
Optimizing Graph-based Approximate Nearest
Neighbor Search: Stronger and Smarter

Jun Liu1, Zhenhua Zhu1, Jingbo Hu1, Hanbo Sun1, Li Liu2, Lingzhi Liu2,
Guohao Dai1, Huazhong Yang1, Yu Wang1

1 Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China
2 Heterogeneous Computing Group, Kuaishou Technology, Palo Alto, CA, USA

{liu-j20, zhuzhenh18, hjb19, sun-hb17}@mails.tsinghua.edu.cn,
liliu@kwai.com, liulingzhi@kuaishou.com, {daiguohao, yanghz, yu-wang}@mail.tsinghua.edu.cn

Abstract—Approximate Nearest Neighbor Search (ANNS) is
widely used in many fields (e.g., recommender systems). In
recent years, the graph-based ANNS method has attracted the
attention of many researchers due to its superiority compared
to non-graph-based algorithms. Compared with traditional rec-
ommender systems, mobile recommender systems have higher
latency requirements [1]. The graph-based ANNS method faces
the following challenges that make it difficult to meet the
requirements. (1) Poor connectivity. Due to the limitation of
the construction algorithm, the connectivity of the graph index
is poor, which in turn affects the search performance. (2)
Redundant search. Existing search algorithms use sufficiently
long search steps for all queries to achieve high search accuracy.
However, the query search steps follow the long-tailed distribution
that brings the redundant search, e.g., for more than 40% of the
queries, 87% of the search overhead is redundant.

We propose two optimization strategies to tackle the above
challenges. (1) Reverse connection enhancement strategy. In the
graph construction process, we increase the in-degree of the point
to be inserted to enhance the graph connectivity, while keeping
the out-degree low to maintain the high search efficiency. (2)
Query aware early termination strategy. We identify regional
features to predict the number of remaining search steps to
achieve dynamic search termination and reduce the redundant
search overhead. Finally, we verify the proposed solutions on
multiple representative datasets. Compared with the existing
graph-based ANNS method, our solutions can improve the search
speed by 1.06x - 1.29x.

Index Terms—Approximate Nearest Neighbor Search, Recom-
mendation System, Data Retrieval, Big Data

I. INTRODUCTION

The Nearest Neighbor Search (NNS) problem is widely used
in many fields, such as recommendation systems [2], data
retrieval [3], information matching [4], and machine learning
[5]. A primitive and intuitive way to solve this problem is
the brute force method. But as the number of mobile data
increases, the calculation time of the brute force method
becomes unacceptable. To tackle this problem, recent work
uses Approximate Nearest Neighbor Search (ANNS) methods
to reduce the search time by a few orders of magnitude with a
slight accuracy loss [6]–[9]. ANNS meets the requirements of
different scenarios by exploring the trade-off between accuracy
and latency.

At present, ANNS methods can be divided into four cat-
egories: tree-based methods [6], [10]–[12], locality-sensitive

N
od

e
nu

m
be

r i
nc

re
as

e

HNSW0

HNSWL

layer0 query

layer1 query

layer2 query

starting point

Fig. 1. HNSW [25] is composed of multiple layers, and the closer to the
bottom layer, the more nodes in the layer. The starting search point of HNSW0

is determined by HNSWL.

hashing (LSH) based methods [7], [13]–[15], product quanti-
zation (PQ) based methods [8], [9], [16], [17], and graph-based
methods [18]–[22]. Among these four categories, the graph-
based methods show great potential in recent years and achieve
a high recall rate in a short search time [23]. The graph-based
methods build an approximate nearest neighbor graph, and
then use the graph as an index (i.e., graph index) for greedy
search. Most non-graph ANNS methods search for queries
through spatial division, so these methods often require access
to more data points [24]. The graph-based ANNS methods
establish the connection relationship between data points, and
the query can be quickly approached by only visiting fewer
points. Therefore, the graph-based methods are more efficient
than the non-graph methods.

Hierarchical Navigable Small World graphs (HNSW) [18]
is one representative graph-based ANNS method, which is
widely used in commercial application scenarios due to its
excellent search performance and the support for incremental
graph construction [23]. As Fig. 1 shows, HNSW constructs
a multi-layer graph structure. The hierarchical graph structure
(HNSWL) randomly provides long inter-layer links for some
points, and the starting search point can be quickly found
through these points. Then HNSW uses a greedy search
algorithm to search for the k nearest points to the query in
the bottom layer (HNSW0).

mailto:liu-j20@mails.tsinghua.edu.cn
mailto:zhuzhenh18@mails.tsinghua.edu.cn
mailto:hjb19@mails.tsinghua.edu.cn
mailto:sun-hb17@mails.tsinghua.edu.cn
mailto:liliu@kwai.com
mailto:liulingzhi@kuaishou.com
mailto:daiguohao@mail.tsinghua.edu.cn
mailto:yanghz@mail.tsinghua.edu.cn
mailto:yu-wang@mail.tsinghua.edu.cn

TABLE I
SYMBOLS AND THEIR INTERPRETATION.

Symbols Interpretation

X The base vectors of dataset
N The number of base vectors X
pin Insertion point: The point that is being added to the graph index during the construction process
efc The parameter of the construction process, weigh the construction time and graph index performance.
efs The parameter of the search process, weigh the search speed and search accuracy.

maxM0 The maximum number of neighbors per point on the graph index (the bottom layer for HNSW)

Algorithm 1 Construction algorithm
Input: Base vectors X , the number of maximum neighbors

maxM0, starting point ps
Output: Complete graph index GN

1: for each point pin ∈ X do
2: Qin

cand ← greedy search(q,Gs, ps, efc, efc)
3: Qin

sel ← SelectNeighborByRNG(pin, Q
in
cand,maxM0)

4: setNeighbor(pin)← Qin
sel

5: for each point pr ∈ Neighbor(pin) do
6: addNeighbor(pr)← pin
7: end for
8: end for
9: return GN

Compared with traditional recommender systems, mobile
recommender systems have higher latency requirements [1].
HNSW still faces the following challenges, which make it
difficult to meet the requirements. The first challenge is that
the connectivity of the graph index is poor. 84.6% of the
recall rate loss is caused by poor connectivity of the graph
index. Poor connectivity is mainly reflected in the existence
of some points with small in-degree on the graph index.
These small in-degree points are hard to find, and if they
belong to the ground truth, they will cause recall loss. The
second challenge is the heavy redundant search overhead
in the search process. In order to achieve the high search
accuracy of all various queries (e.g., recall rate > 0.95), the
existing search strategy uses sufficiently long search steps
as the search termination condition. However, the number of
minimum search steps for different queries vary greatly, and
the number of search steps follow the long-tailed distribution.
When applying the sufficiently long search steps, more than
40% of the queries only need 12.6% of the total search step,
revealing heavy redundant search overhead.

To tackle these challenges, we propose two optimization
solutions to make the graph index stronger and make the
search smarter. The main contributions are shown as follows:

1) For the challenge of unsatisfactory search results caused
by poor graph connectivity, we conducted a thorough
analysis of the existing construction strategy. Then we
indicate that the existing construction strategy restricts
the in-degree of each point, which leads to the poor
connectivity of the graph index. We propose the reverse
connection enhancement strategy to increase the graph

connectivity while maintaining search efficiency.
2) For the challenge of the heavy overhead of redundant

search, we propose the query-aware early termination
strategy. We indicate that the redundant search problem
is caused by the region connection relationship near
the query, which can be represented by the distance
change during the search process. Then we predict the
number of remaining search steps by identifying the
region connection relationship.

3) We validate our method on multiple datasets. Under the
condition of maintaining the same search performance,
the search speed is increased by 1.06x - 1.29x.

II. PRELIMINARIES

In this section, we introduce the ANNS problem and the
state-of-the-art ANNS algorithms. Table. I shows the symbols
that need to be used in the full text.

A. Approximate Nearest Neighbor Search

1) Problem Definition: Nearest Neighbor Search [26]
(NNS) is to find a result that is the nearest or most similar to
the given query vector in a d-dimensional finite set X ∈ Rd.
The NNS problem is defined as:

res = argmin
x∈X

dist ⟨q, x⟩ (1)

Here X is the base vectors, query q ∈ Rd is a certain vector in
the query vectors, dist ⟨q, x⟩ is the distance metric to indicate
the similarity between q and x. res ⊆ X is the nearest result
to q in the X , similarly, we denote the nearest k results as
resk.

Unfortunately, the exhaustive search used by NNS is not
feasible on the large-scale datasets. Therefore, researchers
propose the Approximate Nearest Neighbor Search (ANNS)
to speed up the search process. Although the goal of ANNS
is the same as that of NNS, the result res′k found by ANNS
may not be the k nearest results in X . We use search accuracy
(or recall rate) to represent the similarity between res′k and
resk. Compared with NNS, ANNS can achieve a better trade-
off between search accuracy and search speed.

2) Distance Measurement: Euclidean distance (e.g., DEEP
[27] and Turing [28] dataset) is the most commonly used
measurement in ANNS to describe the similarity between
two vectors. Here we take the D-dimensional vector a =
(a1, a2, · · · , aD) and vector b = (b1, b2, · · · , bD) as examples

Algorithm 2 SelectNeighborByRNG(pc, Scand,maxM0)
Input: point pc, candidate set Scand, the number of maximum

neighbors maxM0.
Output: Selected neighbor set Ssel.

1: Ssel ← ∅
2: for xi ∈ Scand do
3: if Ssel.size = maxM0 then
4: break
5: end if
6: dist← getDistance(pc, xi)
7: for si ∈ Ssel do
8: d← getDistance(xi, si)
9: if all d > dist then

10: Ssel ← Ssel ∪ xi

11: else
12: break
13: end if
14: end for
15: end for
16: return Ssel

to introduce the above distance measurement. The distance be-
tween vectors a and b is denoted as dist ⟨a, b⟩. Its calculation
formula is as follows:

dist ⟨a, b⟩ =

√√√√ D∑
i=1

(ai − bi)
2 (2)

3) Evaluation Metric: Three metrics are usually used to
evaluate the performance of ANNS algorithms.

• Recall rate [29]: In ANNS, the recall rate is usually used
to indicate the search accuracy. Assume that the number
of query vectors is Nq . For each query vector qi, its
ground truth set of the top k nearest neighbors is GTik.
The result set returned by ANNS is RESik, then the
recall rate Recall@k is defined as follows:

Recall@k =

Nq∑
i=1

|RESik ∩GTik|
|GTik|

(3)

• Queries Per Second (QPS): QPS is usually used to mea-
sure the search speed of the ANNS method. Its meaning
is the number of queries that can be searched per second.

• The Number of Distance Calculations (NDC): it is posi-
tively correlated with the actual search overhead. There-
fore, NDC is often used to evaluate the search speed of
different ANNS algorithms and system implementations
[20], [30]. For different hardware or code implementa-
tions, comparing NDC is a fair evaluation method.

B. Graph-based ANNS Methods

In the graph-based ANNS methods, we treat the base vectors
X as points in d-dimensional space and then connect them
through edges. These points and the edges between them
construct the graph index. If there is exists an edge from
xi to xj in the graph index, we call xj is a neighbor of

𝑥!
𝑥"

𝑥#
𝑥$

𝑝%

(a) Naïve strategy (b) RNG-based strategy

𝑥&

𝑥'

𝑥!
𝑥"

𝑥#
𝑥$

𝑝%

𝑥&

𝑥'

Fig. 2. The intuitive comparison of the three neighbor selection strategies
is in 2-dimensional space. (a) The naı̈ve strategy only selects points that are
closer to each other as neighbors. (b) The RNG-based strategy makes the
neighbors of pc have better diversity and improves the efficiency of graph
index.

xi. The search process means that we start from a certain
point (starting search point) on the graph index and iteratively
search for points closer to the query along these edges. The
construction process is to connect edges between these points.
The main difference between different ANNS methods lies in
the algorithms used in the construction process.

1) NSG: Fu et al. [20] proposed Navigating Spreading-
out Graph (NSG) to re-select neighbors for each point on
the pre-constructed k-Nearest Neighbor (kNN) Graph. The
neighbor selection strategy based on the Monotonic Relative
Neighborhood Graph (MRNG) ensures that each step is closer
to the query than the previous step, but it would lead to
excessive construction complexity. Therefore, NSG adopts an
approximate MRNG strategy to fix the center point as the
starting search point. NSG is difficult to implement construc-
tion incrementally because it requires a pre-constructed kNN
graph.

2) HNSW: Hierarchical Navigable Small World graphs
(HNSW) [18] is one representative graph-based ANNS
method. As shown in the Fig. 1, the HNSW is composed
of multiple graph layers, and there are connections between
points in the same graph layer (abbreviated it layer). During
the construction process, each point in the base vectors X
is inserted into the graph index one by one. The highest
layer of each point is determined by a random function with
exponential decay of probability, and then this point (insertion
point) needs to be inserted in all layers below the highest
layer. Then, the bottom layer contains all the points in the
base vectors.

As shown in Alg. 1, for each insertion point pin, the
construction process can be divided into three stages: the get
candidate stage (line 2), the forward connection stage (line 3
to line 4), and the reverse connection stage(line 5 to line 7).
The get candidate stage is to find the nearest efc points for pin
in the current graph index Gc as neighbor candidates Qin

cand.
The forward connection stage select Qin

sel as pin neighbors
through the neighbor selection strategy based on Relative
Neighborhood Graph (RNG) [31]. In the reverse connection
stage, for all points pr in pin neighbors, use a similar method
to reconnect their neighbors.

(a) (b) (c)

Current search point (red: current step, purple: previous step)

The point whose distance from the query has been calculated

Fig. 3. Schematic diagram of searching query nearest neighbors on a graph
index. (a)-(c) The first three steps of the search process.

The RNG-based neighbor selection strategy (and its vari-
ants) is widely used in graph-based ANNS construction algo-
rithms due to its high efficiency. The naı̈ve strategy connects
the nearest points to the point pc as shown in the Fig. 2(a),
which cause the search process to easily fall into a local
optimum (because the neighbors of point pc are very concen-
trated). The RNG-based strategy (shown in Fig. 2(b)) selects
a part of points from the candidate set, and these points are
as scattered as possible with respect to pc.

During the search process, for all layers except the bottom
layer, HNSW starts from the top layer and uses the greedy
search algorithm to find the nearest neighbor for the query.
From then on, the nearest neighbor enters the next layer and
continues to search for the nearest neighbors of the graph until
the nearest neighbor is found at the bottom layer. Then HNSW
uses a greedy search algorithm to search for the k nearest
points to the query in the bottom layer. We sequentially show
the search process of the first three steps in the bottom layer
through (a) to (c) in Fig. 3. At the beginning of the search
process, there is only the starting search point ps in the search
queue Qsn. For each step of the search process, we pop the
point nearest to the query (pentagram) from the search queue
as the current search point pf (red). Then we calculate the
distances between all neighbors of the current search point
and the query and add these neighbors to the search queue
and result queue Qr. The search queue consists of all green
points and always keeps the efs points nearest to the query
in non-gray points (green, red, and purple). The purple point
represents the current search point from the previous step.
Then we perform the next step of search until the termination
condition (line 7 to line 8) is met. Finally, the k points nearest
to the query in the result queue Qr are used as the search
result.

III. REVERSE CONNECTION ENHANCEMENT

A. Motivation

In the graph-based ANNS methods, we approach the query
through continuous iterative search based on the connections
between points in the graph index. Therefore, the connectivity
of the graph index is crucial to the final search results.
Specifically, the greater the in-degree of a certain point, the
more points can find it (search accuracy higher). The larger
the out-degree of a certain point, the larger the search cost at

84.66%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1 3 5 7 9 11 13 15 17 19

Cu
m

ul
at

iv
e

re
ca

ll
ra

te
lo

ss
 p

er
ce

nt
ag

e

Re
la

tiv
e

pr
op

or
tio

n

in-degree

Fig. 4. (a) Relative proportion of points that cannot be found (left axis)
versus in-degree, which cause the recall rate loss (on the Turing1M dataset).
(b) Cumulative percentage of recall rate loss (right axis).

each step (search speed lower). The existence of some points
with small in-degree means that the graph index has poor
connectivity. If these points belong to the ground truth but are
not found during the search, this will lead to a lower recall
rate. We illustrate this through experiments (shown in Fig. 4),
we plot the distribution using these points as a percentage of
the total points corresponding to the in-degree. Obviously, if
the in-degree of a point is smaller, then it has a greater negative
impact on the recall rate. And the recall rate loss due to this
situation accounts for 84.66% of the total recall rate loss.

The poor connectivity of graph index is due to the restriction
of the existing construction algorithm, which is the in-degree
of the certain point is restricted by its out-degree. In order to
keep the graph index efficient, the out-degree of some points
will be small (by neighbor selection). For points with small
out-degrees, their in-degrees are also small due to the above
restriction. Next, we will conduct a detailed analysis of the
out-degree and in-degree of the graph index and propose our
solution for the challenge.

B. Degree Analysis

The construction process is to add the point (insertion point)
in the base vectors X to the graph index one by one. As shown
in Fig. 5, at time tc, the corresponding insertion point is xc,
the corresponding graph index is Gc. The whole construction
process can be divided into two parts: before tc and after tc.
Then, the in-degree IDG(xc) and out-degree ODG(xc) of xc

are correspondingly expressed in two parts, as shown below:

IDG(xc) = IF1xc
+ IF2xc

(4)

ODG(xc) = OF1xc
+OF2xc

(5)

• OF1xc
: It is the out-degree of xc before time tc. To be

specific, when insertion point is xc in the construction
process (before tc in Fig. 5), the efc nearest points of xc

found in the graph index Gc (before tc) are called candi-
dates. We select some of these candidates as neighbors of
xc (Neighbor(xc)) by the RNG-based neighbor selection
strategy. The number of these neighbors is OF1xc

.
• IF1xc : It is the in-degree of xc before time tc. To be

specific, when insertion point is xc in the construction

Empty graph index

𝑡!

Part graph index Full graph index

𝑥! 𝑥!

Before 𝑡! After 𝑡!

𝐼𝐹1"! = 1 𝑂𝐹1"! = 2 𝐼𝐹2"! = 1 𝑂𝐹2"! = 1

Fig. 5. The in-degree (out-degree) of point xc is composed of two parts
IF1(OF1) and IF2(OF2). IF1(OF1) comes from the point (blue) in the
graph index before tc, and IF2(OF2) comes from the point (green) added
to the graph index after tc.

0.9 0

0.0152757 0.619221 0.155083 0.0699039 0.0395549 0.0230653 0.0153768 0.0136571 0.00950936 0.00566515 0.00596864 0.00364188 0.00354072 0.00232676 0.00293374 0.00242792 0.00161861 0.00161861 0.00121396 0.000708144 0.0011128 0.000809307 0.00101163 0.000404654 0.00060698 0.000505817 0.000404654 0.00030349 0.000202327 0.000101163 0.00030349 0.000505817 0.000101163 0.000101163 0.000202327 0.000202327 0 0 0.000101163 0.000202327 0.000202327 0 0 0 0 0 0 0.000101163 0.000101163 0.000101163 0

0.00118597 0.0206588 0.443131 0.178201 0.0977467 0.0607521 0.0429244 0.029917 0.024561 0.0190902 0.0133134 0.0109415 0.00987031 0.0071158 0.00623589 0.0054325 0.00397873 0.00344313 0.00340487 0.0027545 0.00187459 0.00229542 0.00183634 0.00145377 0.00114771 0.000956425 0.000879911 0.000612112 0.000535598 0.000612112 0.000459084 0.000459084 0.000420827 0.000306056 0.000191285 0.000191285 0.000114771 0 0.000153028 0.000114771 0.000114771 3.83E-05 3.83E-05 7.65E-05 7.65E-05 3.83E-05 0 0 0.000114771 0 3.83E-05

0.000260425 0.00177415 0.0207526 0.341434 0.175608 0.109183 0.0771672 0.0522152 0.0412123 0.0310557 0.0252124 0.0201829 0.0156418 0.0147466 0.0106937 0.00948924 0.00714542 0.00600606 0.00600606 0.00512712 0.00397148 0.0034018 0.00310883 0.00273446 0.00188808 0.00203457 0.00201829 0.00164393 0.0012533 0.000927765 0.000813829 0.000634786 0.000748722 0.000455744 0.000585957 0.000472021 0.000358085 0.000325531 0.000309255 0.000341808 0.000162766 9.77E-05 4.88E-05 9.77E-05 4.88E-05 4.88E-05 0.000162766 3.26E-05 4.88E-05 1.63E-05 3.26E-05

4.34E-05 0.000390591 0.00262998 0.0194601 0.27377 0.16509 0.113011 0.0804965 0.0611232 0.0478778 0.0382692 0.0305789 0.0247027 0.0205885 0.0172728 0.0148685 0.0123948 0.0109713 0.00896624 0.00756011 0.00652721 0.00582415 0.00497353 0.00437462 0.00380175 0.00337644 0.00267338 0.00251714 0.00222203 0.0019356 0.00151897 0.00138009 0.00114573 0.00109366 0.00105894 0.000789862 0.000668345 0.000538148 0.000607586 0.000381911 0.000321153 0.000295113 0.000303793 0.000199635 0.000182276 0.000138877 0.000147557 0.000121517 6.08E-05 0.000130197 0.000112837

1.09E-05 7.07E-05 0.000478516 0.00263184 0.0192603 0.231634 0.153816 0.110483 0.0831367 0.064083 0.0514894 0.0414895 0.0341976 0.0284282 0.0237518 0.0206088 0.017493 0.0147144 0.0130776 0.0115986 0.00983132 0.0083414 0.00748225 0.00665572 0.00570412 0.00480691 0.00431752 0.00406738 0.00332786 0.00315385 0.00254483 0.00236539 0.00201194 0.00165849 0.0014573 0.0014138 0.00121804 0.000946156 0.000940718 0.000717774 0.000598145 0.000500266 0.000440452 0.0003752 0.000353449 0.000320823 0.000326261 0.000228383 0.000195756 0.000168568 0.000174006

0 3.06E-05 8.80E-05 0.00062718 0.00326592 0.0188766 0.201214 0.142856 0.10607 0.0820076 0.0661139 0.0531917 0.0444648 0.0373287 0.0319823 0.0268999 0.0225632 0.0197715 0.0167924 0.0147617 0.0134499 0.0116946 0.0102873 0.00890289 0.00762176 0.00683779 0.0061456 0.0054687 0.00481475 0.00432142 0.00384721 0.00344184 0.00306324 0.00267316 0.00249342 0.00208805 0.00177828 0.0015909 0.00141115 0.00120082 0.00107079 0.000933121 0.000791623 0.00065395 0.000550694 0.000539222 0.000462736 0.000413021 0.000348008 0.000317414 0.000187389

0 5.86E-06 4.98E-05 0.000178753 0.000867392 0.0032703 0.0184409 0.176781 0.130246 0.100884 0.0806586 0.0656141 0.0549709 0.0461241 0.0394165 0.0340598 0.0291309 0.0251631 0.0223969 0.0195925 0.0170314 0.0154196 0.0130578 0.0120028 0.0105142 0.00942409 0.00814059 0.00752228 0.00669005 0.00601313 0.00547394 0.00501681 0.00435747 0.00362781 0.00332598 0.00290986 0.0026139 0.00235309 0.00196042 0.00189302 0.00165273 0.00132746 0.00131281 0.00106373 0.000940651 0.000861531 0.000712082 0.000668126 0.000635892 0.000483512 0.000474721

0 0 7.16E-06 7.40E-05 0.000202768 0.000863554 0.00332778 0.0179462 0.156675 0.120318 0.095926 0.07907 0.0650743 0.0554774 0.0476171 0.0409186 0.0354773 0.0311285 0.0271948 0.0243847 0.0208517 0.0187262 0.0169061 0.0149047 0.013168 0.0121208 0.0107109 0.00988077 0.00850911 0.00797714 0.00690366 0.00620471 0.00577293 0.00513123 0.00455393 0.0041317 0.00364267 0.00338981 0.00297711 0.00260259 0.00231394 0.00204199 0.00191079 0.00166747 0.00142176 0.00128579 0.0011188 0.00096136 0.000880252 0.000648858 0.000675099

0 0 4.08E-06 2.04E-05 6.94E-05 0.00024886 0.000926085 0.00349628 0.0175732 0.142362 0.112352 0.0917028 0.0763775 0.0646913 0.0544738 0.0475546 0.0413964 0.0360398 0.0325945 0.0284516 0.0259916 0.0226768 0.0205636 0.0180974 0.0165512 0.0149418 0.0131427 0.0119126 0.0108723 0.00993399 0.00877129 0.00805734 0.00725977 0.00655399 0.00579109 0.00548307 0.00481809 0.00436116 0.00383285 0.0034514 0.00309647 0.00280681 0.00248656 0.00231521 0.00193784 0.00164207 0.0015054 0.00132589 0.00114843 0.00103624 0.000915885

0 0 1.82E-06 7.26E-06 2.36E-05 9.26E-05 0.000266826 0.000911201 0.00353408 0.0167356 0.127693 0.10436 0.0865823 0.074056 0.0632722 0.0543254 0.0483118 0.0428083 0.0374373 0.033591 0.0297429 0.026276 0.0238927 0.0216419 0.0193258 0.0181133 0.0161548 0.0146028 0.0132142 0.0119999 0.0110778 0.0102501 0.0090503 0.00817722 0.00755281 0.00685398 0.00616241 0.00570862 0.00498801 0.00461046 0.00402054 0.00368837 0.00318557 0.00288608 0.0027445 0.00233427 0.00208015 0.00177702 0.00165178 0.00140492 0.00127968

0 0 0 1.67E-06 3.35E-06 3.18E-05 9.70E-05 0.000271049 0.000920229 0.00356547 0.0162061 0.116948 0.0977016 0.0834933 0.0718666 0.062584 0.0544893 0.0482351 0.0422586 0.0380707 0.0341121 0.0309482 0.0278696 0.0249248 0.0227431 0.0206148 0.0186321 0.0171983 0.0156104 0.0141431 0.012915 0.0119496 0.0107734 0.00984646 0.00892623 0.00830214 0.00746724 0.00663402 0.00614044 0.00550297 0.00498764 0.00461119 0.00404232 0.00388002 0.00323921 0.00296816 0.0028159 0.00252645 0.00215836 0.00193081 0.00168988

0 0 0 1.60E-06 3.19E-06 1.12E-05 2.87E-05 0.000108496 0.000268048 0.000997201 0.00330911 0.0154463 0.109493 0.092068 0.0795033 0.0693127 0.0604862 0.0535617 0.0479119 0.0426068 0.038685 0.0342862 0.0312898 0.0285008 0.0259033 0.0236409 0.0214965 0.0197302 0.0179672 0.016761 0.014966 0.013905 0.0124945 0.0118164 0.0106246 0.00977736 0.00923488 0.00817546 0.00749576 0.00688947 0.00608532 0.00564336 0.00495091 0.00462542 0.00417229 0.00387552 0.0035644 0.00308255 0.00275866 0.00257996 0.00239009

0 0 0 0 1.56E-06 0 1.41E-05 3.91E-05 0.000126637 0.000331446 0.000958379 0.00329882 0.015159 0.101008 0.0866856 0.0761465 0.0665925 0.0588207 0.052778 0.047539 0.0428863 0.0388933 0.0351348 0.0318735 0.0289077 0.0265829 0.0242221 0.0222444 0.020509 0.0190144 0.0174885 0.0161111 0.0147087 0.0136299 0.0126168 0.0116209 0.0105734 0.00978859 0.00894904 0.00811104 0.00758573 0.00681184 0.0062662 0.00567679 0.00522809 0.00450579 0.00429472 0.00384133 0.00350363 0.00309089 0.0028423

0 0 0 0 1.57E-06 1.57E-06 3.14E-06 2.98E-05 5.34E-05 8.79E-05 0.000277951 0.00092022 0.00328201 0.0146513 0.0941514 0.081942 0.072253 0.0644311 0.0582597 0.0526787 0.0472092 0.042261 0.0391156 0.035474 0.03255 0.0300611 0.0268528 0.0255118 0.0226773 0.0211211 0.0194126 0.0182317 0.0166441 0.015683 0.0142273 0.0132458 0.0121984 0.0112311 0.0103674 0.00929485 0.00846885 0.00810139 0.00729738 0.00680743 0.0060521 0.00575844 0.00509733 0.00460581 0.00433257 0.00402479 0.00360708

0 0 0 0 0 0 0 4.85E-06 1.13E-05 4.37E-05 0.00010838 0.000266906 0.000954391 0.00304758 0.014036 0.0878784 0.0781064 0.0692904 0.0626695 0.0565307 0.0510923 0.0459127 0.0425529 0.0389505 0.035361 0.0329265 0.0305001 0.027666 0.0256408 0.0237433 0.021786 0.0204094 0.0186656 0.0177015 0.0160855 0.0151942 0.0137707 0.0127258 0.0117762 0.0109076 0.0102233 0.0093498 0.00853291 0.00800395 0.0072647 0.00676486 0.00620678 0.00558885 0.00511813 0.00465064 0.0042802

0 0 0 0 1.70E-06 0 3.40E-06 3.40E-06 1.02E-05 2.21E-05 4.25E-05 0.00010035 0.000309554 0.000845321 0.00304112 0.0138245 0.0818108 0.0737998 0.0674624 0.0608887 0.0551517 0.0501886 0.0455963 0.0423375 0.0392437 0.0355256 0.0327702 0.0306017 0.0284399 0.0260621 0.0243698 0.0223168 0.0207674 0.0194509 0.0183147 0.0167483 0.0155526 0.0146477 0.0134724 0.0124077 0.0116355 0.0106405 0.0100197 0.0090332 0.00843961 0.00776267 0.00700579 0.00652956 0.00596487 0.00552946 0.00505492

0 0 0 0 1.83E-06 0 0 1.83E-06 3.67E-06 9.17E-06 1.65E-05 3.12E-05 9.90E-05 0.000247522 0.000872746 0.00293727 0.0131095 0.0778101 0.0709931 0.0643228 0.0585583 0.0542148 0.0494128 0.0455881 0.0417891 0.038388 0.0360191 0.0329077 0.0301721 0.0287089 0.0266298 0.0248769 0.0231076 0.0213493 0.0199356 0.0183093 0.0172899 0.0161641 0.0151355 0.0139144 0.0128418 0.0123156 0.0113732 0.0103519 0.00979272 0.0087788 0.00825808 0.00757052 0.0069508 0.00631274 0.00581586

0 0 0 0 0 0 0 0 0 4.01E-06 6.02E-06 1.20E-05 2.61E-05 0.000102311 0.000258786 0.000830521 0.00295297 0.0127848 0.0746205 0.0674488 0.0617996 0.0570271 0.0525134 0.0488644 0.0447138 0.0410587 0.038553 0.0355138 0.0329099 0.0309339 0.0284323 0.0271304 0.0251825 0.0235575 0.0219707 0.0201732 0.018783 0.017451 0.0166144 0.0155211 0.0145101 0.0135291 0.0127146 0.0115591 0.0108269 0.0100746 0.00914577 0.00860813 0.00787992 0.0074125 0.00690496

0 0 0 0 0 0 2.25E-06 0 0 2.25E-06 2.25E-06 1.12E-05 1.35E-05 4.72E-05 9.67E-05 0.000265346 0.000827519 0.00280637 0.0125882 0.070022 0.0646769 0.0601075 0.0550142 0.0509891 0.0473822 0.0438203 0.0407238 0.0385358 0.0361522 0.0332919 0.0312523 0.0289699 0.026683 0.0250684 0.0237709 0.022397 0.0208948 0.0190779 0.0180368 0.017668 0.0160309 0.0152214 0.0138362 0.0127726 0.012098 0.0112457 0.0104227 0.00948273 0.0091994 0.00862373 0.00787267

0 0 0 0 0 0 0 0 0 0 2.56E-06 0 0 1.02E-05 4.09E-05 7.67E-05 0.000263309 0.000774587 0.0027967 0.0121531 0.066162 0.0615912 0.0575726 0.0536459 0.0498931 0.046644 0.043474 0.0401456 0.0373438 0.0359173 0.0333558 0.0308378 0.0294854 0.0276397 0.0258349 0.0241145 0.0226164 0.0211337 0.0198402 0.019196 0.0176084 0.0161871 0.0155761 0.014551 0.0132881 0.0125749 0.0114348 0.0106985 0.0102256 0.00941264 0.00872497

0 0 2.96E-06 0 0 2.96E-06 0 0 0 0 0 2.96E-06 2.96E-06 8.88E-06 2.07E-05 5.03E-05 5.33E-05 0.000281245 0.00075196 0.00271771 0.0119159 0.0641475 0.0591858 0.0564325 0.0518438 0.0485902 0.0455824 0.0421986 0.0395223 0.0379977 0.0347382 0.033027 0.0309488 0.0292731 0.0271179 0.0266916 0.0240509 0.0228608 0.0216292 0.0202141 0.0189115 0.0182839 0.0161375 0.0156372 0.0148349 0.0138669 0.0130438 0.0118863 0.0113593 0.0104149 0.00971627

0 0 0 0 0 0 0 0 3.47E-06 0 0 0 0 3.47E-06 3.47E-06 1.73E-05 5.90E-05 0.000121439 0.000208182 0.000721696 0.00269248 0.011443 0.0615003 0.0572881 0.0537039 0.0505604 0.0476736 0.043843 0.0418306 0.0395753 0.0368551 0.0346379 0.0330627 0.0314077 0.0288019 0.0280108 0.0260643 0.0240935 0.0232782 0.0221089 0.0206377 0.0192325 0.0178238 0.0170501 0.0161063 0.0147046 0.0142084 0.0131154 0.0125776 0.0115402 0.0108012

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.05E-06 4.05E-06 8.11E-06 3.65E-05 0.000109427 0.000255331 0.000644406 0.00262626 0.0114656 0.0589003 0.0547907 0.0511634 0.0488897 0.0470213 0.0432968 0.0412298 0.0391264 0.0370189 0.0343642 0.0331565 0.0308301 0.0287794 0.0273042 0.026222 0.024532 0.0232716 0.0219625 0.0204224 0.0191984 0.0188134 0.0172287 0.0168153 0.0155549 0.0146187 0.0137757 0.012726 0.0120208

0 0 0 0 0 0 0 0 0 0 3.74E-06 0 3.74E-06 0 3.74E-06 7.47E-06 1.12E-05 1.87E-05 3.74E-05 6.73E-05 0.000190558 0.000762232 0.00266034 0.0104583 0.0562744 0.0516711 0.0504007 0.0474153 0.0449044 0.0422142 0.0395128 0.0374316 0.0361313 0.0338633 0.0320922 0.0304519 0.0292226 0.0272647 0.0258935 0.0246567 0.0227997 0.0222355 0.0206774 0.0192688 0.018869 0.0181105 0.0169597 0.0153268 0.015155 0.0139967 0.0133914

0 1.37E-05 0 5.14E-06 5.14E-06 1.03E-05 5.14E-06 4.80E-05 1.71E-06 1.71E-06 1.71E-06 0 1.54E-05 5.14E-06 5.14E-06 5.14E-06 3.43E-06 8.57E-06 3.43E-06 1.89E-05 2.74E-05 0.000116603 0.000433833 0.0016273 0.00796846 0.04826 0.0463584 0.0433833 0.0414645 0.0399006 0.0382802 0.036159 0.0352365 0.033556 0.0318224 0.030701 0.0290102 0.0283569 0.026565 0.0253904 0.0245861 0.0232349 0.0221821 0.0213092 0.0202958 0.0191229 0.0188143 0.0173996 0.0166108 0.0158117 0.0158529

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.54E-05 0.000130804 0.000392413 0.000654022 0.00176586 0.00353172 0.00928712 0.0213865 0.0601046 0.0504251 0.0459778 0.0438849 0.0430347 0.0395683 0.0366906 0.035448 0.03414 0.0286462 0.0311969 0.0309353 0.0272073 0.0262263 0.0222368 0.0219751 0.0226946 0.0189666 0.0174624 0.0208633 0.0156311 0.0168738 0.0175932 0.0146501 0.0159581

0 6.53E-05 0.00026125 0.0005225 0.00150219 0.00352688 0.00914375 0.0212919 0.0570178 0.0497028 0.0473516 0.0418653 0.0424531 0.0385997 0.0363138 0.0352034 0.03553 0.0312847 0.0288028 0.028215 0.02508 0.0252106 0.0233166 0.0220103 0.0195938 0.0206388 0.0207041 0.0176997 0.0186794 0.0153484 0.0172425 0.015675

0 6.69E-05 0.000133735 0.000267469 0.000601805 0.00167168 0.00274156 0.00762287 0.0209295 0.0545637 0.047877 0.045336 0.0429288 0.0409228 0.0393848 0.0399866 0.0373788 0.034236 0.0300234 0.0286192 0.0275493 0.0266132 0.0238716 0.023671 0.0248746 0.0209963 0.017653 0.018656 0.020127 0.0179204 0.0172518 0.0149783

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.78E-05 0 6.78E-05 6.78E-05 0 0.000203348 0.00115231 0.00128787 0.00257575 0.00948959 0.0204026 0.0492781 0.0469057 0.0462957 0.0414153 0.0429065 0.0381617 0.0357215 0.032468 0.0340948 0.0303667 0.029011 0.0289433 0.0281977 0.0235206 0.0235206 0.0210127 0.0211482 0.0217583 0.0211482 0.0173524 0.0174202 0.0168101

0 6.85E-05 0.000205437 0.000273916 0.000890228 0.00178046 0.00397179 0.00814901 0.0196535 0.0534137 0.0461549 0.0460864 0.0399918 0.0373211 0.0386907 0.0369102 0.0331439 0.0286243 0.0305417 0.0292406 0.0278025 0.0265699 0.0234198 0.0238992 0.0241046 0.0208176 0.019585 0.0205437 0.0183524 0.019722

0 0.000144645 0.000433934 0.000289289 0.000433934 0.00166341 0.00318218 0.0078108 0.0198163 0.0486729 0.0467202 0.0429594 0.039054 0.0398496 0.0413683 0.0315325 0.0315325 0.0315325 0.0292905 0.0291459 0.0285673 0.0257467 0.0240833 0.0226369 0.0211904 0.0230708 0.0216244 0.0198163 0.0193824

0 7.73E-05 0 0.000231983 7.73E-05 0.00061862 0.00131457 0.00386638 0.00873801 0.0169347 0.0521188 0.0416796 0.04485 0.0364986 0.0367306 0.0372719 0.0324776 0.0319363 0.0306217 0.0292298 0.0272193 0.0279926 0.0242809 0.026678 0.0231983 0.0234303 0.0237396 0.0213424 0.0211104

0 8.02E-05 0.000240655 0.000320873 0.000802182 0.00144393 0.00232633 0.0061768 0.0208567 0.0483716 0.0409113 0.0381036 0.0377828 0.0386652 0.0364993 0.0329697 0.0348147 0.0291192 0.0291994 0.0304829 0.0265522 0.0270335 0.0251083 0.0221402 0.0235841 0.0211776 0.0233435

0 8.39E-05 8.39E-05 0.000167757 0 8.39E-05 0.000251636 0.000335514 0.000503271 0.00109042 0.00385841 0.0046972 0.0187888 0.0433652 0.0457977 0.0426103 0.0403456 0.0371582 0.032461 0.0332998 0.0325449 0.030364 0.0272605 0.0265056 0.0280993 0.0258346 0.0220601 0.0254152 0.0233182 0.0219762

0 0 0 0 0 0 0 0 0 0 0 0 9.13E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000182698 0.000182698 0.00164429 0.00347127 0.00794738 0.016991 0.0443957 0.0413812 0.042386 0.0369051 0.0395542 0.0352608 0.0329771 0.0322463 0.0295058 0.0272221 0.0257605 0.0250297 0.0240248 0.0243902 0.0242075 0.0200055

0 9.62E-05 9.62E-05 0.000481139 0.00192456 0.00298306 0.00721709 0.018572 0.0457082 0.041378 0.0435912 0.0353156 0.0357968 0.0336798 0.0330062 0.0308891 0.0311778 0.0297344 0.0264627 0.0245381 0.0256928 0.0211701 0.0237683

0 0.000314103 0.000732908 0.000628206 0.00261753 0.00753848 0.0187415 0.0473249 0.0418804 0.0384253 0.0389488 0.0372736 0.0322479 0.0320385 0.0303633 0.0308868 0.0299445 0.0236624 0.0268035 0.0239765 0.0232436

0 0.000112246 0.000224492 0.000336738 0.000673476 0.00112246 0.00213267 0.00830621 0.0168369 0.043776 0.0445617 0.0395106 0.0321024 0.0333371 0.0356942 0.0315411 0.0332248 0.0304187 0.0283982 0.0262656 0.0251431 0.0243574

0 0.000120671 0 0.000120671 0.000120671 0.000844697 0.000724026 0.00205141 0.0057922 0.0167733 0.0411488 0.0383734 0.0425968 0.0386147 0.0306504 0.0324605 0.0314951 0.0272716 0.0310124 0.027513 0.0261856 0.0267889

0 0.000257069 0 0.000257069 0.00128535 0.00218509 0.0066838 0.012982 0.0478149 0.0368895 0.0348329 0.0356041 0.0340617 0.0312339 0.0312339 0.0264781 0.0299486 0.027892 0.0273779

0 0.000142308 0 0.000142308 0.000569233 0.000853849 0.00370001 0.00555002 0.013377 0.0445425 0.0412694 0.031877 0.0321617 0.0328732 0.032304 0.030454 0.0256155 0.0270386 0.0270386

0 0.000154036 0 0.000154036 0.000462107 0.000770179 0.000770179 0.00184843 0.00523722 0.0132471 0.0375847 0.0420518 0.0380468 0.0360444 0.0326556 0.0298829 0.0291128 0.0264941 0.0269563

0 0.00033162 0.00132648 0.00198972 0.00812469 0.013928 0.0356491 0.0348201 0.0371414 0.0338252 0.0291826 0.0293484 0.0328304 0.0295142

0 0.000192012 0 0 0 0 0 0 0 0.000192012 0.000768049 0.000576037 0.00211214 0.00825653 0.0122888 0.0355223 0.0336022 0.0374424 0.0366743 0.0288018 0.0286098 0.0289939

0 0.000205044 0.000205044 0.000205044 0.00225548 0.00266557 0.00656141 0.0164035 0.0334222 0.0391634 0.0346524 0.032602 0.0311667 0.0307566

0 0.000484848 0 0.000727273 0.00266667 0.00484848 0.0172121 0.0329697 0.0349091 0.0307879 0.0385455 0.032

0 0.000267451 0.000267451 0.00160471 0.000802354 0.00641883 0.0155122 0.0318267 0.0369083 0.0286173 0.0256753

0 0.000307692 0 0.000615385 0.000923077 0.00707692 0.00953846 0.0378462 0.0338462 0.0335385

0 0.000379507 0 0.000379507 0.000379507 0.000379507 0.00455408 0.00986717 0.0254269 0.0280835

0 0.00133156 0.00266312 0.0113182 0.0306258

10

9885

26139

61438

115210

183902

261488

341253

419198

490236

550921

597677

626754

639622

636804

618195

587942

545405

498482

444703

391176

337784

288210

246739

267635

583174

15290

15311

14955

14753

14603

13827

12932

12466

11922

10947

10392

9551

8909

8287

7780

7027

6492

6031

5208

4877

4125

3739

3250

2635

1502

(a) (b)

𝐼𝐹1

𝐼𝐷𝐺0
0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

𝑚𝑎𝑥𝑀0

number

Fig. 6. (a) IF1 distribution curve for all points on the graph index (on
the Turing1M dataset). (b) Heatmap of IDG and IF1, there is a positive
correlation between the two for small in-degree points (inside the red box).
Each row of the matrix is normalized according to (a). *In-degree of individual
points (about 0.3‰) is very large (≥ maxM0), and we truncate them.

process (before tc in Fig. 5), and we have selected the
current neighbors Neighbor(xc) of xc. For each point in
Neighbor(xc), we also need to add xc as their neighbor
when the number of their neighbors is less than maxM0.
The number of points that finally successfully added xc

as a neighbor is IF1xc
, obviously IF1xc

≤ OF1xc
.

• IF2xc : It is the in-degree of xc after time tc. To be
specific, when xc is already in the graph index (after
tc in Fig. 5), xc may also become a candidate of other
insertion points (the green points). These number of these
insertion points, which add the edge from them to xc, is
IF2xc .

• OF2xc : It is the out-degree of xc after time tc. To be
specific, when xc is already in the graph index (after tc
in Fig. 5), and there are some points (yellow points) added
xc as a neighbor. Then we also need to add these points
as the neighbor of xc when the number of Neighbor(xc)
is less than maxM0. The number of new neighbors for
xc is OF2xc .

As shown in Fig. 5, IF2xc and OF2xc depend on whether

Algorithm 3 Reverse connection enhancement algorithm
Input: Base vectors X , the number of maximum neighbors

maxM0, starting point ps
Output: Complete graph index GN

1: for each point pin ∈ X do
2: Qin

cand ← greedy search(q,Gs, ps, efc, efc)
3: Qin

sel ← SelectNeighborByRNG(pin, Q
in
cand,maxM0)

4: setNeighbor(pin)← Qin
sel

5: Qadd ← Qin
cand \Qin

sel

6: for each point pr ∈ Neighbor(pin) do
7: addNeighbor(pr)← pin
8: end for
9: while Indegree(pin) < maxM0 do

10: pr ← Qadd

11: addNeighbor(pr)← pin
12: end while
13: end for
14: return GN

xc can be found by other points (green points). Obviously, the
greater the in-degree IF1xc at tc, the greater the probability of
xc being found after tc. Fig. 6(b) demonstrates the relationship
between IDG(·) and IF1. If IF1 of some points (inside the
red box) is small, then their final in-degree IDG(·) are also
small. For these points, there is a positive correlation between
IDG(·) and IF1.

The connectivity of the point xc in the full graph index
GN largely depends on IF1xc

. At the same time, there
is a restrictive relation between IF1xc and OF1xc , i.e.,
IF1xc ≤ OF1xc . The RNG-based neighbor selection strategy
can maintain the high efficiency of the graph index [18], which
results in 80.5% of the points with OF1 less than 2/5 of
maxM0 (as shown in Fig. 6(a), because the distributions
of IF1 and OF1 are almost identical). The existence of
restrictive relation between IF1xc and OF1xc leads to poor
connectivity of the graph GN .

C. Our Method

In order to solve the above problem, we propose the
reverse connection enhancement strategy (shown in Alg. 3).
We add some connections to points with small in-degrees,
which makes IF1 break the restrictive relation with OF1.
Specifically, the incoming edge of point xc is not only selected
from its neighbors but also from a part of its candidates.
Fig. 7 visually shows our method, xc is the insertion point
in the construction process, and the points (x1, x2, and x3)
are the candidates of xc. Then we select x1 and x3 as the
neighbors of xc through the RNG-based neighbor selection
strategy. The difference between our method and the previous
method is mainly reflected in the following IF1xc

. Since x2

and x4 are closer to x3 than xc, so xc does not belong to
Neighbor(x3). Due to the restriction of OF1xc

to IF1xc
, the

previous method can only find xc through x1, which means
that it is difficult for other points to find xc. Our method
breaks the restrictive relationship between IF1xc and OF1xc ,

𝑥!
𝑥"

𝑥#

𝑥$

𝑥%

Fig. 7. Diagram of the reverse connection enhancement strategy. Before
enhancement: we can only find the point xc through point x1. After
enhancement: we can find the point xc by either point x1 or point x2.

we select some points (such as x2) from the candidates of
xc and then taking xc as the neighbor of x2 (connected by
purple edges). Then we can find xc by either point x1 or
point x2. Compared with the previous method, our method
greatly improves the connectivity of the graph. The detailed
comparison results are shown in Section V.

IV. QUERY AWARE EARLY TERMINATION

A. Motivation

The existing search algorithm incurs heavy redundant search
overhead, which is widely used in most graph-based ANNS
methods [18], [20]. The parameter efs, which is the maximum
length of the result queue during the search process, can
control the relationship between search speed and search
accuracy (recall rate). The larger efs, the higher accuracy, and
the lower speed. The number of search steps for each query
is approximately proportional to the efs. Here we define the
minimum search steps as follows:

Definition 1. (minimum search steps) Assuming the query qi
uses efs = s to search on the graph index, its recall rate
is Recalli. There is a minimum value that keeps the recall
rate of qi does not decrease. Then the minimum value is the
minimum search steps for qi.

We find that for different queries, their minimum search
steps vary widely. However, for each query in the query
vectors, the existing algorithm will use the same efs to search.
Each query in the query vectors has a similar number of search
steps. For the case of efs=200, the average number of search
steps is 200.71, and the standard deviation is 1.91. We further
illustrate this problem through Fig. 8, the average number of
search steps for these queries is 300, but more than 40% of
the queries have the minimum search steps of less than 39.
Therefore, there will be redundancy in the search process. For
these queries, 87% of the search overhead is redundant (34.8%
redundant overhead for the whole). Next, we will analyze the
causes of this problem in detail and propose our solutions.

B. Analysis

The redundant search problem is caused by the region
connection relationship near the query in the graph index.
The region means a part of the graph index near the query.
Fig. 9 shows the distribution of the minimum search steps for
the query vectors, the horizontal and vertical axes correspond
to two different graph indexes, respectively. The two graph

Minimum search steps
[9, 39] (39, 69] (69, 99] (99, 129] (129, 159] (159, 189] (189, 219] (219, 249] (249, 279] (279, 309]

Th
e
nu

m
be

ro
fq

ue
rie

s

0

50

100

150

200

250

300

350

400

450

Fig. 8. Histogram of the distribution of the minimum search steps for queries.
More than 40% of the queries have the minimum search steps of less than
39, but their actual search steps are around 300 (on the DEEP1M dataset).

0

50

100

150

200

0 50 100 150 200

M
in

im
um

 se
ar

ch
 st

ep
s

Minimum search steps

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Fig. 9. The distribution of the minimum search steps for query vectors in
different graph indexes, which only change the order of insertion points during
the construction process. We find that for the same query, its minimum search
steps varies greatly on different graph indexes (on the DEEP1M dataset).

indexes have the same base vectors and parameters, and
we only change the order of insertion points during the
construction process. As shown in Fig. 9, we find that for the
same query, there is a huge difference (e.g., 3 to 190) between
its minimum search steps. It means that the region connection
relationship near the query causes this problem. According
to the connection relationship, regions can be divided into
two types: symmetric connection region (Fig. 10(a)) and
asymmetric connection region (Fig. 10(b)). The symmetric
connection means the neighbors of a certain point are evenly
distributed in space. The asymmetric connection means the
neighbors of a certain point are non-uniform distributed in
space.

The asymmetric connection region requires more search
steps to achieve the same recall rate compared with the
symmetric connection region. When the current search point is
very near to the query. For the symmetric connection region,
the current search point can quickly perform a complete
exploration of the nearby region of the query. Therefore, the
symmetric connection region can find all the nearest points
of the query with fewer search steps. For the asymmetric
connection region, due to the lack of connection between the
points near the query, the current search point takes some
“detours” to find all the nearest points of the query. As shown

𝒙𝟎𝟓

𝒙𝟎𝟎

𝒙𝟎𝟏

𝒙𝟎𝟒

𝒙𝟎𝟐

𝒙𝟎𝟑

𝒙𝟑𝟓

𝒙𝟑𝟎

𝒙𝟑𝟏

𝒙𝟑𝟒

𝒓𝟑

𝒓𝟏

𝒙𝟏𝟓

𝒙𝟏𝟎

𝒙𝟏𝟏

𝒙𝟏𝟒

𝒙𝟏𝟐

𝒙𝟏𝟑

𝒙𝟐𝟓

𝒙𝟐𝟎

𝒙𝟐𝟏

𝒙𝟐𝟒

𝒓𝟒

𝒓𝟐

𝒙𝟒𝟓

𝒙𝟒𝟎

𝒙𝟒𝟏

𝒙𝟒𝟒

𝒙𝟒𝟐

𝒙𝟒𝟑

𝒙𝟓𝟓

𝒙𝟓𝟎

𝒙𝟓𝟏

𝒙𝟓𝟒

𝒙𝟓𝟐

𝒙𝟓𝟑
𝒒𝒂

𝒙𝟎𝟓

𝒙𝟎𝟎

𝒙𝟎𝟏

𝒙𝟎𝟒

𝒙𝟎𝟐

𝒙𝟎𝟑

𝒙𝟑𝟓

𝒙𝟑𝟎

𝒙𝟑𝟏

𝒙𝟑𝟒

𝒓𝟑

𝒓𝟏

𝒙𝟏𝟓

𝒙𝟏𝟎

𝒙𝟏𝟏

𝒙𝟏𝟒

𝒙𝟏𝟐

𝒙𝟏𝟑

𝒙𝟐𝟓

𝒙𝟐𝟎

𝒙𝟐𝟏

𝒙𝟐𝟒

𝒓𝟒

𝒓𝟐

𝒙𝟒𝟓

𝒙𝟒𝟎

𝒙𝟒𝟏

𝒙𝟒𝟒

𝒙𝟒𝟐

𝒙𝟒𝟑

𝒙𝟓𝟓

𝒙𝟓𝟎

𝒙𝟓𝟏

𝒙𝟓𝟒

𝒙𝟓𝟐

𝒙𝟓𝟑
𝒒𝒃

(a) (b)

Current search point (red: current step, purple: previous step)

The point whose distance from the query has been calculated

Fig. 10. Schematic diagram of searching query nearest neighbors on a graph
index. (a) When query qa is located in a symmetric connection region, we
can easily find all its nearest neighbors. (b) When query qb is located in
an asymmetric connection region, we need more search steps to find all the
nearest neighbors.

in Fig. 10, the minimum search steps for qa is only 7, and the
minimum search steps for qb is as high as 17. If we want to
get the same high recall rate, there is redundancy in the search
overhead of qa.

Since the connection relationship in high-dimensional space
is very complex, it is difficult to solve this problem from the
construction algorithm. Therefore, we address this problem
from the search algorithm perspective. We define two variables
dpop and dtopk to identify the connection relationship of the
region. The distance here refers to the distance between a
certain point and the query. For each step of the search process,
dpop represents the distance of the current search point, and
dtopk represents the distance from the k-th nearest point in the
result queue to the query.

We identify these two types of regions by the changes in
dpop and dtopk during the search process. When the current
search point is very near to the query, if the curve dpop is
smooth relative to the curve dtopk, it means that the region
connection relationship is symmetric. For the symmetric con-
nection region, since the neighbors are very evenly distributed,
the points near the query will be added to the search queue.
Therefore, the curve dpop is smooth relative to the curve dtopk
(as shown in Fig. 11(a)). For the asymmetric connection re-
gion, the non-uniform distribution of points’ neighbors results
in no connections between some points within the region.
In this case, at each next step, dpop is first incrementally
increased. Then HNSW will find a point closer to the current
search point pass the “detour”, the dpop will drop. So there will
be some fluctuations in the curve dpop (as shown in Fig. 11(b)).

We illustrate that further with Fig. 10. For query qa,
when point r1 is used as the current search point, since the
connection of the region a is symmetric, the search process
will spread outward with qa as the center. The change of the
distance between the current search point and query qa on the
region a is similar to the curve dpop in Fig. 11(a). For query
qb, when point r1 is used as the current search point, since the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

di
st
an
ce

to
qu

er
y

search step

d_pop d_topk

0.6

0.8

1

1.2

1.4

1.6

1.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

di
st
an
ce

to
qu

er
y

search step

(a)

(b)

Fig. 11. The changes of dpop and dtopk for two representative queries during
the search process (on the DEEP1M dataset). (a) The query is located in a
symmetric connection region, and its minimum search steps is 6. (b) The
query is located in an asymmetric connection region, and its minimum search
steps is 200.

connection of the region b is asymmetric (point r2 is not in
the search queue), the search process will spread in the lower
right and upper right directions relative to qb. We can’t find r2
until the distance between point x24 and query qb is calculated.
The change of the distance between the current search point
and query qb on the region b is similar to the curve dpop in
Fig. 11(b).

C. Our Method

In order to solve the problem of redundancy in the search
process, we propose the query-aware early termination strat-
egy. Based on the above analysis, we indicate that the curve
feature of dpop relative to that of dtopk can be used to identify
the region during the search process.

We design a prediction model to decide whether to stop
early by analyzing the curve smoothness of dpop relative to
dtopk during the search process. To remove the effect of
inconsistent distances between each query and its nearest
neighbors, we additionally consider the dtop1 feature. The
features we used are as follows:

• dpop: In the current step, the distance between the current
search point and the query.

• dtopk: After the current step of the search is over, the
distance from the k-th nearest point in the result queue
to the query.

• dtop1: After the current step of the search is over, the
distance from the nearest point in the result queue to the
query.

For the complete workflow (as shown in Fig. 12), we do not
need to add any additional structure to the graph index. In the
training stage (Fig. 12(a)), we use the learning vectors as the
training set (and also divide it apart as the validation set). For
each data in the training set, we will all perform a complete
search process according to the above search algorithm. We
can easily get the distances (dpop, dtopk, and dtop1) at each
step as the train feature for the prediction model. Then we
calculate the minimum search steps and compare it with the

Train data (Learning data) Train feature and label

Predict modelinput output

feature label
0
1
0
0
0
1
0

…… …
1
0

Graph index

train

Query

predicted remain steps

input output
feature

Graph index

inference Predict model

(a) Training workflow

(b) Inference workflow

Fig. 12. Workflow for query-aware early termination strategy. (a) Training
workflow, we first use the sampled data to search on the graph index, and then
use the resulting dynamic features to train the prediction model during the
search process. (b) Inference workflow, we integrate the trained model into
the framework of graph index, and dynamically predict the remained search
steps during the search process of query.

length of the curve to get the label. label=1 means “continue
search”, label=0 means “terminate search”. In the inference
stage (Fig. 12(b)), we collect the dynamic features in the
search process and predict the remaining search steps through
the trained prediction model.

The training process of the prediction model mainly de-
cides whether to stop the search process by analyzing the
smoothness of the dpop sequence. The specific process is as
follows: (1) finding the rising intersection step of dpop curve
and dtopk curve. If from the ststable-th step, dpop is greater
than dtopk, then ststable is called the rising intersection step.
(2) obtaining the dpop sequence. Starting from the ststable-
th step, dpop is added to the dpop sequence in next each
step until the difference between dpop and dtopk is greater
than the difference between dtopk and dtop1. (3) difference-
by-difference operation for the dpop sequence. For the dpop
sequence, we do n difference-by-difference operations on it
(similar to the n-order derivative for the continuous curve). (4)
comparing the variance of the dpop sequence with threshold.
Finally, we calculate the variance of the dpop sequence and
compare it with a certain threshold thdist. If it is greater
than the threshold, output “continue search”, otherwise output
“terminate search”. During the actual search process (inference
stage), we can easily collect these distances as the feature for
prediction.

V. EXPERIMENT

In this section, we first compare our method with state-
of-the-art ANNS methods. Then we perform ablation studies
to further analyze the contribution of each technique. For
each dataset and method, we conduct the experiments multiple
times to get stable and reliable results.

A. Experiment Setup

1) Hardware Configuration: We conduct all the experi-
ments on a CPU server, which is equipped with four Intel(R)
Xeon(R) CPU E5-4650 v4 (14 cores, 28 threads, running
at 2.20 GHz), 128 GB DDR4 memory, and 3TB SSD. The
operating system is the Red Hat 4.8.5-16.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

di
st

an
ce

to
qu

er
y

search step

d_pop d_topk d_top1

1. finding the 𝑠𝑡!"#$%&

-0.1

-0.05

0

0.05

0.1

0

0.1

0.2

0.3

0.4

0.5

va
lu
e

di
st
an
ce

to
qu

er
y

4. comparing the variance with threshold

2. obtaining sequence

3. difference-by-difference

variance = 0.004 threshold = 0.01

if variance > threshold:
“continue search”

else:
“terminate search”

Fig. 13. The entire pipeline of prediction model. It consists of 4 steps: (1)
finding the ststable, (2) obtaining sequence, (3) difference-by-difference, and
(4)comparing the variance with threshold.

TABLE II
INFORMATION OF THE EXPERIMENTAL DATASETS, INCLUDING THE

DIMENSIONS (D), THE NUMBER OF BASE VECTORS, THE NUMBER OF
LEARNING VECTORS, AND THE NUMBER OF QUERY VECTORS.

Dataset D Base vectors Learning vectors Query vectors

DEEP1M/10M 96 1,000,000/
10,000,000 100,000 10,000

Turing1M/10M 100 1,000,000/
10,000,000 - 100,000

2) Datasets: The datasets we used are shown in the Ta-
ble. II, which are widely used in ANNS methods. The graph-
based ANNS methods construct base data as a graph index
and search the k nearest neighbors of query data on this
graph index. The original dataset contains one billion data,
we intercept the first one million/ten million data as the base
vectors. For the DEEP dataset, we intercept several data from
the rest as the learning vectors (used to train the prediction
model).

• DEEP1M/10M [27]: DEEP dataset comes from a deep
classification image model GoogLeNet, and each data is
a 96-dimensional vector.

• Turing1M/10M [28]: Turing dataset is a new dataset be-
ing released by the Microsoft Turing team for the Billion-
scale ANNS challenge competition [28]. It consists of
Bing queries encoded by Turing AGI v5, and each data
is a 100-dimensional vector.

3) Compared algorithms: For all algorithms, we adopted
their code on Github and set the relevant parameters as they
recommended. During the search process, we all employ a
thread to compare the algorithms. During the build process, to
save time, we build all indexes with all threads.

• HNSW1 is a well-known graph-based algorithm based on
a structure named as Hierarchical NSW graph.

• NSG2 is based on a kNN graph, and then build a

1https://github.com/nmslib/hnswlib
2https://github.com/ZJULearning/nsg

400

4000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ND
C

Recall@1

NSG
HNSW
Ours

400

4000

0.4 0.5 0.6 0.7 0.8 0.9 1

ND
C

Recall@1

NSG
HNSW
Ours

1000

10000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ND
C

Recall@10

NSG
HNSW
Ours

(a) (b) (c)

400

4000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

ND
C

Recall@10

NSG
HNSW
Ours

400

4000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ND
C

Recall@1

NSG
HNSW
Ours

1000

10000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

ND
C

Recall@10

NSG
HNSW
Ours

400

4000

0.4 0.5 0.6 0.7 0.8 0.9 1

ND
C

Recall@1

NSG
HNSW
Ours

1000

10000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ND
C

Recall@10

NSG
HNSW
Ours

(d)

Fig. 14. Ours vs. HNSW and NSG on (a) DEEP1M, (b) DEEP10M, (c) Turing1M, and (d) Turing10M (down right is better).

spreading-out graph with a navigating node as the starting
point.

B. Overall performance

We experiment with state-of-the-art algorithms (HNSW and
NSG) and our method on multiple datasets that are widely
used in ANNS algorithms. For NSG, we set the parameters
for DEEP and Turing dataset according to its suggestion on
Github (due to their similar dimensions). In the experiment,
the parameters are set as follows: L = 40, R = 50, C = 500 for
the all datasets. For HNSW, we selected the parameters with
the best search performance for each dataset by grid search.
In the experiment, the parameters are set as follows: M = 20,
maxM0 = 40, efc = 300 for the all datasets.

Fig. 14 shows the overall performance comparison results
between our method and current state-of-the-art algorithms.
We compare the search performance at R@1 and R@10
on four datasets (DEEP1M, DEEP10M, Turing1M, and Tur-
ing10M), respectively. On the DEEP dataset (Fig. 14(a) and
Fig. 14(b)), our method performs better than HNSW in the
case of R@1. Our method almost matches the search per-
formance of NSG and HNSW in the case of R@10. On the
Turing dataset (Fig. 14(c) and Fig. 14(d)), our method is
1.21x and 2.71x faster than HNSW and NSG in search speed,
respectively.

C. Ablation studies

1) Reverse connection enhancement: In the reverse con-
nection enhancement strategy, there are two enhanced modes:
from the random connection part of the candidate and the
point where the insertion point cannot be reached. As shown
in Fig. 15, we compare these two strategies with the baseline
on the Turing1M dataset. We plot the speed up of the two
strategies relative to the baseline search speed and the actual
search speed of the baseline (the red curve).

We choose the results with recall rate of 0.7, 0.8, and 0.9 in
R@1 and R@10 cases, respectively. The randomly enhanced

1.05 1.09 1.10

10

100

1000

10000

0.0

0.5

1.0

1.5

2.0

0.7 0.8 0.9

Q
PS

Sp
ee
d
up

R@1

baseline random Ours (selection) QPS

1.03 1.07 1.08

10

100

1000

10000

0.0

0.5

1.0

1.5

2.0

0.7 0.8 0.9

Q
PS

Sp
ee
d
up

R@10

baseline random Ours (selection) QPS

Fig. 15. Different reverse enhancements and relative acceleration of baseline,
and the baseline search speed. When the recall rate is 0.9, our strategy can
accelerate 10%.

strategy wants to achieve the same recall rate as the baseline,
but the search speed is slower. In the case of R@1, our method
can speed up to 5%, 9%, and 10% compared to the baseline,
respectively. This indicates that our connection enhancement
strategy can achieve better connectivity on graph index than
random strategy.

2) Scalability for query-aware strategy: To demonstrate
the scalability of our query-aware early termination strategy,
we conduct experiments on both DEEP1M and DEEP10M
datasets. For each dataset, we experiment with R@10 and
R@100, respectively. As shown in Table. III, we separately
list the NDC when HNSW and our method achieve a high
recall rate on the DEEP dataset, and the proportion of search
speed up.

We find that the greater the recall rate, the greater the
proportion of search speed up. In particular, our strategy can
speed up the search process by 1.29x when the recall rate
R@10 = 0.999 on the DEEP1M dataset. And in other cases,
there are varying degrees of search speed up.

VI. CONCLUSION

In this paper, we present a study of the graph-based
approximate nearest neighbor search (ANNS) problem. We
indicate two challenges in existing ANNS methods: poor

TABLE III
A COMPARISON OF THE NUMBER OF DISTANCE COMPUTATIONS (NDC) REQUIRED TO ADOPT THE QUERY-AWARE EARLY TERMINATION STRATEGY WITH

THE BASELINE WHILE ACHIEVING THE SAME RECALL RATE.

Recall rate
DEEP1M-R@10 DEEP1M-R@100 DEEP10M-R@10 DEEP10M-R@100

dist. compution speed up dist. compution speed up dist. compution speed up dist. compution speed upHNSW Ours HNSW Ours HNSW Ours HNSW Ours
0.99 2637.87 2475.86 1.07 4905.17 4611.04 1.06 5865.32 5368.36 1.09 10362.2 9709.18 1.07

0.995 3347.81 3067.41 1.09 6553.21 5965.97 1.10 7429.83 6659.18 1.12 14424.3 13233.8 1.09
0.999 7110.67 5500.62 1.29 12125.8 10328.2 1.17 15712.9 13204.6 1.19 27463.4 24713.9 1.11

connectivity and search redundancy. The poor connectivity is
due to the existence of in-degree constraints of the points in the
construction algorithm. Search redundancy is due to the fact
that search algorithm (which are widely used) is not aware of
the minimum search steps for the query. Therefore, in order
to make the graph structure stronger, we propose a reverse
connection enhancement strategy. We add some connections
by judging whether the insertion point is reachable, so that
the in-degree of the insertion point is no longer restricted.
In order to make the search process smarter, we propose a
query-aware early termination strategy. We reduce the search
redundancy overhead by collecting dynamic distance features
during the search process and assigning different search steps
to each query. Finally, extensive experiments show that our
method can improve the search speed by 1.06x - 1.29x.

REFERENCES

[1] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, “Mobile
recommender systems in tourism,” Journal of network and computer
applications, vol. 39, pp. 319–333, 2014.

[2] J. Suchal and P. Návrat, “Full text search engine as scalable k-nearest
neighbor recommendation system,” in IFIP International Conference on
Artificial Intelligence in Theory and Practice, pp. 165–173, Springer,
2010.

[3] A. N. Papadopoulos and Y. Manolopoulos, Nearest Neighbor Search::
A Database Perspective. Springer Science & Business Media, 2006.

[4] Z. Lulu, G. Guohua, L. Kang, and H. Ajing, “Images matching algorithm
based on surf and fast approximate nearest neighbor search,” Application
Research of Computers, vol. 30, no. 3, pp. 921–923, 2013.

[5] G. Shakhnarovich, T. Darrell, and P. Indyk, “Nearest-neighbor methods
in learning and vision,” in Neural Information Processing, 2005.

[6] M. E. Houle and M. Nett, “Rank-based similarity search: Reducing the
dimensional dependence,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 1, pp. 136–150, 2014.

[7] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware
locality-sensitive hashing for approximate nearest neighbor search,”
Proceedings of the VLDB Endowment, vol. 9, no. 1, pp. 1–12, 2015.

[8] M. Douze, H. Jégou, and F. Perronnin, “Polysemous codes,” in European
Conference on Computer Vision, pp. 785–801, Springer, 2016.

[9] M. Zhang and Y. He, “Grip: Multi-store capacity-optimized high-
performance nearest neighbor search for vector search engine,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pp. 1673–1682, 2019.

[10] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya, “Hd-index: Pushing
the scalability-accuracy boundary for approximate knn search in high-
dimensional spaces,” arXiv preprint arXiv:1804.06829, 2018.

[11] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[12] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and X.-S. Hua,
“Trinary-projection trees for approximate nearest neighbor search,” IEEE
transactions on pattern analysis and machine intelligence, vol. 36, no. 2,
pp. 388–403, 2013.

[13] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “Srs: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index,” Proceedings of the VLDB Endowment, 2014.

[14] K. Terasawa and Y. Tanaka, “Spherical lsh for approximate nearest
neighbor search on unit hypersphere,” in Workshop on Algorithms and
Data Structures, pp. 27–38, Springer, 2007.

[15] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen, “Sk-lsh: an efficient
index structure for approximate nearest neighbor search,” Proceedings
of the VLDB Endowment, vol. 7, no. 9, pp. 745–756, 2014.

[16] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization
for approximate nearest neighbor search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2321–
2328, 2014.

[17] A. M. Abdelhadi, C.-S. Bouganis, and G. A. Constantinides, “Acceler-
ated approximate nearest neighbors search through hierarchical product
quantization,” in 2019 International Conference on Field-Programmable
Technology (ICFPT), pp. 90–98, IEEE, 2019.

[18] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE transactions on pattern analysis and machine intelligence,
vol. 42, no. 4, pp. 824–836, 2018.

[19] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,”
Information Systems, vol. 45, pp. 61–68, 2014.

[20] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” Proceedings
of the VLDB Endowment, vol. 12, no. 5, pp. 461–474, 2019.

[21] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and
X. Lin, “Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 8, pp. 1475–1488, 2019.

[22] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of the 20th
international conference on World wide web, pp. 577–586, 2011.

[23] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks: A
benchmarking tool for approximate nearest neighbor algorithms,” in
International Conference on Similarity Search and Applications, pp. 34–
49, Springer, 2017.

[24] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB, vol. 98, pp. 194–205, 1998.

[25] P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. Lensch, “Effi-
cient large-scale approximate nearest neighbor search on the gpu,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2027–2035, 2016.

[26] Z. Song and N. Roussopoulos, “K-nearest neighbor search for moving
query point,” in International Symposium on Spatial and Temporal
Databases, pp. 79–96, Springer, 2001.

[27] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale
datasets of deep descriptors,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2055–2063, 2016.

[28] H. V. Simhadri et al., “Billion-scale approximate nearest neighbor search
challenge,” 2021.

[29] M. A. Casey and M. Slaney, “Song intersection by approximate nearest
neighbor search.,” in ISMIR, vol. 6, pp. 144–149, 2006.

[30] B. Harwood and T. Drummond, “Fanng: Fast approximate nearest
neighbour graphs,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5713–5722, 2016.

[31] G. T. Toussaint, “The relative neighbourhood graph of a finite planar
set,” Pattern recognition, vol. 12, no. 4, pp. 261–268, 1980.

	Introduction
	Preliminaries
	Approximate Nearest Neighbor Search
	Problem Definition
	Distance Measurement
	Evaluation Metric

	Graph-based ANNS Methods
	NSG
	HNSW

	Reverse Connection Enhancement
	Motivation
	Degree Analysis
	Our Method

	Query Aware Early Termination
	Motivation
	Analysis
	Our Method

	Experiment
	Experiment Setup
	Hardware Configuration
	Datasets
	Compared algorithms

	Overall performance
	Ablation studies
	Reverse connection enhancement
	Scalability for query-aware strategy

	Conclusion
	References

