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Abstract—Emerging memristors and Processing-In-Memory
(PIM) architectures have shown powerful capabilities in improving
the computing energy efficiency of neural network (NN) algo-
rithms. Existing work has proposed the memristor-based NN
training architecture [2], which can improve more than 10x energy
efficiency improvement compared with CMOS-based solutions.
In this paper, we propose a behavior-level modeling framework
for memristor-based training-in-memory architectures, called
MNSIM-TIME. Compared with existing modeling tools, MNSIM-
TIME supports configurable architecture design and fast hard-
ware performance modeling, which helps researchers to realize
efficient design space exploration in the early architecture design
stage.

I. INTRODUCTION

In the past few years, Convolutional Neural Networks
(CNNs) have shown great success in several fields. However,
as CNN models become more and more complex, the number
of parameters and computations in CNN models increase dra-
matically, which causes CNN training to consume high energy
and long computational time.

Existing work has demonstrated that emerging memris-
tors (e.g.., RRAM, Resistive Random Access Memory) and
memristor-based Training-In-Memory (TIM) architectures can
improve the energy efficiency of CNN training by 19.6x
compared with CMOS-based accelerators [2]. This remarkable
improvement mainly comes from the in-situ Matrix-Vector-
Multiplication (MVM) implementation in memristor crossbars
without matrix data movements between memory and computa-
tional units, which are the main bottleneck of improving CNN
training efficiency in von Neumann architectures.

To perform design space exploration efficiently and optimize
the architecture design of TIM architectures, accurate simula-
tion of hardware performance in early-stage design is essential.
However, due to the huge architecture design space and the
large-scale parameter set (e.g., different device technologies,
various architecture designs, etc.), the circuit-level simulation
time of the entire TIM architectures takes an unacceptably long
time. For example, the SPICE simulation of one 128 × 128
Crossbar takes over 2 hours, but the last layer of the VGG-19
model includes 288 crossbars. Therefore, a fast and accurate
simulation tool is necessary for TIM architecture design, espe-
cially in the early design stage. TIME [2] and Long Live TIME
[1] illustrate the feasibility of TIM architectures and provide
some performance results of TIM. However, they mainly focus
on specific architecture design and do not support performance
simulation of general and configurable TIM architectures used
for design space exploration. MNSIM 2.0 [15] and XPESim
[14] are two simulation tools for memristor-based CNN infer-

ence accelerators. Compared with the memristor-based CNN
inference accelerators, the data flow and basic operations of
TIM are significantly different, which make existing simulators
designed for CNN inference can not be applied to TIM archi-
tectures directly. For example, memristor-based CNN inference
accelerators perform MVMs by using crossbar read operations
without writing memristors (i.e., weight values will not be
changed during inference). While for the purpose of updating
the weight matrices during CNN training, massive memristor
write operations are required, which are excluded from the
CNN inference simulators. NeuroSim V2.0 [10] is a circuit-
level simulator for TIM architectures. It introduces device non-
ideal factors into the training framework and provides accurate
performance simulation results considering memristor char-
acteristics. Nevertheless, at the architecture level, NeuroSim
lacks flexibility in supporting various user-defined architecture
designs. TxSim [11] is another modeling framework designed
for TIM, but it only simulates training accuracy, neglecting the
hardware performance modeling, i.e., area, power, and latency.

In this paper, we expand MNSIM 2.0 to support the
hardware performance modeling for TIM architectures, called
MNSIM-TIME. Compared with circuit-/device-level simula-
tors, MNSIM-TIME is designed for architecture and algorithm
researchers to quickly evaluate the performance of user-defined
architectures for efficient design space exploration. The main
contributions of this paper are as follows.

(1) We propose a hierarchical modeling structure for TIM
architectures, which provides multiple computing units con-
figuration and connection options to describe diversified TIM
architectures. According to these options, users are allowed to
customize their own TIM architecture designs.

(2) Based on the above modeling structure and the algo-
rithm mapping method used in MNSIM 2.0, we propose the
CNN training dataflow analysis for TIM architectures, which
considers the data dependency of the training procedure and
maximizes the throughput under hardware resource constraints.

(3) To reduce the circuit simulation time of TIM architec-
tures, we propose the hardware performance modeling flow.
It provides a performance model for basic computing units
according to circuit simulation and synthesis results. Thus,
MNSIM-TIME can evaluate architecture performance under
different hardware configurations and CNN models within a
short time for further design space optimization.

II. PRELIMINARIES
A. Back-propagation In CNNs Training

Compared with inference, CNNs training consists of the
forward computation and the error back-propagation to generate
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weights gradients and update weights. The back-propagation of
convolutional (CONV) layers contains (1) and (2),

δl−1 = δl ∗ rot180(W l)# σ
′
(zl−1) (1)

dW l = al−1 ∗ δl (2)

where δl, δl−1, W l represent the input of error back-
propagation, output of error back-propagation, and the weight
matrix of the lth layer, respectively. dW l is the update deviation
of the original weight matrix W l and al−1 is the input feature
map of the lth CNN layer. rot180(·) means rotate the weight
matrix by 180° and σ(·) represents the activation function. The
forward computation is al−1 = σ(zl−1), where zl−1 is the
input of activation function. # is the Hadamard Product of
two matrices, and ∗ represents the convolution between two
matrices. Similarly, the computations of error back-propagation
in fully-connected (FC) layers are listed as (3) and (4),

δl−1 = (W l)T δl # σ
′
(zl−1) (3)

dW l = δl × (al−1)T (4)

B. Memristor and Training-In-Memory Architectures
Memristor is a kind of non-volatile memory that stores in-

formation with different resistance values. Multiple memristor
cells can construct the memristor crossbar, which is an area-
efficient structure combining storage and computing together.
When mapping CNN models onto memristor crossbars, the
weight matrix is stored in the crossbar, while the input vector
is represented by a voltage vector V applied onto the word-line
(WL) of crossbars. Then the MVM results are represented by
the output current vector I from each bit line (BL):

iout,k =
N∑

j=1

gk,jvin,j (5)

Since MVMs are the major operations of CNN training, re-
searchers propose memristor-based TIM architectures to im-
prove training efficiency, e.g., TIME [2] and PipeLayer [12].

III. MNSIM-TIME OVERVIEW

A. Architecture Design
MNSIM-TIME provides a hierarchical modeling structure

and multiple choices for customizing different TIM architec-
tures, as shown in Figure 1. The hierarchical modeling structure
is composed of three levels, i.e., bank level, tile level, and
Processing Element (PE) level. As mentioned in Section II-A,
the significant difference between CNN training and inference
is the back-propagation, which contains error δ generation,
weight gradients calculation, and weights update. To support
these training-in-memory operations, MNSIM-TIME makes
several modifications based on the CNN inference architecture
abstraction used in MNSIM 2.0, i.e., transpose crossbars, vector
rearrangement units, hierarchical feature map storage structure,
weight gradient computation units, etc.

There are two kinds of back-propagation error generation
listing in (1) and (3). Firstly, to fulfill δl−1 generation in FC
layers, we use transpose crossbars similar with NeuroSim [10],
which have digital-to-analog converters (DAC) and analog-to-
digital converters (ADC) both on row-wise and column-wise.
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Fig. 1. The hierarchical modeling structure used in MNSIM-TIME.

To be specific, the transpose crossbars use DACs to activate
rows and ADCs to read the output of columns for forward-
computing, as the traditional memristor-based CNN inference
accelerator. While for the back-propagation operations in train-
ing, the transpose crossbars use additional DACs to activate
columns and additional ADCs to read the output of rows for
error generation of FC layers. Secondly, in order to calculate
the back-propagation error in CONV layers, we design vector
rearrangement units to support rotation function in (1). Because
the mapping of weight matrix onto crossbars is fixed, we rewrite
(1) as (6) to replace the rotation of matrix with the rotation of
input/output error vector for hardware implementation.

δl−1 = rot180(rot180(δl) ∗W l)# σ
′
(zl−1) (6)

The vector rearrangement units design is shown in Figure
1, it contains multiple multiplexers to rearrange the positions
of vector elements to perform rot(·). The number of multi-
plexers in each vector rearrangement unit is depended on the
position of rearrangement units (e.g., PE/tile level) and other
hardware parameters (e.g., crossbar size). When calculating
back-propagation errors, several multiplexers are configured
and activated due to the length of vector to be rotated.

Considering the generation of weight gradient, it should be
noted that both (1) and (3) take the intermediate feature map as
inputs, thus all the intermediate feature map should be stored
during CNN training. In the CNN inference, we can discard the
intermediate data that has been used in the forward process,
making it possible to use line buffer with small capacity as
the intermediate buffer in CNN inference accelerators [15].
However, the training process needs to save the intermediate
feature map of each layer until the gradient calculation is
completed, which brings a heavy storage burden for TIM
architecture. For example, when training VGG-8 in TIM archi-
tectures with the batch size of B (usually B = 32, 64, 128...),
we need to store 320B KB. To solve this problem, we design
the hierarchical feature map storage structure, which consists
of activation buffers in different architecture levels and off-
chip DRAM with large storage capacity. The hierarchical
storage structure leverages on-chip activation buffers and off-
chip DRAM to realize fast access for gradient calculations and
adequate storage capacity for a huge intermediate feature map.
Benefit from the layer-by-layer computation characteristics,
the calculation, on-chip buffer read, and off-chip DRAM read
can be paralleled to improve the performance. More details
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Fig. 2. Dataflow analysis for TIM architectures: (a) memristor bank level, (b)
tile level, (c) PE level. Blue arrow: forward computation; orange/brown arrow:
back-propagation; green arrow: weight matrix update.

will be discussed in Section III-C. Besides, to offer more
flexibility for architecture customization to users, MNSIM-
TIME allows users to define buffer sizes or DRAM capacity in
different architecture levels, and we also provide some capacity
calculation formulas according to CNN size as default.

After solving the storage problem of the intermediate feature
map, we need to calculate the weight gradients according to (2)
and (4). The computation of dW requires δ and a as inputs,
and these inputs will be changed in every iteration. Thus, if
TIM architectures also compute dW in memristors, we need to
rewrite the memristor resistance value in every iteration. Due to
the high write energy and latency cost of memristors and a large
amount of data that needs to be rewritten, the overhead of calcu-
lating dW in memristors will be too high. Consequently, instead
of implementing MNSIM-TIME architecture totally based on
memristors, we adopt various CMOS-based computing units
to realize matrix operations for dW generation (i.e., weight
gradient computation units), e.g., systolic arrays in Eyeriss [13],
SRAM-based PIM design used in [10], and simple multiply-
accumulate operation units. Besides, MNSIM-TIME also offers
users great flexibility to calibrate their own computing units
design by modifying the configurable parameters of the weight
gradient computation units, i.e., area, power, and latency.

Besides, MNSIM-TIME also provides other CMOS-based
computing units to support different activation functions in
the algorithm level. Currently, MNSIM-TIME supports four
activation functions, i.e., ReLU, leaky-ReLU, tanh, and Sig-
moid. These units are constructed based on the core function
unit exp(x). At the same time, we construct the upsampling
modules to support error back-propagation in the pooling layer.
B. Data Flow Analysis

According to the proposed hierarchical modeling structure,
MNSIM-TIME allows users to customize their own TIM ar-
chitecture design by specifying the design parameters, place-
ments, and connections of the computing units. On the basis
of the hierarchical modeling structure, we propose the CNN
training dataflow analysis for TIM architectures to describe
the hardware behavior and model the performance considering
various algorithm models and architectures. Figure 2 shows the
dataflow details, which contain three parts:

1. Forward computation (the blue arrow): The difference
between inference and training is that the latter one should
store all the intermediate feature map in the hierarchical storage
structure for further back-propagation. When one layer gets
the calculation results, these intermediate data will be written

into the line buffer (for inference) and the hierarchical storage
structure (for back-propagation). Because the data transfer time
and off-chip DRAM write time are much longer than the line
buffer write time, writing intermediate data into the hierarchical
storage structure and forward computation could be paralleled
during forward computation.

2. Error back-propagation (the orange arrow represents δl,
and the brown arrow represents δl−1): Back-propagation in
MNSIM-TIME is computed layer-by-layer in a pipeline man-
ner. When the back-propagation error δl reaches the lth layer, δl
should be rotated in the vector rearrangement units (to compute
(1)) or fed to the transpose crossbars (to compute (3)). Because
multiple tiles are needed for large-scale layers, the intermediate
δ results of different tiles need to be merged together to get δl.
After that, δl is transferred to the tiles of the (l−1)th layer. As
for the error back-propagation in pooling layers, the data flow
passes through the upsampling units to get δl−1 from δl. The
generation of dW relies on the back-propagation error δl and
the input feature map al−1, and it has no data dependency with
δl−1 computation. Therefore, computations of (1) and (2) (or
(3) and (4)) can be paralleled in MNSIM-TIME to accelerate
CNN training. During the training process, al−1 is read from
the off-chip DRAM and hierarchical activation buffers.

3. Weight matrix updating (the green arrow): At the bank
level, the data flow of dW will go to the tile which merges the
output feature map of the same layer in CNN inference and
then distributed it according to the CNN mapping results. dW
is finally sent to different crossbars, and the weight matrix in
crossbars are updated row-by-row. Besides, since the weight
update can only be performed after calculating δl and dW l,
we parallel the weight matrix updating of the lth layer and the
error back-propagation of the (l − 1)th layer.

C. Simulation Process
To model TIM architectures, existing work (e.g., NeuroSim

V2.0 [10] or TxSim [11]) simulates the computing behavior of
memristor crossbars in the CNN training framework. Though
this simulation method can simulate training accuracy, it may
take too much time for one complete simulation due to the long
training time of large CNN models. When concentrating on
the hardware performance modeling, this long-time-simulation
can not meet the rapid iteration requirements of design space
exploration. To solve this problem, MNSIM-TIME focuses on
modeling hardware performance from the architecture level
without simulating the computing behavior in the algorithm
code, which can provide efficient and fair performance com-
parison for design space exploration.

For the input algorithm model, MNSIM-TIME provides
CNN training description interfaces to describe the training
process of the specific CNN model, e.g., CNN layers and
size, number of training epochs, and batch size. According to
these parameters and TIM architecture design, MNSIM-TIME
maps the CNN model onto TIM architecture with the mapping
strategy in [15] and computes the iteration number for training.

In the traditional simulation flow, designers need to write
hardware description language (HDL) or SPICE code according
to the architecture design, and then it will take a long time for



SPICE simulation and circuit synthesis. In MNSIM-TIME, we
provide pre-simulation data of the basic computing units in
the proposed hierarchical modeling structure. This helps us to
extract the most time-consuming part (i.e., circuit-level sim-
ulation) before the architecture design. After determining the
architecture design and getting the mapping results, MNSIM-
TIME analyzes dataflow, calculates the resource usage, and
models the entire performance according to the unit perfor-
mance. Since the architecture modeling is executed by looking
up the pre-simulation data and approximate fitting instead of
solving the circuit-matrices problems, the simulation results can
be obtained in several seconds, which is suitable for architecture
design space exploration.

IV. CASE STUDIES

A. Experiments Setup
We use three typical CNNs on Cifar-10 dataset as bench-

marks [4], i.e., LeNet [7], VGG [5], and AlexNet [6]. The
buffer (SRAM) data, DRAM data, and RRAM data come from
[9], [3], and [8], respectively. The digital circuits modules
(e.g., vector rearrangement unit) are synthesized at TSMC
65nm technology node by Synopsys Design Compiler, and the
frequency is set to 500MHz.

B. Latency and Energy Estimation
We evaluate the simulation results of latency and energy in

one iteration (B times forward computation and one-time back-
propagation) on different CNNs and different batch sizes B. The
results are shown in TABLE I. As B increases from 16 to 64,
the training latency of one iteration increases significantly. The
reason is that the number of forward computations and back-
propagation increases with the batch size, which are the most
time consuming parts in CNN training. Besides, increasing
batch size does not increase the times of updating the weight
matrix in crossbars, which accounts for 65% of total energy
in VGG-8 while B equals to 16 (one RRAM write operation
consumes 2.84nJ [8]). Therefore, the energy consumption will
not increase too much as the batch size increases.

C. Comparisons of CNN Inference and Training
As demonstrated in Section III, multiple hardware modifi-

cations are required for supporting back-propagation in TIM
architectures. In this section, we will discuss these modifica-
tions from the following two aspects:

(1) To store all the intermediate feature map for back-
propagation, we design the hierarchical storage structure in
TIM architectures. Benefit from the hierarchical storage struc-
ture, the large capacity off-chip DRAM offers the opportunity
to support training with large batch size. For example, for VGG-
8, the required DRAM capacity is 4.99 MB when the batch size
is 16. When the batch size increases to 64, the required capacity
will increase to 19.97 MB. Besides the off-chip DRAM, the
demand for on-chip buffer also increases. For the inference of
VGG-8, buffers take up 7% area of the whole architecture.
While in CNN training, the ratio of activation buffers to the
total area is 19.84% as the total area increases by 22.97%.

(2) For the purpose of computing errors and updated weights,
we modify the peripheral circuits of crossbars and add other

TABLE I
(LATENCY; ENERGY) SIMULATION RESULTS UNDER DIFFERENT BATCH

SIZES B (unit : ms,mJ )

B AlexNet VGG-8 LeNet
16 263.66; 1,527.09 498.81; 826.01 9.62; 3.87
32 373.46; 1,587.24 823.83; 1,136.48 17.50; 4.35
64 641.47; 1,710.40 1,495.54; 1,797.64 36.18; 5.96

digital modules. The transpose crossbars need additional DACs
and ADCs for column-wise activation and row-wise readout,
respectively. Other digital modules (i.e., the weight gradient
computation units, the upsampling units, and the vector rear-
range units), together with the additional ADCs/DACs, totally
take up 8.19% area of total architecture.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose MNSIM-TIME, a performance

modeling framework for memristor-based training-in-memory
architectures. Compared with circuit-level simulators, MNSIM-
TIME helps architecture designers to customize the specific
TIM architecture and can evaluate the hardware performance
within several seconds, which is useful for architecture design
space exploration. In the future, we will integrate more fine-
grained hardware simulation in the training process to provide
training accuracy simulation for TIM architectures as another
configuration mode of MNSIM-TIME.
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