
Efficient Autonomous Driving System Design:
From Software to Hardware

Yu Wang1, Shulin Zeng1, Kaiyuan Guo2, Xuefei Ning1, Yali Zhao1,2, Zhongyuan Qiu2,
Changcheng Tang2, Shuang Liang2, Huazhong Yang1

1Department of Electronic Enginnering, Tsinghua University 2Novauto Co., Ltd.
Email: yu-wang@tsinghua.edu.cn

I. INTRODUCTION

Recent advancement in algorithm is pushing forward the
application of autonomous driving in real life. The massive
usage of deep learning in autonomous driving is making the
system larger and more complex. On one hand, researchers
are extending the usage of deep learning, from image process
to lidar process, from sensing to control. On the other hand,
people are designing larger models to achieve higher perfor-
mance.

Such trend in algorithm design brings great challenges when
it comes to deployment. As for autonomous driving, system
latency is crucial to the safety issue. So a large platform with
high computing capability is necessary. As the car itself is
usually cost-sensitive and the heat dissipation is hard, the
scale of the chips we can use on car is limited. To resolve
the dilemma, we should take more efforts on the system’s
efficiency.

In this work, we try to increase the autonomous driving
system’s efficiency from both software and hardware aspects.
For the software side, we focus on the deep learning model’s
design, optimize, and deployment stages, trying to reduce
the system’s workload and better fit the program with the
hardware. For the hardware side, we propose customized
accelerator for both neural network (NN) workload and non-
NN workload to improve the overall system’s latency. We will
introduce our work on software and hardware respectively in
section II and section III. Section IV concludes this paper.

II. SOFTWARE

A. Model Design: Neural Architecture Search
The architecture design of a neural network is important for

its performance and inference efficiency. As there exist diverse
types of tasks and hardware platforms, it is costly to rely en-
tirely on expert experiences to design the optimal architecture
in every case. Zoph et al. [1] formulate the neural architecture
search (NAS) problem and propose a reinforcement learning-
based method to automatically design architectures.

We develope a NAS framework, aw nas [2], and its open-
source version is at https://github.com/walkerning/aw nas.
aw nas implements popular NAS algorithms in a modularized
manner. In addition, we develop our improved NAS algo-
rithms, e.g., a predictor-based search strategy with higher sam-
ple efficiency [3], parameter sharing-based evaluation strate-
gies with better ranking correlation [4], and so on.

In order to design an architecture that achieves a double-win
of excellent task performance and high inference efficiency,
hardware-aware NAS that considers the inference latency in
the search process [5], [6] has received much attention. aw nas
also adopt hardware-aware NAS by introducing hardware
profiling, hardware model building into the workflow. We
also propose an example research work [7]. Further, for the
co-exploration of hardware parameters and the architecture
design, we have developed an efficient co-exploration method
targeting the in-memory computing hardware platform in [8].

B. Model Optimization: Pruning & Quantization

Given a trained neural network, one usually needs to com-
press it before deploying it onto the hardware. The two most
popular techniques for model compression are pruning and
quantization. Structural pruning methods [9] aim at removing
structured groups of weights from the model. To conduct
structural pruning targeting given budgets (e.g., #FLOPs of
the resulting model needs to be smaller than a threshold), we
develop a budgeted pruning method [10] that decides a pruning
plan with gradient-based optimization.

As for quantization, early in 2016 [11], we developed an 8-
bit dynamic fixed-point format for efficient inference of NNs
on FPGA. And recently, we develop a multi-level scaling
format to improve the representational capability of low-bit
tensors while ensuring the arithmetic of our low-bit tensors
can be implemented efficiently on hardware [12]. This design
can enable NN training (e.g., using 6-bit format is adequate
to train a model on ImageNet), not limited to NN inference.

We develop toolkits based on PyTorch to compress and
quantize a trained neural network model. The compression
tool is able to parse PyTorch-format model and then iteratively
compress a model to a target budget (FLOPs, parameters, or
latency by fusing hardware models) automatically. Quanti-
zation tool takes ONNX-format model as input and exports
a quantized ONNX model, which supports int8/uint8 high
precision quantization and int8/fp32 fused quantization.

C. Deployment: NOVA-3D

The special characteristics of LiDAR point cloud data such
as sparsity, large data quantity and unstructured data pose huge
challenges that oftentimes lead to highly inefficient algorithms.
For example, the farthest point sampling (FPS) operator [13]
is used for resampling point cloud data. Although its sampling

https://github.com/walkerning/aw_nas


effect is excellent, the time complexity is O(N2). A point
cloud of a 64-channel LiDAR takes 100 to 150ms for a factor-
two down-sampling even on a high-end NVIDIA RTX 2080
Ti GPU. Operators such as sparse convolutions (spconv) [14]
consist of unique and gather/scatter operations and a large
number of memory allocations (mask) which consumes much
time and memory. Some of the more complex spconv-based
3D point cloud perception models need to use mixed precision
to be able to perform normal model training and optimization
even on large training clusters.

To address the above problem, we propose an optimized
operator library on GPU with dedicated implementation using
the CUDA cores and tensor cores, including point cloud
voxelization, spconv, ball query and point sample. We compare
the optimized operators with the open source implementation
spconv on NVIDIA Xavier AGX platform with KITTI dataset.
Experimental results show that we achieve 7.4x speedup on 8
different operators and reduce memory footprint by 50%.

We further developed a PyTorch toolkit that comprises
a complete set of operators, covering pre-processing and
post-processing of the point cloud model, backbone, model
middleware and more. Combined with PyTorch’s own official
operators, we can optimize the entire model construction and
training process of any 3D point cloud model. To handle the
dynamic data size of the point cloud data, a novel constraint
method is adopted which makes the static deployment of 3D
point cloud perception models possible. On the deployment
side, we expand TensorRT to a toolkit with customized oper-
ator plug-ins that is completely consistent with the PyTorch
toolkit. So we can ensure identical results across training and
deployment stage for all operators.

III. HARDWARE

A. Efficient Spatial Multi-Task DNN Accelerators

The design goal of traditional DNN accelerators is to pursue
the ultimate performance and energy efficiency in the single-
task scenario. These single-task optimized DNN accelerators,
e.g., Google TPU [15], NVDLA [16], and Eyeriss [17],
usually put more and more computing units (i.e., multiply-
accumulate units (MACs)) and memory inside a single large
core with the specialized dataflow (e.g., weight stationary [16],
output stationary [18], row stationary [17], etc.). However, as
deep learning is widely used in autonomous driving, DNN
accelerators in autonomous driving system are facing a shift
from single-task to multi-task workloads [19]. For example,
DNN accelerators need to simultaneously process different
DNN models applied to scene perception and localization
[20], path planning and behavior arbitration [21], and motion
controller [22].

Recently, the community has paid much attention to the
importance of introducing the multi-task feature into DNN
accelerators. In this talk, we will start with a review of
recent studies on multi-task DNN accelerators. Then, we will
introduce the basic idea of our proposed multi-task DNN
accelerator, that is, the shift from temporal sharing a single
large core to spatial sharing multiple small cores [23]. We

show that the system throughput of spatial multi-core virtu-
alized design outperforms that of temporal single-core static
design by 3-6×. Finally, we will discuss the design space
exploration of spatial multi-task DNN accelerators from a
coordinated architecture, mapping, and scheduling perspective.
Our proposed co-exploration framework can find the optimal
design under different workloads, which rivals Planaria [24]
and Herald [25] by 3.0-7.5× and 1.8-3.6× Energy-Delay-
Product (EDP) reduction.

B. Efficient Non-NN accelerators

When DNN accelerators cover the 99% of computation
requirement in autonomous driving, the rest part, usually runs
on CPU, may become the bottleneck. Prototype systems to
evaluate algorithms usually contains not only high-end GPUs,
but also server level CPUs. Tasks like feature extractions or
point cloud registrations neither runs efficiently on GPUs or
DNN accelerators and affects the system’s latency. We pro-
pose a set of FPGA-based accelerators to solve the problem,
including:

• An ORB feature extraction accelerator with dedicated
image pyramid and descriptor pipeline.

• An image mosaicing accelerator supporting parking space
detection, using end-to-end pixel mapping.

• Two Lidar point cloud pre-processors for BEV-based
detection with Complex YOLO [26] and PointPillars [27]
respectively.

• A point cloud registration accelerator used for car local-
ization.

Experimental results show that the proposed accelerators
achieves 5 to 50 times of speed up over embedded CPUs on
FPGA, as shown in Table I.

TABLE I
CUSTOMIZED IP ACCELERATION OVER EMBEDDED CPU.

task
latency(ms)

Acc.
ARM FPGA

ORB Feature Extraction 696 33 21x
Image mosaicing 70 13.5 5.2x
Complex Yolo preprocess 90.9 9.6 9.7x
PointPillars preprocess 88.7 8 11x
Point Cloud Registration 2130 42.5 50x

IV. SUMMARY

In this paper, we introduce our work on improving the
efficiency of an autonomous driving system. For software, we
use NAS to improve the model architecture’s efficiency at the
design stage and further compress the model with pruning
and quantization. We also propose an optimized operator
library to increase the hardware utilization ratio at runtime. For
hardware, we propose customized accelerators for both NN
and non-NN workloads to improve the system’s efficiency. In
the future, research should focus on system level’s view, where
there are more task-oriented optimization opportunities.



ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No. U19B2019, 61832007, 62104128),
National Key RD Program of China (No. 2017YFA02077600);
China Postdoctoral Science Foundation (No. 2019M660641);
Tsinghua EE Xilinx AI Research Fund; Beijing National
Research Center for Information Science and Technology
(BNRist); Beijing Innovation Center for Future Chips. The
authors thank Toyota for the support.

REFERENCES

[1] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in International Conference on Learning Representations
(ICLR), 2017.

[2] X. Ning, C. Tang, W. Li, S. Yang, T. Zhao, N. Zhang, T. Lu, S. Liang,
H. Yang, and Y. Wang, “aw nas: A modularized and extensible nas
framework,” 2020.

[3] X. Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang, “A generic graph-
based neural architecture encoding scheme for predictor-based nas,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2020.

[4] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang,
“Evaluating efficient performance estimators of neural architectures,”
in Thirty-Fifth Conference on Neural Information Processing Systems
(NeurIPS), 2021.

[5] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 2815–2823.

[6] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations (ICLR), 2020.

[7] S. Zeng, H. Sun, Y. Xing, X. Ning, Y. Shan, X. Chen, Y. Wang, and
H. zhong Yang, “Black box search space profiling for accelerator-aware
neural architecture search,” 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 518–523, 2020.

[8] H. Sun, C. Wang, Z. Zhu, X. Ning, G. Dai, H. Yang, and Y. Wang, “Gib-
bon: Efficient co-exploration of nn model and processing-in-memory
architecture,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2022.

[9] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[10] X. Ning, T. Zhao, W. Li, P. Lei, Y. Wang, and H. Yang, “Dsa: More
efficient budgeted pruning via differentiable sparsity allocation,” in
ECCV, 2020.

[11] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga
platform for convolutional neural network,” in ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2016,
pp. 26–35.

[12] K. Zhong, X. Ning, G. Dai, Z. Zhu, T. Zhao, S. Zeng, Y. Wang, and
H. Yang, “Exploring the potential of low-bit training of convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2022.

[13] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[14] Y. Yan and B. Li, “Spconv: Pytorch spatially sparse convolution library,”
website, 2021, https://github.com/traveller59/spconv/tree/v1.2.1.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[16] NVIDIA, “Nvdla deep learning accelerator,” website, 2017, http://nvdla.
org.

[17] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–379,
2016.

[18] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2015, pp. 92–104.

[19] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[20] H. Zhu, K.-V. Yuen, L. Mihaylova, and H. Leung, “Overview of
environment perception for intelligent vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601, 2017.

[21] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng,
D. Rus, and M. H. Ang, “Perception, planning, control, and coordination
for autonomous vehicles,” Machines, vol. 5, no. 1, p. 6, 2017.

[22] M. A. Kamel, A. T. Hafez, and X. Yu, “A review on motion control of
unmanned ground and aerial vehicles based on model predictive control
techniques,” Journal of Engineering Science and Military Technologies,
vol. 2, no. 1, pp. 10–23, 2018.

[23] S. Zeng, G. Dai, H. Sun, K. Zhong, G. Ge, K. Guo, Y. Wang, and
H. Yang, “Enabling efficient and flexible fpga virtualization for deep
learning in the cloud,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2020, pp. 102–110.

[24] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim et al., “Planaria: Dynamic
architecture fission for spatial multi-tenant acceleration of deep neural
networks,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 681–697.

[25] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chan-
dra, “Heterogeneous dataflow accelerators for multi-dnn workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 71–83.

[26] M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, “Complex-yolo:
An euler-region-proposal for real-time 3d object detection on point
clouds,” in Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, 2018, pp. 0–0.

[27] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 697–12 705.

https://github.com/traveller59/spconv/tree/v1.2.1
http://nvdla.org
http://nvdla.org

	Introduction
	Software
	Model Design: Neural Architecture Search
	Model Optimization: Pruning & Quantization
	Deployment: NOVA-3D

	Hardware
	Efficient Spatial Multi-Task DNN Accelerators
	Efficient Non-NN accelerators

	Summary
	References

