
Efficient Computing Platform Design for
Autonomous Driving Systems

Shuang Liang∗§, Xuefei Ning∗, Jincheng Yu∗, Kaiyuan Guo∗, Tianyi Lu§,
Changcheng Tang§, Shulin Zeng∗, Yu Wang∗, Diange Yang†, Huazhong Yang∗

Department of Electronic Engineering, Tsinghua University∗ Novauto Co., Ltd.§
School of Vehicle and Mobility, Tsinghua University†

{s-liang,yu-wang}@tsinghua.edu.cn

ABSTRACT
Autonomous driving is becoming a hot topic in both academic and
industrial communities. Traditional algorithms can hardly achieve
the complex tasks and meet the high safety criteria. Recent research
on deep learning shows significant performance improvement over
traditional algorithms and is believed to be a strong candidate in
autonomous driving system. Despite the attractive performance,
deep learning does not solve the problem totally. The application
scenario requires that an autonomous driving system must work in
real-time to keep safety. But the high computation complexity of
neural network model, together with complicated pre-process and
post-process, brings great challenges. System designers need to do
dedicated optimizations to make a practical computing platform for
autonomous driving. In this paper, we introduce our work on effi-
cient computing platform design for autonomous driving systems.
In the software level, we introduce neural network compression
and hardware-aware architecture search to reduce the workload.
In the hardware level, we propose customized hardware accelera-
tors for pre- and post-process of deep learning algorithms. Finally,
we introduce the hardware platform design, NOVA-30, and our
on-vehicle evaluation project.

CCS CONCEPTS
• Computer systems organization → Embedded hardware; •
Hardware → Hardware accelerators; • Computing method-
ologies → Search methodologies.

KEYWORDS
autonomous driving, computing platform, neural networks, hard-
ware accelerators

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431620

ACM Reference Format:
Shuang Liang∗§, Xuefei Ning∗, Jincheng Yu∗, Kaiyuan Guo∗,
Tianyi Lu§, Changcheng Tang§, Shulin Zeng∗, YuWang∗, Di-
ange Yang†, Huazhong Yang∗. 2021. Efficient Computing Platform De-
sign for Autonomous Driving Systems. In 26th Asia and South Pacific Design
Automation Conference (ASPDAC ’21), January 18–21, 2021, Tokyo, Japan.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3394885.3431620

1 INTRODUCTION
In recent years, both traditional vehicle manufacturers and their
vendors are spendingmore andmore efforts on autonomous driving.
With the rapid development in algorithm and hardware platforms,
the road towards the ultimate goal, fully autonomous driving, is
becoming more and more clear.

But an autonomous driving system is still by no means simple to
any of the companies in this region. An autonomous system usually
consists of four parts: perception, localization, planning, and control.
The input of the system includes cameras, LiDARs, radars, etc. To
achieve these hard tasks with hybrid and high-dimensional inputs,
autonomous driving developers are faced with great challenges.

The development of deep learning has certainly boosted our
pace towards fully autonomous driving. It offers a universal frame-
work to implement complex tasks like object detection and se-
mantic segmentation and achieves much better performance com-
pared with traditional algorithms with handcrafted features and
rules. For vision based perception, deep learning helps to detect
2d-objects[10], 3d-objects[26], lane lines[16], monitor driver status.
For LiDAR based perception, deep learning is applied to detect
cars and pedestrians[8, 23]. Recent work also try to apply deep
reinforcement learning for planning and control[22].

On the other hand, by introducing deep learning to autonomous
driving, the workload increases together with the accuracy. Deep
learning algorithms require 1010 to 1011 floating point operations
on processing one frame of image or point cloud. Besides, to achieve
high accuracy, deep learning algorithms also increase the size of
input data, which brings high-complexity pre-processing and post-
processing. Workload of this scale is usually deployed on servers
on the cloud. For autonomous driving, the system cannot bear the
latency for connecting a remote server. To put the system on car,
we are also faced with the problem of power consumption and
heat dissipation. Deep learning brings great challenge to deploy
autonomous driving algorithms.

System level optimization is required to implement autonomous
driving system. Researchers have taken great effort to reduce the

https://doi.org/10.1145/3394885.3431620
https://doi.org/10.1145/3394885.3431620

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Liang, et al.

size of neural network models while keeping the accuracy. Deep
Compression[5] proposes the method of pruning and trained quan-
tization, which reduces the AlexNet model by 35x and VGG-16
model by 49x. Recent work focuses more on designing a more ef-
ficient network structure. SqueezeNet[7] and MobileNet[6] try to
reduce the network size by specially designed layer parameters
and topology. Latest research takes the idea of Neural Architecture
Search (NAS) and designs network topology automatically accord-
ing to accuracy or speed requirements[31]. Substantial studies have
shown that the automatically discovered architectures by NAS are
able to achieve highly competitive performance.

Besides model optimization, researchers have also paid great
attention on hardware optimization. With a customized accelera-
tor design, one can achieve more than 10x the speed and energy
efficiency of CPUs or GPUs. A brief summary of this region is avail-
able at our website[4]. Commercial chips for autonomous driving
also takes neural network processing unit as a core component in
their SoC design, like NVIDIA Xavier, TI TDA4, EyeQ5, etc. Besides,
the pre-processing and post-processing part of deep learning algo-
rithms are also heavy workload for CPUs. As we will show in this
paper, customized hardware for those non-NN part in deep learning
algorithms is also critical for an autonomous driving system.

In this paper, we introduce our work on efficient computing
platform design for autonomous driving systems. In section 2, we
introduce our work on NN backbone optimization. In section 3,
we propose low latency solutions to different algorithms based on
Xilinx FPGA platform and Deep Learning Processing Unit (DPU)
IP with our customized accelerators. In section 4, we introduce our
hardware platform using the Xilinx ZU11EG MPSoC and NVIDIA
Xavier SoC as computing cores, with abundant sensor interfaces.
We plan to deploy the system on vehicle soon in Beijing 2022Winter
Olympic Park. Section 6 summarizes this paper.

2 NN MODEL BACKBONE OPTIMIZATION
CNN-based backbones are now widely used since their perfor-
mances can surpass traditional methods significantly in a large
range of perception tasks. And in recent years, many academic and
industrial efforts have been devoted to optimizing the NN backbone
for more efficient deployment. Generally speaking, there are three
major directions to reduce the computational and storage burden
of CNNs: 1) Network pruning [3, 5, 11, 28]: Remove redundant pa-
rameters or kernels; 2) Quantization [18, 19]: Quantize the weights
and activations to low-precision values; 3) Compact block and ar-
chitecture design [6, 7]: Design efficient blocks and architectures
either manually or automatically.

2.1 Model Compression: Network Pruning
Deep Compression [5] proposes to remove small weights in the
neural networks while maintaining its accuracy, thus significantly
reducing the storage consumption. However, a specialized hard-
ware accelerator design is needed to handle the resulting sparse
computation pattern well enough and achieve improvements in
terms of latency. For the ease of acceleration, structured pruning
methods [3, 11, 28] introduce structured sparsity into the NN mod-
els, usually by regularizing the weights or batch normalization
scales in a group-wise manner. In structured pruning, a major task

Topological Grouping

Network with
Random Initialization Pruned Network

Differentiable Pruning

ADMM-inspired
Optimization

Keep Ratios
= [0.81, 0.62 , … , 0.71]

Budget Model Budget Loss

Sensitivity
Analysis

Task Loss

Train Once

𝜕𝐿!	
𝜕𝛼 	as

Gradient

As Objective

As Constraint

Optimize

Gradient

𝐿!

Figure 1: The workflow of Differentiable Sparsity Alloca-
tion.

is to allocate sparsity across different network components, i.e., to
decide how many channels to keep in each convolution. Intuitively,
more channels need to be kept for sensitive operations, while fewer
channels for unimportant operations.

In real applications, there are usually scenarios in which the
resources of a NN model must be under certain budgets. Finding
a suitable compressed model in these scenarios is formalized as
the budgeted pruning problem. We propose differentiable sparsity
allocation (DSA) to allocate sparsity across different network com-
ponents, and assure that the resulting model is restricted under
the resource budget [14]. Unlike the majority of budgeted pruning
methods that follow an iterative pruning flow, we propose to find
the proper sparsity allocation with a gradient-based method.

The workflow of DSA is illustrated in Figure 1. For the ease of
hardware deployment, we need to make sure that the same set
of channels are kept for the convolutions whose outputs are con-
nected via elementwise operations, and we refer to this type of
pruning constraints as topological constraints. Specifically, we first
run a topological grouping procedure to analyze the data processing
graph and find the topological constraints. And for each topological
group 𝑘 = 1, · · · , 𝐾 with an original channel number of𝐶 (𝑘) , a keep
ratio 𝛼 (𝑘) and a mask variable𝑚 (𝑘) is assigned. The keep ratio 𝛼 (𝑘)

indicates the expected proportion of kept channels for the convolu-
tions in the 𝑘-th group, and𝑚 (𝑘) is the corresponding 0-1 mask that
indicates the channel choices. Then, in the differentiable sparsity
allocation process, the differentiable pruning process takes 𝛼 (𝑘) as
the input, and output the corresponding𝑚 (𝑘) through a random-
ized sampling process based on channel-wise batch normalization
scales {𝑏𝑖 }𝑖=1, · · · ,𝐶 (𝑘) as in Equation (1).

𝑚𝑖 ∼ Bernoulli(𝑝𝑖); 𝑝𝑖 = 𝑓 (𝑏𝑖 ; 𝛽1, 𝛽2) =
1

1 + (𝑏𝑖
𝛽1
)−𝛽2

𝑠 .𝑡 . 𝐸 [
𝐶∑
𝑖=1

𝑚𝑖] =
𝐶∑
𝑖=1

𝑓 (𝑏𝑖 ; 𝛽1, 𝛽2) = 𝛼𝐶,
(1)

where the (𝑘) superscript is omited for simplicity, 𝛽2 is a hyperpa-
rameter that follows a increasing schedule, and 𝛽1 is calculated by
solving the expectation condition equation 𝐸 [∑𝑚𝑖] = 𝛼𝐶 .

Efficient Computing Platform Design for
Autonomous Driving Systems ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

5% 12.5% 33% 50% 75%
FLOPs

86

88

90

92

94

Ac
cu

ra
cy

Ours
Morph
Lasso
AutoCompress

(a) ResNet-18

5% 12.5% 33% 50% 75%
FLOPs

89

90

91

92

93

Ac
cu

ra
cy

Ours
Morph
Lasso
AutoCompress

(b) VGG-16

Figure 2: Pruning results on CIFAR-10.

With this differentiable pruning process, the gradient of the
validation loss 𝐿𝑣 w.r.t. the keep ratios A = {𝛼 (𝑘) }𝑘=1, · · · ,𝐾 can be
derived as

𝜕𝐿

𝜕𝛼 (𝑘) =
𝜕𝛽1
𝜕𝛼

𝐶∑
𝑖=1

𝜕𝐿

𝜕𝑝𝑖

𝜕𝑝𝑖

𝜕𝛽1
= 𝐶

𝐶∑
𝑖=1

𝜕𝐿

𝜕𝑝𝑖
𝑓 ′
𝑖
; 𝑓 ′

𝑖
=

𝑓 ′
𝑖∑
𝑓 ′
𝑖

, (2)

where 𝜕𝐿
𝜕𝑝𝑖

could be approximated usingMonte-Carlo samples of the
reparametrization gradients, and the interpretation of this equation
is that the update of 𝛼 (𝑘) is instructed using a weighted aggregation
of the gradients of the task loss 𝐿 w.r.t. the keep probabilities of
channels 𝜕𝐿

𝜕𝑝
(𝑘)
𝑖

, and the aggregation weights are 𝑓 ′
𝑖
, 𝑖 = 1, · · · ,𝐶 (𝑘) .

Then, the gradient of task validation loss 𝜕𝐿𝑣
𝜕A and the gradient

of the budget model 𝜕F(A)
𝜕A are orchestrated in an gradient-based

algorithm framework. This orchestration is inspired by the ADMM
algorithm to solve the constrained optimization problem of A.

A∗ = argmin
A

𝐿𝑣 (𝑊 ∗ (A),A)

s.t. F (A) ≤ 𝐵F, 0 ≤ A ≤ 1
𝑊 ∗ (A) = argmin

𝑊

𝐿𝑡 (𝑊,A),
(3)

where 𝐿𝑡 and 𝐿𝑣 are the training and validation losses, respectively.
And F (A) is the consumed resource corresponding to the keep
ratios A, and 𝐵F is the resource consumption budget.

As an example, Figure 2 shows the pruning results of ResNet-18
and VGG-16 on CIFAR-10. We can see that DSA can maintain good
performances while respecting the budget strictly. More details and
experimental results can be found in our published paper [14].

2.2 Hardware-aware Neural Architecture
Search

Human experts have been designed efficient building blocks for
hardware platforms, such as the MobileNet series [6]. However,
there is a wide range of applications and hardware platforms, and
an automatic way of discovering suitable architecture with high
hardware efficiency and promising application performance would
help building up more and more AI-powered systems. Hardware-
aware neural architecture search (NAS) [1, 25] has recently drawn
much attention, in which the hardware efficiency is considered as
a part of the reward besides the application performance.

Figure 3: The workflow of the black-box search space profil-
ing and selection method.

Pre-search: Black-box search space profiling and selection
There are three major building components in a NAS algorithm: 1)
Search space (SS) describes which architectural decisions need to be
made; 2) Search strategy describes how we explore the search space
based on the past exploration rewards; 3) Evaluation strategy gives
out the evaluation rewards of candidate architectures to instruct
the search process. In the past few years, lots of studies have been
focusing on improving the efficiency of the NAS process by improv-
ing the sample efficiency of the search process [15, 20, 31], or by
accelerating each architecture evaluation process [1, 17]. On the
other hand, we facilitate an efficient search process by constructing
a compact and effective search space that is suitable for the tar-
geted hardware accelerator. To achieve that, we propose a black-box
search space profiling and selection strategy as a preposition stage
before the normal NAS process [30].

The workflow is illustrated in Figure 3. Firstly, we generate
search space base networks (SSBNs) for each candidate SS, which
has a different architecture of candidate network block and multiple
parameters to be searched. Secondly, once we have the base network
pool consists of different SSBNs, we need to evaluate the accuracy
and latency of each candidate network in the pool. The latter is
easier by running each base network on the accelerator platform.
As for the accuracy, we directly train the specified network of each
candidate SS on the target data set with 20 epochs. Then we use
the weights of the specified network to finetune each base network
with a few epochs to obtain accuracy. Next, we can compute the
cost of each base network as

Cost = exp(−acc − thres
scale

) − 𝜆

latency
. (4)

Finally, in order to find the search space that minimizes Cost(𝑆𝑆)
in Equation (4), we design a simple cost-based search space selec-
tion algorithm to derive an optimized SS. The optimized SS has a
much smaller controllable size and can provide a tradeoff between

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Liang, et al.

Table 1: Results of ResNet-based network blocks on CIFAR-
10.

Fix Search Space dynamic search space

Method
Acc. Lat.

Cost 𝜆
Acc. Lat.

Cost(%) (ms) (%) (ms)

DNAS 86 1.287
0.9872 0.01 86.7 1.299 0.9838
0.9173 0.1 86 1.28 0.9169
0.2180 1 85.8 1.255 0.1992

RL-NAS 83.5 1.385
1.0003 0.01 86.5 1.292 0.9848
0.9353 0.1 85.4 1.27 0.9193
0.2855 1 84.7 1.25 0.2015

accuracy and latency with the user-defined parameter 𝜆. And the
SS generated by our method is dynamic in that it can have different
sets of candidate blocks at each layer.

We compare the performance between the generated dynamic
SS and fix SS using ResNet-based network blocks as an example
on CIFAR-10, as shown in Table 1. We can see that the dynamic SS
under three different 𝜆 configurations has the lowest cost compared
with the fixed SS. This means that our proposed search space profil-
ing method can preserve the useful information of the original SS,
while pruning away redundant information in SS, thus making the
search process fastly converge to a better result faster. More details
and experimental results can be found in our published paper [30].

In-search: Estimationmodel of hardware latency and energy
During the search phase, hardware latency or energy prediction
models are necessary because deploying all the candidate networks
to a target platform is often cost-prohibitive. A commonly-used
strategy is to add up the latency or energy of the building blocks to
estimate the candidate network’s latency or energy. However, this
linear assumption might not hold, e.g., on platforms with complex
cache mechanism and massive parallelism such as CPUs and GPUs,
the summation of block latencies can significantly deviate from
the actual network latency. Thus, we construct latency and energy
correction models to amend hardware-aware NAS.

We compare two types of prediction models, including linear re-
gression (LR) and LSTM-based models. Figure 4 shows their perfor-
mances on predicting GPU (RTX-2080Ti) latencies and FPGA (Xilinx
ZCU102) energies of candidate architectures from a MobileNet-v2-
like search space. Each model is trained with 2k random samples
and tested on another 1k samples. And we can see that the esti-
mated costs have a much smaller rMSE and better linear correlation
than the naive summation estimation.

3 NON-NN CUSTOMIZED OPTIMIZATION
A series of hardware accelerators, deployment toolchains, and NN
architecture design methods, have enabled NN backbone to be de-
ployed efficiently in automatic driving systems. However, besides
the NN backbone, the pre- and post-processing of NN-based algo-
rithms are also computation intensive, and become the bottleneck
of autonomous driving systems. In this section, we will introduce
our recent systems including the customized non-NN optimization
together with the NN backbone on general NN accelerators.

0 1 2 3 4 5 6

measured

0

1

2

3

4

5

6

7

es
tim

at
ed

Linear Regression (Latency)

y=x
predicted
naive add

(a) GPU latency, rMSE=0.174

0 1 2 3 4 5 6

measured

0

1

2

3

4

5

6

7

es
tim

at
ed

LSTM (Latency)

y=x
predicted
naive add

(b) GPU latency, rMSE=0.187

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

measured

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

es
tim

at
ed

Linear Regression (Energy)
y=x
predicted
naive add

(c) FPGA energy, rMSE=0.709

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

measured

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

es
tim

at
ed

LSTM (Energy)
y=x
predicted
naive add

(d) FPGA energy, rMSE=0.51

Figure 4: GPU latency and FPGA energy estimation using
two types of prediction models (Linear regression, LSTM).
For GPU latency, estimation by naively adding up block la-
tency results in rMSE=0.63. For FPGA energy, naive addition
results in rMSE=4.94. Using the prediction models, we can
achieve 3.6× and 9.7× better rMSE forGPU latency and FPGA
energy respectively.

Figure 5: Data pre-process flow of point-cloud-based object
detection.

3.1 Pre-processing for Point Cloud
Even though vision based methods have shown outstanding per-
formance on object detection tasks, it is still not enough for au-
tonomous driving of which the environment can be dark sometimes.
LiDAR serves as a good assistant to cameras in many cases because
it gives depth information and works better in dark environments.
Different algorithms try to detect objects from point cloud by ex-
tracting geometry features.

Convolutional Neural Networks (CNNs) are widely applied in
vision-based and LiDAR-based detection tasks. Different from im-
ages, point clouds need pre-processing to be transformed into a

Efficient Computing Platform Design for
Autonomous Driving Systems ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Figure 6: Basic architecture of a point cloud pre-process ac-
celerator.

feature map as neural network input. For autonomous driving, a
commonly used method is to project the point cloud onto X-Y plane
and discretize the points with a𝑊 ×𝐻 2D grid. To save computation,
the algorithm usually limits the number of points in each grid to
about 64 ∼ 200, and drops the extra points. Then the algorithm com-
pute a feature vector for each grid using the corresponding points.
We summarize the point-cloud pre-processing flow in Figure 5.

Complex YOLO[23] chooses 3 features: the maximum 𝑧, the
maximum intensity, and the logarithm-normalized point number
in this grid. So the pre-process result is a 3 ×𝑊 × 𝐻 tensor like
a normal CNN input. PointPillars[8] first represents each point
with a 𝑀-D feature vector using the relative position to the gird,
intensity, absolute position, etc. Then the algorithm transforms
each𝑀-D feature to an 𝑁 -D feature with a trained fully connected
network. Finally, for each grid, all the corresponding feature vectors
are merged by max pooling. Thus the pre-processing result is an
𝑁 ×𝑊 × 𝐻 tensor.

As we will show later in the experiment part, after applying
model compression, pre-processing becomes a speed bottleneck of
the algorithm. To address this problem, we propose FPGA-based
pre-processing accelerators to work with the NN accelerator. For
different algorithms, the accelerators differ in function modules
but share a same basic architecture, as shown in Figure 6. The
accelerator first takes the input in a point stream format from the
external memory. The feature module computes the feature of each
point. The discretize module computes the corresponding grid ID
of each point. The hardware then update the grid feature table
with the feature and the gird ID. After all the points are processed,
the output module traverse all the grids, write the result back to
the external memory. In this paper, we introduce our pre-process
accelerator designs for Complex YOLO and PointPillars.

For Complex YOLO, the feature module simply extracts 𝑧 and
intensity value of each point and applies quantization to 𝑧 and 𝑖 to
save memory. The feature table stores the maximum 𝑧, intensity,
and the number of points in each. A typical feature map contains
1216 × 608 grids for Complex YOLO, which means more than 2MB
storage consumption. This will greatly limit the resource for the
NN accelerator in system. So we partition the feature map into
different blocks and process one block each time. The merge mod-
ule computes the logarithm of the point count of each grid. As
the algorithm limits the point count, we implement the logarithm
operation with a lookup table.

For PointPillars, the feature module computes the NN part. Point-
Pillars uses much larger feature vectors, with 32 or more elements,
compared with Complex YOLO. Thus we choose to store the feature
table in external memory. Directly do max-pooling when updating
the feature table means the latency of accessing external memory
will greatly limit the speed of processing each point. So we directly
store all the point feature vectors in the external memory. To help
traverse all the grids, we maintain a point count map on-chip. For
each grid, the output module reads the point feature vectors from
external memory, do max-pooling and write the results back.

We evaluate our design on Xilinx ZCU102 development board
using a Xilinx B4096 DPU as the deep learning processing unit.
We configure the pre-processing accelerators to write the result
directly to the DPU input location, which reduce the cost of I/O
APIs. The results are shown in Table 2. For the default and C con-
figuration, all the algorithm except the NN part runs on the em-
bedded ARM A53 in the SoC. For the C+P configuration, the pre-
process part runs with customized accelerator on FPGA. With our
model compression methods, the total latency can be reduced by
27% ∼ 56% and pre-process becomes the bottleneck. With our cus-
tomized pre-processing accelerators, we can further reduce the
latancy by 54% ∼ 72%. The resource consumption of the proposed
pre-processing accelerators are shown in Table 3.With the proposed
pre-processing accelerators, we achieve 10fps point-cloud-based
object detection, that matches the speed of LiDAR scan.

Table 2: Latency breakdown of point-cloud based detection
on FPGA (ms). C: with model compression. P: with pre-
process acceleration.

Algorithm Config Pre-proc NN Post-proc Total

Complex
YOLO

default 87.05 246 9.43 342.48
C 84.31 60.4 5.59 150.3

C+P 9.6 60.4 12 82

PointPillars
car

default 88.4 59.4 4 151.8
C 88.4 18.5 4 110.9

C+P 8 18.5 4 30.5

PointPillars
ped & cyc

default 87.9 236 16 339.9
C 87.9 75.1 16 179

C+P 8 75.1 16 99.1

Table 3: Resource consumption of the point cloud pre-
process accelerators on ZU9EG FPGA.

LUT FF BRAM DSP
Complex YOLO 8.8k (3.2%) 11k (2.0%) 58 (6.4%) 15 (0.6%)
PointPillars 23k (8.4%) 18k (3.4%) 83 (4.6%) 138 (5.5%)

3.2 Post-processing for feature-point
extraction

In vision-based automatic driving systems, feature-point extrac-
tion is a basic component for visual odometry or map building
[13]. The feature-point extraction method usually has two steps:
1) feature-point detection and 2) feature descriptors generation.
SIFT[12] and ORB[21] are two popular handcrafted methods for

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Liang, et al.

Image Pair

NMS Rank

SuperPoint Network

Softmax Reshape

Bi-Cubic
Interpolate

L2
Norm

Softmax Reshape

Bi-Cubic
Interpolate

L2
Norm

NMS Rank

Feature-Points

Descriptors

Point
Correspondence

Softmax

Selector

Selector

Figure 7: SuperPoint with CNN backbone and post-
processing operations such as NMS, Rank, Pixel-wise
normalization.

feature-point extraction. Compared with the handcrafted methods,
the CNN-based feature-point extraction methods, such as Super-
Point [2], have made significant progress in both feature-point
detection and descriptor generation. Figure 7 shows the structure
of SuperPoint. It includes both feature-point detection step and
descriptor generation step in a single forward pass, and surpasses
the traditional handcrafted methods in accuracy. Our work [29] de-
signs specific hardware architecture along with the previous CNN
accelerator (DPU) to implement real-time feature-point extraction
on the embedded system.

In addition to the CNN backbone, there are many post-processing
operations in CNN-based feature-point extraction networks, such
as Non-Maximum Suppression (NMS) and confidence ranking in
the feature-point detection, as well as pixel-wise normalization in
the descriptors generation. To deploy the entire process of feature-
point extraction on real-time embedded systems, we propose a
hardware-software co-design CNN-based feature-point extraction
structure and accelerate the process on the Xilinx ZCU102 platform.

There are two components which consume most of the computa-
tion. The Softmax operation to find out the most possible position
of a feature-point inside a small local area, and the normalization
operation to calculate the normalized descriptor for each detected
feature-point.

As Softmax’s is to locate the point with the highest confidence,
we only need to calculate the final Softmax result of the pixel with
the highest confidence. The results of other pixels with low confi-
dence can be skipped and discarded. Thus, we design a hardware
for Softmax shown in Figure 8(a). It consists of three parts, the add
tree, the compare tree and the divider. Softmax reads 65 numbers
from a grid region at once. Adder tree computes input to the power
of 2 using shift operation and calculates their sum. Compare tree
reads the values of the first 64 channels and returns the maximum
value and its channel number, which contains position information.
The divider uses the shift operation to calculate the reciprocal of
confidence.

Besides Softmax, the pixel-wise normalization also consumes
huge computation. Thus, we also design a specific hardware for
this operation to parallel the operation, as shown in Figure 8(b).
The normalization module can read 8 numbers per clock cycle. The
normalization process is divided into three stages and requires each

(a) Softmax Accelerator (b) Normalization Accelerator

Max
○

○

○

…

Max

Max…

Max

Max

Comparer Tree

●→

●→

●→

…

+

+

+

+

+

○

○

○

… …

Adder Tree

●→○○

○

○

…

○

1

2

64

65

●→

Dividend

Index
Part of
Divisor Position of the

Maximum Point

Reciprocal of
Confidence

Divider x2

…

+

+

+

+

+

○

○

○

…
…

Accum

x2 Accum

x2 Accum

1

2

8

1/x

○

○

○

…
×

●

●

●

…

Figure 8: Hardware Architecture for SuperPoint Post-
processing

Table 4: Time Comparison of Each Operation of SuperPoint
CNN Post-processing

backbone∗ Softmax NMS Rank Norm Total
CPU 24ms 31ms 27ms 0.97ms 42ms 100.97ms
Ours 1.97ms 0.7ms 0.12ms 1.44ms 4.23ms
* The CNN backbone runs on DPU.

Table 5: Accuracy and Time Results on TUM SLAM
Dataset[24] of Different Feature-point Extraction Methods

RPE(m/s) ATE(m) Run time(ms)
SIFT 0.0319 0.4219 2397
ORB 0.0577 0.6105 229

Origin Superpoint 0.0280 0.3671 259
Ours 0.0283 0.3976 59

* RPE is the mean Relative Pose Error to indicate the translational drift
per second. ATE is the root mean square Absolute Trajectory Error to
indicate the translational drift of the entire trajectory. The less, the better.

descriptor to be read twice. In the first stage, we compute the sum
of the squares of the descriptors, which takes 32 clock cycles when
the descriptor dimension is 256. Then the reciprocal of square root
of sum is computed as the normalization coefficient. In the final
stage, the descriptor is read a second time and multiplied by the
normalization coefficient.

The proposed CNN-based feature-point extractor is implemented
and evaluated on the ZCU102 board. The CNN backbone is calcu-
lated by DPU. We compare the running time of each operation in
SuperPoint before and after the optimization. The results are shown
in Table 4. The total running time of post-processing operations is
reduced by more than 20×.

We use Superpoint as the feature-point part of VO, and evaluate
the VO performane on the 𝑇𝑈𝑀 [24] dataset. We evaluate Super-
Point against two well-known detector and descriptor systems:
SIFT[12] and ORB[21]. We perform nearest neighbor matching
from descriptors in adjacent frames. We use an OpenCV imple-
mentation (solvePnP()) [9] with all the matches to compute the
transform matrix, and use Bundle Adjustment [27] to optimize re-
sults. All the computation of ORB and SIFT is done on the CPU.
And all the computation of the original SuperPoint is done on the
CPU except the CNN backbone.

Efficient Computing Platform Design for
Autonomous Driving Systems ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

The results are shown in Table 5. In terms of accuracy, Super-
Point outperforms ORB and SIFT. Our optimizations, including
fixed-point quantization, and post-processing acceleration, do not
introduce a significant loss of accuracy. In terms of calculation
speed, SuperPoint takes less time than SIFT and is equivalent to
ORB. After optimization, the running speed is increased by 4×,
making real-time processing possible.

4 COMPUTING HARDWARE
To support the real-time processing of data from multiple sensors,
we need a computing hardware platform with powerful perfor-
mance cores. A main CPU is also required for the processing of
other tasks, such as planning, and the basic software environment
including the operation system.

Mostly for the demonstration test vehicles, an industrial server
will be installed for computing. The configuration can usually be
a X86 CPU with multiple GPU graphic cards for acceleration. The
overall power cost can reach up to thousands of watts and a fan or
water cooling system is required. To control the power down, more
efficient architecture needs to be considered. For the consideration
of safety, an ASIL-D level MCU is also necessary to connect the
performance cores and the CAN-bus of vehicles. Hence, we have
taken a heterogeneous design for our level-4 autonomous driving
computing platform, which we call as NOVA-30. As shown in Fig.9a,
we can see there are two Xilinx ZU11EG FPGAs and one NVIDIA
Jetson Xavier SoCmodule integrated on our platform. Gigabit ether-
net and PCI-E are implemented for cross-chip communication. The
GMSL and ethernet ports are provided for HD cameras, LiDAR and
radar inputs. An Infineon Aurix TC397 bridges the performance
cores and vehicle CAN-bus. The overall power of NOVA-30 can be
controlled in 90 watts.

(a) the block diagram of hardware architecture of NOVA-30

(b) the actual picture of NOVA-30

Figure 9: The computing hardware of Novauto - NOVA-30

5 VEHICLE PLATFORM
5.1 Sensor Configuration
The vehicle platform incorporates various refined sensors, such as
cameras, LiDAR, and millimeter wave radar. Detailed sensor config-
uration is shown in Figure 10. Through the multi-sensor fusion of
LiDAR, radar and cameras, 360-degree environment perception and
multi-range perception are realized. The localization subsystem is
fused with vision-based sensors for high-precision localization in
different scenarios.

Efficient computing platform is critical to the deployment of
autonomous vehicles. The environment perception functions, in-
cluding multi-object detection and tracking, lane detection, traffic
sign detection, real-time high-precision localization, are built by
leveraging the computing platform. All the sensors are powered
by the computing platform that efficiently process massive data in
real-time.

Figure 10: Top view of the vehicle platform with suites of
sensors.

5.2 Application Demonstration
Based on the vehicle platform, a Level 4 driving automation demon-
stration is carried out in real and open environments to prove the
capability of the efficient computing platform. Our reference au-
tonomous driving system is shown in Figure 11. The autonomous
vehicle runs in Shougang Park, which is rebuilt for the 2022 Beijing
Winter Olympics. A variety of autonomous driving functions are
implemented to ensure the safety of pedestrians, vehicles and other
traffic participants. The functions comprise of standing start, vehi-
cle stop, leading vehicle following, lane changing, passing through
intersection, turning at intersection, turning over at intersection,
vehicle meeting, overtaking, parking, emergency braking and re-
sponse to traffic light. The total test mileages are greater than
900km, which includes a variety of different weather conditions
and a full coverage of traffic scenarios. The typical cruising speed
of the vehicle is 30km/h, .

6 SUMMARY
There is still a long way to go to achieve high-level autonomous
driving. Deep learning is an effective solution but we need more

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Liang, et al.

Figure 11: Novauto’s autonomous driving vehicle.

work to fit it into the on-vehicle computing platform. In this paper,
we introduce our work on efficient computing platform design for
autonomous driving system. We introduce both the software-level
model optimization and hardware-level accelerator designs which
proves the importance of system-level optimizations. We will do
more experiments on-vehicle with our NOVA-30 platform in the
future.

ACKNOWLEDGMENTS
This work was supported by National Key R&D Program of China
(2018YFB0105000), Meituan Group award, National Natural Science
Foundation of China (No. U19B2019, 61832007, 61621091), Tsinghua
EE Xilinx AI Research Fund award, Beijing National Research Cen-
ter For Information Science And Technology award and Beijing
Innovation Center for Future Chip award.

REFERENCES
[1] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once

for All: Train One Network and Specialize it for Efficient Deployment. In Interna-
tional Conference on Learning Representations. https://arxiv.org/pdf/1908.09791.
pdf

[2] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. 2018. Superpoint:
Self-supervised interest point detection and description. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops. 224–236.

[3] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. 2018. Morphnet: Fast & simple resource-constrained structure
learning of deep networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1586–1595.

[4] Kaiyuan Guo, Wenshuo Li, Kai Zhong, and et al. 2020. Neural Network Accel-
erator Comparison. http://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-
accelerator/.

[5] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[6] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[7] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[8] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. 2019. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
12697–12705.

[9] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. 2009. EPnP: An
Accurate O(n) Solution to the PnP Problem. International Journal of Computer
Vision 81, 2 (2009), 155–166.

[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[11] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE International Conference on Computer Vision.
2736–2744.

[12] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

[13] Ral Mur-Artal and Juan D. Tards. 2016. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics
33 (2016), 1255–1262. https://doi.org/10.1109/tro.2017.2705103

[14] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong
Yang. 2020. DSA: More Efficient Budgeted Pruning via Differentiable Sparsity
Allocation. In ECCV.

[15] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. 2020. A
Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based
NAS. In ECCV.

[16] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. 2016.
Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv preprint arXiv:1606.02147 (2016).

[17] Hieu Pham,Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268
(2018).

[18] Jiantao Qiu, J. Wang, Song Yao, K. Guo, Boxun Li, Erjin Zhou, J. Yu, T. Tang, N.
Xu, S. Song, Yu Wang, and H. Yang. 2016. Going Deeper with Embedded FPGA
Platform for Convolutional Neural Network. In FPGA ’16.

[19] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Net-
works. In ECCV.

[20] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[21] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2012. ORB: An
efficient alternative to SIFT or SURF.

[22] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.
Deep reinforcement learning framework for autonomous driving. Electronic
Imaging 2017, 19 (2017), 70–76.

[23] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael Gross. 2018.
Complex-yolo: An euler-region-proposal for real-time 3d object detection on
point clouds. In Proceedings of the European Conference on Computer Vision (ECCV).
0–0.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. 2012. A Bench-
mark for the Evaluation of RGB-D SLAM Systems. In Proc. of the International
Conference on Intelligent Robot Systems (IROS).

[25] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.
2019. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2815–
2823.

[26] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. 2018. Real-time seamless single
shot 6d object pose prediction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 292–301.

[27] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
2000. Bundle Adjustment — A Modern Synthesis. In Vision Algorithms: Theory
and Practice, Bill Triggs, Andrew Zisserman, and Richard Szeliski (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 298–372.

[28] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[29] Zhilin Xu, Jincheng Yu, Chao Yu, Hao Shen, Yu Wang, and Huazhong Yang. 2020.
CNN-based Feature-point Extraction for Real-time Visual SLAM on Embedded
FPGA. In 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 33–37.

[30] Shulin Zeng, Hanbo Sun, Y. Xing, Xuefei Ning, Y. Shan, X. Chen, Yu Wang, and
Hua zhong Yang. 2020. Black Box Search Space Profiling for Accelerator-Aware
Neural Architecture Search. 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC) (2020), 518–523.

[31] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
http://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
http://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://doi.org/10.1109/tro.2017.2705103

	Abstract
	1 Introduction
	2 NN Model Backbone Optimization
	2.1 Model Compression: Network Pruning
	2.2 Hardware-aware Neural Architecture Search

	3 Non-NN Customized Optimization
	3.1 Pre-processing for Point Cloud
	3.2 Post-processing for feature-point extraction

	4 Computing Hardware
	5 Vehicle Platform
	5.1 Sensor Configuration
	5.2 Application Demonstration

	6 Summary
	Acknowledgments
	References

