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Abstract—Transformer-based video generation models have

demonstrated significant potential in content creation. However,
the current state-of-the-art model employing “3D full attention”
encounters substantial computation and storage challenges. For
instance, the attention map size for CogVideoX-5B requires 56.50
GB, and generating a video of 49 frames takes approximately
1 minute on an NVIDIA A100 GPU under FP16. Although
model quantization has proven effective in reducing both memory
and computational costs, applying it to video generation models
still faces challenges in preserving algorithm performance while
ensuring efficient hardware processing. To address these issues,
we introduce PARO, a video generation accelerator with pattern-
aware reorder-based attention quantization. PARO investigates
the diverse attention patterns of 3D full attention and proposes
a novel reorder technique to unify these patterns into a unified
“block diagonal” structure. Block-wise mixed precision quantiza-
tion is further applied to achieve lossless compression under an
average bitwidth of 4.80 bits. In terms of hardware, to overcome
the limitation of existing mixed-precision computing units could
not fully utilize the attention map bitwidth to accelerate QK
multiplication, PARO designs an output-bitwidth aware mixed-
precision processing element (PE) array through hardware-
software co-design. This approach ensures that the mixed-
precision characteristics are fully utilized to enhance hardware
efficiency in the bottleneck attention computation. Experiments
demonstrate that PARO delivers up to 2.71× improvement in
end-to-end performance compared to an NVIDIA A100 GPU and
achieves up to 6.38∼7.05× speedup over state-of-the-art ASIC-
based accelerators on the CogVideoX-2B and 5B models.

Index Terms—Video Generation Model, Mixed-precision
Quantization, Hardware Accelerator.

I. INTRODUCTION

Diffusion Transformers (DiTs) [1] and video generation
models [2] have garnered significant research interest after the
impressive generation quality of OpenAI’s SORA [3] in 2024.
Previous researches, like OpenSORA [2], utilize “spatial-
temporal” attention, which performs attention separately along
the spatial and temporal dimensions. More recent models such
as CogVideoX [4] adopt “3D full attention”, which processes
all the spatial tokens for all frames together. Such an attention
scheme further enhances algorithm performance, thus achiev-
ing state-of-the-art video generation quality. However, such an
attention scheme leads to an order of magnitude increase in the
token length for attention computation, resulting in excessive
storage and computation costs. For example, the token length
is 17.8k for the CogVideoX model, and the attention map
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Fig. 1. Overview of the challenges and solutions in PARO.

takes up 56.50 GB for each transformer block. The attention
computation accounts for 67.93% of the overall latency on an
NVIDIA A100 GPU, which becomes the major bottleneck.

To mitigate computation and memory consumption, model
quantization is a highly effective technique that replaces high-
precision floating-point weights and activations with low-bit
integers. Low-bit integer multiplications are more hardware-
efficient compared to high-precision floating-point operations.
Although many existing researches have explored the quan-
tization [5]–[10] of Vision Transformers (ViT) [11], directly
applying existing methods to the models with 3D full attention
causes notable degradation under INT8 and failure under
INT4. Moreover, existing hardware accelerators can only ben-
efit from the low-bit input tensors, failing to efficiently handle
the scenario of computing the low-bit (e.g., 2bit) attention map
from Q,K embeddings in higher-bits (e.g., 8bit), which is the
bottleneck of 3D full attention video generation models.

To address these challenges, we delve into the data distribu-
tion characteristics of the attention maps. As illustrated in the
upper left part of Fig. 1, we observe diverse “diagonal” pat-
terns across different attention heads and transformer blocks.
These patterns arise from the local information aggregation
properties inherent in vision feature extraction. Traditional
quantization methods assign the same set of quantization
parameters to each row of the attention maps. However, the
larger elements on the diagonal act as “outliers”, leading to
excessively large quantization scaling factors. In these cases,
the majority of values are forcedly set to near-zero values,



thus losing discriminative abilities, and resulting in large
quantization errors. To mitigate this, we propose a reorder-
based mixed-precision quantization method. By reordering the
QK embeddings along the token dimension, we transform the
diverse patterns into a unified “block diagonal” pattern and
apply block-wise quantization. This reorder effectively clusters
similar values into local blocks, reducing data variation within
these blocks and thereby minimizing quantization errors.
Moreover, different blocks show diverse attention values, con-
tributing differently to the final attention outputs. Therefore,
to compress for lower bits, we introduce mixed-precision
quantization, which assigns higher bitwidths to blocks with
larger attention values and quantization difficulty, thereby
optimizing the overall quantization accuracy and efficiency.

In terms of hardware efficiency, existing mixed-precision
computing units perform multiplication and accumulation
(MAC) operations based on the bitwidths of the input tensors.
These units are unable to leverage the mixed-precision of
the output to reduce computational workload. Taking atten-
tion computation as a typical example, the attention map,
as discussed earlier, can be quantized to mixed precision
(e.g., 2/4 bits), while the QKV embeddings remain 8bit. For
the AttnV computation, the mixed-precision characteristics
of the attention map can be effectively utilized by existing
mixed-precision computing units. However, for QK⊤, despite
the lower precision of the output attention map, existing
computing units are constrained by the input bitwidths and
must perform the matrix multiplication in 8bits. This limitation
prevents them from exploiting the lower bitwidths of the
output to further improve computational efficiency. To address
this, with a pre-determined lower bitwidth configuration of
the output tensor, the matrix multiplication can be performed
in reduced bitwidths, aligned with the output precision. Un-
like current methods that optimize only AttnV [10], [12],
this approach enables the acceleration of both QK⊤ and
AttnV computations, with negligible accuracy loss. By further
exploiting the acceleration opportunities offered by mixed-
precision attention maps, this method boosts the efficiency of
attention processing, which is the performance bottleneck.

The contributions of PARO are as follows:

• We identify the key limitation of existing quantization
methods by investigating the unique properties of “3D
full attention” in video generation models, and design a
reorder-based mixed-precision quantization method tai-
lored for them.

• To fully harness the performance gain of mixed-precision
quantization schemes, we design output-bitwidth aware
mixed-precision processing elements (PEs). It fully ex-
ploits the capability of PEs to adapt to mixed-precision
cases for both QKT and AttnV in attention computation.

• PARO achieves lossless quantization with an averaged
4.80bit and outperforms state-of-the-art ViT accelerator
ViTCoD by 6.38∼7.05×. Evaluated under the same hard-
ware resources, PARO achieves a 1.68∼2.71× speedup
to an NVIDIA A100 GPU.
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Fig. 2. Illustration of CogVideoX text-to-video generation model, in which
the major bottleneck is the attention map related computations.

II. BACKGROUND AND RELATED WORK

A. Video Generate DiTs
As discussed in Sec. I, our primary focus is to optimize the

state-of-the-art video generation model, which utilizes a 3D
full-attention mechanism, specifically the CogVideoX model.
The model structure of CogVideoX is illustrated in Fig. 2,
it comprises 42 transformer blocks. Each transformer block
consists of two key components: multi-head self-attention
(MHA) and feed-forward network (FFN). The computation of
the MHA could be formulated as:

Q = XWQ,K = XWK , V = XWV , O = Softmax(
QKT

√
d

)V

Given an input token sequence with hidden dimension d,
the attention projects it into query Q, key K, and value V
matrices through linear layer with weights WQ,WK ,WV .
Then, softmax is applied to the dot product of Q and K,
divided by

√
d to generate the attention map. Finally, the

attention map is multiplied with V to generate the attention
output. Subsequently, the FFN processes the attention output
O with several full-connected linear layers. In CogVideoX,
Ntoken is 17.8k, which is significantly larger than the hidden
dimension (d), ranging from 1k to 4k. The computation of the
attention map, which has a shape of [Ntoken, Ntoken], becomes
the major bottleneck (highlighted in red in Fig. 2).

B. DiT Quantization
Model quantization [13], [14] has been demonstrated as an

effective method for model compression. By converting high
bitwidth floating-point (FP) data into lower bitwidth integers,
it significantly reduces both computational and memory costs.
In this approach, weights and activations are quantized within
each group G (e.g., tensor-wise or channel-wise). The quanti-
zation process approximates the FP value x using an integer
representation xint and quantization parameters (scaling factor
s, zero point z):

x ≈ x̂ = s(xint − z)

For a group of size g, represented as the vector x ∈ Rg , all
elements share the same quantization parameters (s and z).
The quantization operator Q with b-bit is described as:

xint = Q(x; s, z, b) = clamp(
⌊x
s

⌉
+ z, 0, 2b − 1)
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Fig. 3. Detailed description of the reorder process. Q, K, V are reordered
along the token dimension to form a unified “block diagonal” pattern. The
attention output O is inversely reordered to ensure mathematical equivalence.

In the quantization schemes used in recent work, weights are
quantized offline, while activations are dynamically quantized
online using a scaling factor s = max(x)−min(x)

2b−1
, where b is the

bit width. The granularity for the quantization of weight and
activation in linear layers is “per dimension” and “per token”,
respectively. For attention map quantization, the granularity is
“per-row” for attention values and “per-dimension” for V .

C. Related Work

DiT Quantization. Existing methods [15] for DiT quantiza-
tion focus on compressing the linear layers in video generation
models with spatial-temporal attention. SageAttention and its
follow-up work [16]–[18] further advance this by employing
8-bit quantization for QK in attention map computation to
accelerate ”3D full attention.” In our method, we extend
quantization to the linear layers, QKV , and attention maps,
aiming to minimize expensive floating-point computations.
Hardware Accelerators. Extensive researches [19]–[24], have
focused on designing customized accelerators for attention
mechanisms. Sanger [25] introduces a locally structured sparse
approach to reduce computational overhead. However, this
method faces significant challenges when applied to video
generation models. ViTCoD [26] addresses this issue with a
threshold-based dynamic sparsification technique specifically
designed for the attention mechanism in video generation
models. It partitions the attention matrix into sparse and dense
segments, processing them separately to improve efficiency.
Other works [20], [24], [27] have explored strategies such as
token pruning and joint video encoding to accelerate entire
models. Despite these advancements, two major limitations
persist for 3D attention mechanisms. First, existing meth-
ods fail to leverage the inherent similarities in 3D attention
patterns, limiting opportunities for further optimization and
compression. Second, their coarse-grained compression tech-
niques struggle to achieve a balance between maintaining high
accuracy and delivering significant acceleration, particularly
without requiring additional model retraining.

III. REORDER-BASED ATTENTION QUANTIZATION

A. Reorder-based Block-wise Quantization

In the popular 3D full attention models (e.g., CogVideoX),
the token length (Ntoken) is significantly larger than the hidden
dimension (d), leading to attention computation dominating
the overall computational cost due to its quadratic complexity

with respect to token length. As such, quantizing the attention
map is critical for resource efficiency. However, attention
quantization presents unique challenges. SageAttention, for in-
stance, only quantizes the Q and K tensors, which accelerates
only half of the attention computation.

In this paper, we extend this approach by quantizing Q,
K, V , and the attention map. We begin by adopting a naive
quantization scheme, adopting dynamic min-max quantization,
using row-wise grouping for the attention map and dimension-
wise grouping for V . However, we observe severe quality
degradation under INT8 when solely quantizing the attention
map. Additionally, the INT4 results in unreadable noise out-
puts. To investigate the causes of these issues, we visualize
the attention map. As shown in the upper left part Fig. 1, the
data within each quantization group (a row in the attention
map) exhibits significant variation. A small subset of values,
or “outliers”, are significantly larger than the rest. The scaling
factor (s) is determined based on these outliers, resulting in
an excessively large scaling factor for most elements and
introducing significant quantization errors. Based on these
findings, we aim to reduce quantization errors by minimizing
data variation within each quantization group.

We further visualize and analyze the structure of attention
maps and observe distinct patterns across different blocks
and heads, as illustrated in the upper left part of Fig. 1.
An intuitive approach is to leverage these patterns to design
specialized quantization groupings that reduce data variation
within groups. However, the diversity of these patterns in-
troduces challenges in designing distinct groupings for each
case. To address this, we propose transforming these diverse
patterns into a unified, hardware-friendly format to enhance
hardware efficiency. Through detailed analysis, we find that all
patterns essentially represent local aggregation across different
dimensions (e.g., the same token across frames or neighboring
spatial tokens). By reordering tokens, we can reorganize these
patterns into local blocks, as shown in the upper right part
of Fig. 1(b). Using block-wise grouping for quantization
minimizes variation within each block, thereby reducing quan-
tization error and improving overall performance.

Given an input token of size Nframe × Nwidth × Nheight, we
achieve local block-wise patterns by permuting these dimen-
sions for the QK embeddings through token-level reorder.
There are a total of 6 possible reorder plans for each attention
head. Notably, the observed patterns remain consistent across
different timesteps and input noise or prompts. We select
the reorder plan that minimizes quantization error for each
head and block offline. The reorder itself is performed online.
Due to the compute-bound nature of the model, the overhead
introduced by reorder is negligible.

B. Importance-guided Mixed Precision

As shown in the upper right part of Fig. 1, after reordering,
similar values are grouped into localized blocks, however,
different blocks still exhibit varying value distributions and
contribute differently to the final results. These blocks have
diverse “quantization sensitivities”. Consequently, applying the
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same bitwidth to all blocks results in a suboptimal trade-off
between algorithm quality and hardware efficiency. A natural
solution is to adopt mixed-precision quantization, allocating
higher bitwidths to blocks with higher sensitivity.

Accurately estimating the “quantization sensitivity” is cru-
cial for effective mixed-precision bitwidth allocation. We
identify two key characteristics of data distribution that influ-
ence quantization sensitivity: (1) “Block Importance”: The
average absolute values of each block vary, reflecting their
relative significance for attention values. (2) “Quantization
Difficulty”: Within each block, the degree of data variation
differs, representing the block’s “quantization difficulty”. Both
highly important blocks and those with larger quantization
difficulty should be assigned higher bitwidths. Considering
these factors, we propose the following sensitivity metric:

S = (

G∑
i

xi)
α ∗ (||xi − xq||)(1−α), x ∈ RG

For each block containing G values, we employ the average
attention value as the “importance” and the quantization error
to represent the “quantization difficulty”. The hyper-parameter
α serves to balance the relative emphasis between these
two factors. Then, we formulate mixed precision bitwidth
allocation as an integer programming problem as follows:

argmin
ci,b

N∑
i=1

∑
b=0,2,4,8

ci,b · Si,b

s.t.
∑

b=0,2,4,8

ci,b = 1,
N∑
i=1

∑
b=0,2,4,8

ci,b · b ≤ B ·N,

ci,b ∈ {0, 1}, ∀i ∈ {1, · · · , N},∀b ∈ {0, 2, 4, 8}

(1)

where N is the number of blocks in the model; ci,b = 1
indicates that the i-th block will be quantized to b-bit, and Si,b

is the corresponding sensitivity score, B indicates the average
bitwidth budget.

IV. PARO ARCHITECTURE

A. Architecture Overview

The overall architecture of PARO is shown in Fig. 4(a),
comprising multiple PE arrays, vector units, DDR, and a
controller (not shown in the figure). Among these components,
the fixed-point PE arrays serve as the primary fixed-point
computation unit of the architecture, executing all matrix
multiplications since PARO applies quantization to all linear
and attention layers. The vector unit features a floating-point
arithmetic and logic unit (ALU) and handles floating-point
computations outside matrix multiplications (e.g., softmax).
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As the quantization scales for linear and attention layers are
in FP16 format, fixed-point accumulation results computed by
the fixed-point PE arrays are forwarded to the vector unit. The
vector unit converts these results to FP16 format and performs
floating-point accumulation, yielding the final FP16 output for
matrix multiplication.

B. Mixed-precision PE Array

The structure of each PE in the mixed-precision PE array
is shown in Fig. 4(b). Each PE consists of four 2bit×8bit
fixed-point multipliers. By adjusting the control signals of
the multiplexers, each PE can execute one 8bit×8bit, two
4bit×8bit, or four 2bit×8bit multiplications per cycle.

For linear layers with W8A8 quantization, the PE array op-
erates in 8bit×8bit mode, as shown in Fig. 5(a). In contrast, for
attention layers, the bitwidth varies across different blocks in
the attention map, while the QKV matrices remain 8bit. Since
QK⊤ and AttnV each account for half of the computations in
attention, the PE array must efficiently handle two scenarios:

• AttnV : One input matrix (attention map) is mixed-
precision while the other (V ) is 8bit.

• QK⊤: Both input matrices (Q,K) are 8bits, but the out-
put matrix after softmax is quantized to mixed-precision.

For AttnV , computations can be directly mapped to the
PE array by dynamically configuring the PE mode based on
the bitwidth table of each block in the attention map. For
QK⊤, performing matrix multiplication at the bitwidth of the
inputs is often computationally expensive because the output
may be quantized to extremely low bitwidths (e.g., 2bit) after
softmax. In extreme cases, such as when the attention map
block has a bitwidth of 0, the computation for that block
can be skipped entirely. To reduce computational costs, the
matrix multiplication can be performed at a lower precision
that approximates the same result after softmax quantization.

Inspired by this, PARO adopts an output-bitwidth-aware
mixed-precision computation flow to leverage the mixed-
precision characteristics of the output attention map. As il-
lustrated in Fig. 5(b), this approach dynamically reduces the
bitwidth of K to match the bitwidth of the corresponding
output attention map block with little error. Experiments show
that this optimization produced no perceptible differences in
the quality of the generated video. By performing matrix mul-
tiplication at lower precision, the mixed-precision PE Array
effectively accelerates QK⊤ computation.

Bitwidth reduction of K is implemented using a leading
zero (LDZ) unit, integrated beside each PE row, as shown in
Fig. 4(a). The LDZ unit identifies the most significant valid
bit (MSVB) of the data and outputs the MSVB along with the
following K − 1 bits. The MSVB is the first 1 for positive



TABLE I
ALGORITHM PERFORMANCE OF TEXT-TO-VIDEO GENERATION ON COGVIDEOX PROMPT SET. THE DESCRIPTION OF METRICS IS PROVIDED IN

SEC. V-A. WE COMPARE PARO QUANTIZATION METHOD WITH BASELINE METHODS, AND ABLATES EACH TECHNIQUE.

Method Block-wise Reorder Mixed Precision Bitwidth FVD-FP16 (↓) CLIPSIM (↑) CLIP-Temp (↑) VQA (↑) Flicker. (↑)

FP16 - - - 16 0.0 0.201 0.997 52.86 97.1

SageAttention [16] - - - 8 (QK-only) 0.08 0.200 0.997 51.25 97.1
Sanger [25] - - - - 0.22 0.195 0.991 50.84 97.0

Naive INT8 - - - 8 0.44 0.201 0.998 49.80 97.0
Block-wise INT8 ✓ - - 8 0.21 0.203 0.997 52.42 97.3
PARO INT8 ✓ ✓ - 8 0.19 0.203 0.997 50.92 97.2

Naive INT4 - - - 4 1.40 0.187 0.997 16.79 96.4
Block-wise INT4 ✓ - - 4 0.40 0.201 0.998 46.53 96.9
PARO INT4 ✓ ✓ - 4 0.28 0.202 0.998 50.12 96.9

PARO MP ✓ ✓ ✓ 4.80 0.15 0.205 0.998 52.61 96.9

values and the first 0 for negative values. For example, if the
LDZ unit is configured as 2bit, the 8bit value 8b00011010
is compressed to 2b11. After multiplication, the result is
restored by left-shifting based on the bit index of MSVB.

The varying bitwidths (0/2/4/8) across different blocks result
in differing throughputs for processing these blocks. Therefore,
a dispatcher is integrated into each PE array to balance
the workloads across blocks. Notably, PARO supports 0bit
quantization blocks. The dispatcher bypasses computation for
0bit blocks and maps the next block to the appropriate PE row.

V. EVALUATIONS

A. Evaluation Setup

Software Implementation. We apply the PARO quantization
method, referred to as “PARO MP,” to the CogVideoX-5B
model. In PARO MP, the weights and activations of all
linear layers are quantized to INT8. For attention computation,
QKV O are quantized to INT8, while the attention map after
softmax is quantized using mixed precision (0, 2, 4, 8 bits).
Notably, ”0 bit” signifies skipping the computation for the
corresponding block. Following the official implementation,
we generate the 640×480, 49 frames videos, using CogVideoX
example prompt set, DDIM [28] 50 steps. We evaluate the
generation quality from various aspects following prior litera-
ture [15]. The “FVD-FP16” [29] estimate the fidelity of gen-
erated videos through measuring the feature space difference
between quantized and FP16 outputs. The “CLIPSIM” [30]
and “CLIP-Temp” [31] measures the text-video alignment and
consistency of clip features across frames. The “VQA” [32]
assesses the video quality from the aesthetic and technical
perspective. The “Flicker.” measures the temporal flickering.
higher value denotes less flickering. We present both the
statistical and qualitative results in Tab. I and Fig. 7.
Platforms for Comparison. We evaluate our architec-
ture against two state-of-the-art ASIC-based accelerators,
Sanger [25] and ViTCoD [26]. The attention map is pruned
following the methods described in their papers, ensuring
that the generation quality and accuracy remain consistent
with PARO. Additionally, we measure the performance of the
NVIDIA A100 using CUDA Events for execution time and
nvidia-smi for power consumption.

TABLE II
AREA AND POWER BREAKDOWN OF PARO.

Component Config Area (mm2) Power (W)

PE Array
32×32×32 PEs 2.52 (30.8%) 3.60 (32.2%)
Leading Zero Unit 0.65 (8.0%) 0.78 (7.0%)
Others 0.39 (4.8%) 0.54 (4.8%)

Vector Unit Exp/Div/Add/Mult/Acc. 2.79 (34.1%) 4.55 (40.6%)

Buffer 1.5 MB SRAM 1.82 (22.3%) 1.73 (15.4%)

Total TSMC 12nm 8.17 (100%) 11.20 (100%)

Hardware Implementation. PARO is implemented using
RTL for its hardware components and synthesized under
TSMC 12nm process at 1 GHz using Synopsys Design Com-
piler to evaluate area and power. The hardware components
are detailed in Tab. II. The DDR bandwidth of PARO is 51.2
GB/s. We use CACTI 7 [33] to assess the on-chip buffer
in PARO. To ensure a fair comparison, we develop a cycle-
accurate simulator to model the behavior and performance
of both PARO and the baseline accelerators under the same
hardware resource constraints. Furthermore, we align PARO’s
hardware resources (e.g., peak computing performance, mem-
ory bandwidth, frequency, on-chip buffer size, etc.) with those
of the NVIDIA A100 GPU to evaluate our performance gains
over modern GPUs, denoted as “PARO-align-A100”.

B. Evaluation Results

Algorithm Performance. We evaluate the algorithm perfor-
mance (generated video quality) against baseline methods,
as detailed in Tab. I and Fig. 7. From both statistical and
qualitative perspectives. “PARO-MP 4.80bit” demonstrates
comparable or superior algorithm performance to baseline
model compression techniques like “SageAttention” and “N:M
sparse”. It notably outperforms “PARO INT4” in all aspects
and achieves similar algorithm performance to “PARO INT8”.
Compared to the FP16 baseline, “PARO-MP 4.80bit” incurs
only a 0.25 VQA decrease and a 0.2 flickering score loss,
which is hardly noticeable, as presented in Fig. 7.
Ablation Studies for Algorithm. We perform ablation studies
for each component of the PARO quantization method, as
shown in Tab. I. The “Naive” represents the naive round-
to-nearest quantization scheme, and both “Naive INT8” and
“Naive INT4” exhibit significant algorithm performance degra-
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Fig. 6. (a) End-to-end speedup on CogVideoX-2B/5B, normalized to Sanger [25]. (b) The ablation study on different optimizations in PARO.

dation across multiple metrics. Incorporating block-wise quan-
tization notably enhances visual quality under INT4, im-
proving from 16.79 to 46.53. Further integrating reorder to
balance the data distribution within blocks further elevates the
generation quality. Ultimately, by adopting mixed precision
quantization, “PARO-MP” achieves algorithm performance on
par with INT8 and FP16, averaging 4.80bit.
Analysis of Attention Patterns. We visualize the attention
maps before and after reorder in Fig. 8. The reorder effec-
tively unifies diverse patterns into quantization- and hardware-
friendly “block diagonal” pattern. It highlights that different
attention heads conduct local aggregation along various dimen-
sions, such as “frame” and “height” in the examples shown.
End-to-end Speedup. As shown in Fig. 6(a), we normalize the
performance of PARO, other accelerators and GPUs to Sanger.
Compared with Sanger and ViTCoD, PARO obtains perfor-
mance improvements of 10.61/12.04× and 6.38/7.05× on
CogVideoX-2B/5B, respectively. Although the A100 achieves
higher end-to-end performance than PARO, this is mainly due
to the higher peak performance and memory bandwidth of
A100. When PARO uses the same hardware parameters as the
A100, it achieves a performance improvement of 1.68/2.71×
compared to the A100. This is primarily due to the mixed-
precision attention quantization and our output-bitwidth aware
mixed-precision computation flow.
Ablation Study for Performance. The breakdown of PARO’s
performance gains are illustrated in Fig. 6(b). The naive
FP16 version includes no optimizations in PARO. Building on
this baseline, we introduced W8A8 linear layer quantization,
4.80bit attention layer quantization, and output-bitwidth aware
mixed-precision computing unit. For the 2B/5B models, linear
layer quantization achieved a 1.07/1.11× speedup. Adding
attention mixed-precision quantization further improved the
speedup to 2.33/2.38×. Finally, incorporating the output-
bitwidth aware mixed-precision optimization increased the
speedup to 3.06/3.00×. Among these optimizations, 4.80bit
attention quantization contributed the most significant im-
provement, as 3D full attention is the performance bottleneck.
Reorder Overhead. We evaluate the overhead of introducing
the reorder for QKV O during inference in PARO. Experi-
mental results show that for the CogVideoX-2B/5B models,
the reorder operation accounts for only 1.26% and 1.07% of
the end-to-end latency, respectively. This is because the data
size of the QKV O matrices is only 0.36% of the attention
map, making the overhead negligible in the highly compute-
bound attention computations.

FP16 SageAttn (QK 8bit) PARO (4.80bit) Naive (4bit)

Fig. 7. Comparison of generated videos for different quantization methods.
The PARO quantization method could generate videos without visual differ-
ence with FP16 generated videos with an averaged of 4.80bit.

After ReorderBefore Reorder

[Height, Width, Frame] [Height, Width, Frame] [Frame, Width, Height][Frame, Height, Width]

Before Reorder After Reorder

Fig. 8. Visualization of attention pattern before and after reorder. The reorder
unifies different patterns into “block diagonal” pattern.
Energy Efficiency. Thanks to our hardware-friendly at-
tention quantization and efficiently mixed-precision PE ar-
ray, PARO achieves energy efficiency of 3.46/3.61 TOPS/W
on the CogVideoX-2B/5B models, respectively, which are
4.86/6.43× higher compared to NVIDIA A100 GPU.

VI. CONCLUSIONS

We present PARO, a video generation accelerator that lever-
ages hardware-software co-design with pattern-aware reorder-
based attention quantization. PARO examines 3D full attention
patterns and introduces a reorder technique to consolidate them
into a block diagonal structure. Block-wise mixed precision
quantization achieves lossless compression with an average
bitwidth of 4.80. The hardware integrates a dynamically recon-
figurable mixed-precision PE array, ensuring full utilization of
mixed-precision characteristics. Experimental results demon-
strate PARO delivers up to 2.71× improvement in end-to-end
performance compared to an NVIDIA A100 GPU and achieves
up to 6.38∼7.05× speedup over state-of-the-art ASIC-based
accelerators on the CogVideoX-2B and 5B models.
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