware model in Sec.III-B. The
compiler also assigns the execution platform for each operator,
adds network communication operations, and completes the
inference scheduling optimization in conjunction with the
algorithm mentioned in Sec. III-A.

After compilation, we get the set of tasks on the cloud-
device computing platform. In addition, while obtaining the
operator scheduling strategy, we can also calculate the infer-
ence performance of the cloud-device system based on the
hardware model simulation.

IV. EXPERIMENT

A. Experiment Setup
Hardware Platform. To demonstrate the effect of the

design works with different hardware combinations, we ex-
perimented with two different configurations:

a) Group-L: For the cloud-side platform, this configura-
tion includes an NVIDIA V100S GPU with a peak memory
bandwidth of 1134GB/s and a peak computing power of
130TFLOPS using Tensor Core at FP16 precision. The cost of
use is 1.5× 10−5 $/s. For the device-side platform, we chose
an NVIDIA Jetson Nano with a peak memory bandwidth
of 25.6GB/s and a peak computing power of 0.47TFLOPS
(GPU).

TABLE II
HARDWARE PARAMETERS OF CLOUD AND DEVICE PLATFORMS.

Cloud-Side Device-Side

Platform NVIDIA V100S NVIDIA A100 NVIDIA Jetson Nano Snapdragon 8s Gen 3

Frequency 1597MHz 1410MHz 1430MHz 921MHz

Computing
Power

130TFLOPS
(Tensor Core)

312TFLOPS
(Tensor Core)

0.47TFLOPS
(GPU)

8.50TFLOPS
(GPU)

Bandwidth 1134GB/s 2039GB/s 25.6GB/s 76.6GB/s

b) Group-H: For the cloud-side platform, this configu-
ration includes an NVIDIA A100 GPU with a peak memory
bandwidth of 2039GB/s and a peak computing power of
312TFLOPS using Tensor Core at FP16 precision. The cost of
use is 4× 10−5 $/s. We choose the Snapdragon 8s Gen 3 for
the device-side platform with a peak memory bandwidth of
76.6GB/s and a peak computing power of 8.5TFLOPS (GPU).

Models. We use the the LLaMA2-7B [19]. The model’s
parameters for our experiments use precision in FP16 data
format, with intermediate activations in FP16.

Key Metrics & Baseline. The simulator will evaluate the
cloud-device collaboration system’s latency and cost. We use
device-side-only inference as a baseline for TTFT and TPOT
and cloud-side-only inference as a baseline for inference cost.
We observe the performance effects of hardware combination
and inference workloads on cloud-device collaboration.

B. TTFT & TPOT Evaluation
Fig. 6 shows the inference latency by applying the method

to deploy different operators of LLMs on the cloud-side and
device-side. This experiment evaluates the TTFT and TPOT
of different inference tasks. The results show that under the
different hardware combinations and prefill/decode size, the
TTFT and TPOT meet the needs of inference services (less
than 400ms and 100ms).

C. Inference Cost Evaluation
Fig. 7 shows the cost reduction of the prefill and decode

stages, achieved by applying our method to deploy differ-
ent computing workloads for LLMs on the cloud-side and
device-side. This experiment evaluated the cost of the prefill
and decode stage for LLaMA2-7B. The results show that
the computational costs of the prefill and decode stage for
different inference tasks are reduced under different hardware
combinations. The average end-to-end inference cost for both
hardware combinations is calculated to be 11.6% and 20.7%
lower than cloud-side inference, respectively.

V. CONCLUSIONS

In this paper, we propose a cloud-device collaborative
inference framework for LLMs inference. We summarize the
computation and memory access characteristics of operators
and the characteristics of cloud-device hardware. Additionally,
we verify the effect of the collaborative inference strategy
under different cloud-device hardware combinations and dif-
ferent inference tasks using our compilation workflow. In the
future, with the continuous improvement of computing power
and bandwidth of devices, it is expected to achieve low latency
and high throughput LLMs inference services with the help
of the cloud-device collaborative inference framework.
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