
JOURNAL OF LATEX CLASS FILES, JANUARY 2022 1

A Generic Graph-based Neural Architecture
Encoding Scheme with Multifaceted Information

Xuefei Ning, Yin Zheng, Zixuan Zhou, Tianchen Zhao,
Huazhong Yang Fellow, IEEE , Yu Wang Fellow, IEEE

Abstract—Neural architecture search (NAS) can automatically discover well-performing architectures in a large search space and has
been shown to bring improvements to various applications. However, the computational burden of NAS is huge, since exploring a large
search space can need evaluating more than thousands of architecture samples. To improve the sample efficiency of search space
exploration, predictor-based NAS methods learn a performance predictor of architectures, and utilize the predictor to sample
worth-evaluating architectures. The encoding scheme of NN architectures is crucial to the predictor’s generalization ability, and thus
crucial to the efficacy of the NAS process. To this end, we have designed a generic Graph-based neural ArchiTecture Encoding
Scheme (GATES), a more reasonable modeling of NN architectures that mimics their data processing. Nevertheless, GATES is
unaware of the concrete computing semantic of NN operations or architectures. Thus, the learning of operation embeddings and
weights in GATES can only exploit the information in architectures-performance pairs. We propose GATES++, which incorporates
multifaceted information about NN’s operation-level and architecture-level computing semantics into its construction and training,
respectively. Experiments on benchmark search spaces show that both the operation-level and architecture-level information can bring
improvements alone, and GATES++ can discover better architectures after evaluating the same number of architectures.

Index Terms—Neural Architecture Search, Predictor-based NAS, Graph-based Encoding, Zero-Shot Information, Ranking Loss

F

1 INTRODUCTION

THE evolution of neural network (NN) architectures is
one of the key driving forces of the rapid development

of deep learning. In the early years, the design of NN
architectures relies on solely manual knowledge and expe-
riences [1], [2], [3], [4]. While recently, neural architecture
search (NAS) [5], [6] emerged as an automatic design tool
of NN architectures. NAS has received substantial attention
and has brought improvements to various applications.

In the pioneering work of [5], the architecture evaluation
is conducted by training every candidate architecture for 50
epochs, and thousands of architectures need to be evaluated
to explore the large search space. As a result, the overall
NAS process is extremely costly (∼48k GPU hours). One
direction to alleviate the computational burden of NAS is to
improve the sample efficiency of the architecture searching
module, so that fewer architectures need to be evaluated for
discovering a good architecture [7], [8], [9], [10].

Along this direction, a promising idea is to learn an
approximated performance predictor, and then utilize the
predictor to sample architectures that are more worth eval-
uating. We refer to these NAS methods [8], [9], [10] as the
predictor-based NAS methods, and we summarize their
general flow in Sec. 3. The generalization ability of the
predictor is crucial to the sample efficiency of the predictor-
based NAS flow. Our work follows the line of research of
predictor-based NAS, and focuses on improving both the
construction and training of the performance predictor.

• X. Ning, Z. Zhou, T. Zhao, H. Yang, Y Wang were with the Department
of Electronic Engineering, Tsinghua University, China.
E-mail: foxdoraame@gmail.com (X. Ning), yanghz@tsinghua.edu.cn (H.
Yang), yu-wang@tsinghua.edu.cn (Y. Wang)

• Y. Zheng is with Wechat group, Tencent.

From the construction aspect, a performance predictor
needs to encode architectures into vectors in a continuous
space. And existing neural architecture encoding schemes
include the sequence-based scheme and the graph-based
scheme. The sequence-based schemes [8], [9], [10] rely on
some specific serialization of the architecture. They do
not model the topological information explicitly, which
deteriorates the representational power of the predictor.
Existing graph-based schemes [11], [11], [12] apply graph
convolutional networks (GCN) [13] to encode the neural
architectures. These schemes embed the operations (e.g.,
Conv3x3, MaxPool) as node embeddings, aggregate these
node embeddings on the directed acyclic graph (DAG) for
several steps, and finally use the aggregated node embed-
dings to construct a global embedding as the architecture
representation. In other words, these methods embed the
NN operations as the information to be passed and aggre-
gated on the graph. Note that these schemes neglect the
fact that a neural architecture is a “data processing” graph,
where the operations behave as data processing “functions”
instead of the “data” itself.

Following this intuition, we have proposed a general
encoding scheme: Graph-based neural ArchiTecture Encoding
Scheme (GATES), which is suitable for the representation
learning of data processing graphs such as neural architec-
tures. Specifically, to encode a neural architecture, GATES
models the information flow of the actual data processing of
the architecture. First, GATES models the input information
as the attributes of the input nodes. And the input informa-
tion will be propagated along the architecture DAG. GATES
models the operations (e.g., Conv3x3, MaxPool) as trans-
forms of the information, instead of the information itself.
Finally, the output information is used as the embedding of

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 2

the cell architecture. Since the encoding process of GATES
mimics the actual computation flow of the architectures,
GATES intrinsically maps isomorphic architectures to the
same representation. Moreover, GATES can encode archi-
tectures from different search spaces in a consistent way.

From the training aspect, we realized that it is more
important for the predictor to give out correct architecture
ranking rather than absolute accurate predictions in the
NAS process. Therefore, we have proposed to use ranking
losses to train the predictor. Using ranking losses helps to
improve the ranking quality of architecture predictor, since
ranking losses are better surrogates of the ranking measures.

The design of GATES and the usage of training loss
correspond to the characteristics of NN architectures and
NAS problem. Both techniques significantly boost the gen-
eralization ability of the predictor to unseen architectures.

However, the construction and training of GATES are
unaware of the concrete computing semantics of NN op-
erations and architectures. That is to say, the learning of
operation embeddings and weights in GATES can only
exploit the information in the pairs of architecture descrip-
tions and ground-truth performances. To further empower
GATES, this paper proposes GATES++, which incorporates
multifaceted information about NN’s operation-level and
architecture-level computing semantics into its construction
and training. 1) Into the predictor construction: We con-
catenate operation-level zero-shot metrics onto the trainable
operation embedding in the GATES construction. This infor-
mation provides prior knowledge to the predictor regarding
NN’s actual operation-level computing semantics. For ex-
ample, almost all types of zero-shot metrics can reflect that
Conv3x3 is more similar to Conv5x5 than MaxPool. 2) Into
the predictor training: We add an auxiliary regression head
onto GATES to fit various zero-shot metrics. These metrics
provide multifaceted architecture-level information of NN,
and learning to fit this information might encourage the
encoder to learn better architecture representation.

The contributions of this paper are as follows.
• We propose a Graph-based neural ArchiTecture Encod-

ing Scheme (GATES), a more reasonable modeling of
NN architectures that mimics their data processing. In
contrast to existing GCN encoding schemes that model
NN operations as node attributes (i.e., node information)
to be propagated and aggregated, GATES models the
NN operations as the transforms of node attributes.

• We propose to employ ranking losses to train the pre-
dictor to achieve better ranking quality, since it is more
important for the predictor to give out correct architec-
ture ranking rather than absolute accurate predictions.

• Based on GATES, we propose a Graph-based neural
ArchiTecture Encoding Scheme++ (GATES++), which
incorporates multifaceted information about NN’s
operation-level and architecture-level computing se-
mantics into its construction and training. Specifically,
operation-level zero-shot metrics are concatenated onto
the trainable operation embedding of the GATES con-
struction, and an auxiliary regression to fit architecture-
level zero-shot metrics is added in the training process.

• Experimental results show that GATES and GATES++
consistently outperform baseline predictors when us-
ing different numbers of training architectures. And

the multifaceted architectural information incorporated
helps GATES++ to achieve a good ranking quality with
a minimal number of training architectures.
This paper extends our preliminary version (GATES) [14]

from several aspects. 1) GATES++ extends the encoding
scheme in GATES by concatenating operation-level zero-
shot metrics onto the original operation embeddings. This
brings operation-level information into the encoding pro-
cess. 2) GATES++ extends the training scheme in GATES by
adding an auxiliary regression head and encouraging it to
fit multiple architecture-level zero-shot metrics. This brings
architecture-level information into the trained predictor
through the training process. 3) We provide comprehensive
ablation studies and experimental results to demonstrate the
effectiveness of GATES++. 4) We provide experiments on a
new benchmark search space, NAS-Bench-301 [15].

2 BACKGROUND AND RELATED WORK

2.1 Neural Architecture Search
In recent years, neural architecture search (NAS) has been
proposed as an automatic design tool of NN architectures.
A pioneering work, Zoph et al. [5] use a recurrent neural
network (RNN) controller to sample architectures, and em-
ploy reinforcement learning to learn the controller based on
the validation accuracy of these architectures.

Generally speaking, there are three key components
in a NAS framework [6], the architecture search space, the
architecture searching module and the architecture evaluation
module. Specifically, the architecture search space designates
the architectural decisions to make, and the architecture
searching module conducts exploration in the search space
to sample architectures for evaluation. And the architec-
ture evaluation module gives out the evaluation results of
sampled architectures, e.g., accuracy, latency, etc., and feeds
them back to the architecture searching module.

The vanilla NAS algorithm [5] is prohibitively costly, and
there are two directions to alleviate the huge computational
burden of NAS, which focus on improving the searching
and evaluation module, respectively. 1) Evaluation: accel-
erating the evaluation of each individual architecture [16],
[17], [18], [19]; 2) Searching: increasing the sample efficiency
so that fewer architectures needed to be evaluated for dis-
covering a good architecture [7], [8], [9], [10].

2.2 Architecture Evaluation Module
One commonly used technique to accelerate architecture
evaluation is parameter sharing [17], [18], [19], where a
super-net is constructed such that all architectures in the
search space share a superset of weights. In this way, the
training costs of architectures are amortized to an “one-
shot” super-net training. Parameter sharing dramatically
reduces the computational burden and is widely used by
recent methods. However, recent studies [20], [21], [22] re-
veal that the ranking of architecture candidates with param-
eter sharing might fail to reflect their true rankings, which
dramatically affects the effectiveness of the NAS algorithm.

Moreover, the parameter sharing technique is not gener-
ally applicable, since it is difficult to construct the super-net
for some search spaces, for example, in NAS-Bench-101 [23],

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 3

the output dimension of one operation can vary across
candidate architectures. Due to these limitations, this work
does not use parameter sharing, and focuses on improving
the sample efficiency of the architecture searching module.

2.3 Architecture Searching Module
To improve the sample efficiency of the architecture search
module, a variety of search strategies have been used, e.g.,
RL-based methods [5], [18], Evolutionary methods [7], [24],
Monte Carlo Tree Search (MCTS) method [25], etc.

A promising direction to improve the sample efficiency
of NAS is to utilize a performance predictor to sample new
architectures, a.k.a. predictor-based NAS. An early study [8]
trains a surrogate model (predictor) to identify promising
architectures with increasing complexity. NASBot [26] de-
sign a distance metric in the architecture space and exploits
Gaussian Process to get the posterior of the architecture per-
formances. Then, it samples new architectures based on the
acquisition function calculated using the posterior. NAO [9]
trains an LSTM-based autoencoder together with a perfor-
mance predictor based on the latent representation. After
updating the latent representation following the predictor’s
gradients, NAO decodes the latent representation to sample
new architectures. BRP-NAS [27] uses a GCN to predict the
hardware latencies as well as the architecture accuracies.
Arch-Graph [28] jointly encodes the task embedding and the
architecture pair using a GCN-based predictor to support
task-transferable search.

2.4 Neural Architecture Encoders
Existing neural architecture encoding schemes include
sequence-based and graph-based ones. In the sequence
based scheme, the neural architecture is flattened into a
string encoding the architecture decisions, then encoded
using either an LSTM [8], [9], [10] or a Multi-Layer Per-
ceptron (MLP) [8], [10]. In these methods, the topological
information could only be modeled implicitly, which de-
teriorates the encoder’s representational ability. Also, the
search efficiency would deteriorate since these encoders
could not guarantee to map isomorphic architectures [23],
[29] to the same representation, and data augmentation and
regularization tricks are utilized to alleviate this issue [9].

In this paper, we classify topological search spaces into
two types, the “operation on node” (OON) search spaces,
and the “operation on edge” (OOE) search spaces. The
operations (e.g., Conv3x3) in the OON search spaces are on
the nodes of the DAG. Some representatives include NAS-
Bench-101 [23], and the randomly wired search space [30].
While in the OOE search spaces, the operations are on the
edges of DAG. Representatives include NAS-Bench-201 [31],
NAS-Bench-301 [15], ENAS [18] and so on. Figure 2 gives an
illustration of the OON and OOE search spaces.

Recently, the graph-based encoding scheme that utilizes
the topological information explicitly has been used to get
better performance. In these graph-based schemes, graph
convolutional networks (GCN) [13] are usually used to
embed the graphs to fixed-length vector representations.
For the “operation on node” search spaces, in which the
operations (e.g., Conv3x3) are on the nodes of the DAG,
GCN can be directly applied [12] to encode architectures,

i.e., using adjacency matrix and operation embedding of
each node as the input. However, for the “operation on
edge” search spaces, in which the operations are on the
edges, GCN cannot be applied directly. Zhang et al. [32] pro-
poses an asynchronous message passing scheme to encode
DAGs, and conducts NAS-related experiments on the ENAS
search space, an OOE search space. The design intuition
of this scheme is similar to ours. Another study [11] pro-
poses an ad-hoc solution for the ENAS search space. They
represent each node by the concatenation of the operation
embeddings on the input edges. This solution is contrived
and cannot generalize to search spaces where nodes have
different input degrees. Moreover, since concatenations are
not commutative, this encoding scheme could not handle
isomorphic architectures correctly. In brief, existing graph-
based encoding schemes are specific to different search
spaces, and a generic approach for encoding the neural
architectures is desirable in the literature.

Following the encoder design (GATES) in the prelim-
inary version of this work [14], Chen et al. [33] consider
the unequal contribution of the operations and use a set of
weighting coefficients to aggregate information flow from
different operations.

2.5 Zero-Shot Metrics of Architectures
Operation-Level Metrics NN pruning is a large research
field that aims at pruning out redundant parameters from
a neural network. Most pruning methods [34], [35], [36]
require training before or along with pruning. While a
special type of pruning-at-initialization methods [37], [38],
[39], [40] propose various types of per-parameter saliency
metrics, and utilize these metrics to prune out less-salient
parameters without any training. Recently, Zhang et al. [41]
have incorporated these operation-level metrics into DARTS
to pick operations.
Architecture-Level Metrics Recently, Abdelfattah et al. [42]
adapt zero-cost (i.e., zero-shot) saliency metrics from the
pruning literature to score entire neural architectures.
Specifically, they sum up the per-parameter saliency met-
rics of all parameters as the architecture score. There exist
other studies that regard the neural network as a function
mapping instead of a bulk of parameters, and extract certain
properties of this function mapping as the architecture score.
For example, Lin et al. [43] define the expected Gaussian
complexity to measure the network expressivity. Mellor et
al. [44] study the linear maps of NN that are identified by
a binary code corresponding to the activation pattern of the
rectified linear units (ReLUs). They define a kernel using
the Hamming distance between these binary codes and use
the log determinant of the kernel as the architecture score.
A recent work [21] conducts a comparative study on these
zero-shot metrics, and reveals that directly using them to
rank architectures results in prominently biased ranking.

In this paper, rather than directly adopting architecture-
level zero-shot metrics for ranking, we incorporate them
into the construction and learning of architecture perfor-
mance predictors. These operation-level and architecture-
level zero-shot metrics contain information about NNs’ con-
crete computing semantics, which all existing architecture
performance predictors are unaware of. Incorporating this
information can improve the predictors’ ranking quality.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 4

3 PREDICTOR-BASED NAS
The principle of predictor-based NAS is to increase the
sample efficiency of the NAS process, by utilizing an ap-
proximated performance predictor to sample architectures
that are more worth evaluating. We summarize the flow
of predictor-based NAS as in Alg. 1 and Fig. 1. A recent
work [45] presents a formulation of the predictor-based NAS
that help justify the rationality of this widely-used flow.

In line 6 of Alg. 1, the architecture candidates are sam-
pled based on the approximated evaluation of the predictor.
Utilizing a more accurate predictor, we could choose better
architectures for further evaluation. The better the general-
ization ability of the predictor is, the fewer architectures are
needed to be exactly evaluated to get a highly accurate pre-
dictor. Therefore, the generalization ability of the predictor
is crucial for the efficiency and effectiveness of NAS.

The model design (i.e., how to encode the neural archi-
tectures) of the predictor is crucial to its generalization abil-
ity. We’ll introduce our main effort to improve the predictor
from the “model design” aspect in the following section.

4 GATES: A GENERIC NEURAL ARCHITECTURE
ENCODER

4.1 The Encoding Scheme

A performance predictor P is a model that takes a neural
architecture a as input, and outputs a predicted score ŝ.
Usually, the performance predictor is constructed by an
encoder followed by an MLP, as shown in Eq. 1.

ŝ = P(a) = MLP(Enc(a)). (1)

The encoder Enc maps a neural architecture into a con-
tinuous embedding space, and its design is vital to the
generalization ability of the performance predictor. Exist-
ing encoders include the sequence-based ones (e.g., MLP,
LSTM) and the graph-based ones (e.g., GCN). We design a
new graph-based neural architecture encoder GATES that is
more suitable for modeling neural architectures.

To encode a cell architecture into an embedding vector,
GATES follows the ideology of modeling the information
flow in the architecture, and uses the output information
as the embedding of the architecture. The notations are
summarized in Table 1.

Specifically, we model the input information as the em-
bedding of the input nodes E ∈ Rni×hi , where ni is the
number of input nodes, and hi is the embedding size of
the information. The information (embedding of the input
nodes) is then “processed” by the operations and “propa-
gates” along the DAG.

The encoding process of GATES goes as follows: Upon
each unary operation o (e.g., Conv3x3, MaxPool, etc.), the
input information xin of this operation is processed by a
linear transform Wx and then elementwise multiplied with
a soft attention mask m = σ(EMB(o)Wo) ∈ R1×hi .

xout = m� xinWx, (2)

where � denotes the elementwise multiplication. And
the mask m is calculated from the operation embedding
EMB(o) = onehot(o)TEMB ∈ R1×ho .

Algorithm 1 The flow of predictor-based neural architecture
search.

1: A: Architecture search space
2: P : A → R: Performance predictor that outputs the

predicted performance given the architecture
3: N (k): Number of architectures to sample in the k-th

iteration

4: k = 1
5: while k ≤MAX ITER do
6: Sample a subset of architectures S(k) =

{a(k)j }j=1,··· ,N(k) from A, utilizing P
7: Evaluate architectures in S(k), get S̃(k) =

{(a(k)j , y
(k)
j)}j=1,··· ,N(k) (y is the performance)

8: Optimizing P using the ground-truth architecture
evaluation data S̃ = ∪ki=1S̃

(i)

9: end while
10: Output aj∗ ∈ ∪ki=1S

(i) with best corresponding yj∗ ; Or,
a∗ = argmaxa∈AP(a)

Searcher

Inner Searcher

Predictor

Search Space

Ground-truth
Performance

Architecture Evaluator

Retrain the Predictor

Cell Architecture

Conv
1x1

Conv
3x3

Max
Pool

GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input
Information

Information Propagation

Output

Input

Architecture
Embedding

MSE Loss

Predicted
Score

True
Perf.

Predictor-based Neural Architecture Search Flow

(Computational Expensive)

⨀

⨀

⨀

Ranking Loss

Score Pair

> ?

> ?
True Perf. Pair

s! ""

#! #"

s y

Information

Attention MasksInput
Information Flow

Inner Search Outer Search

Input

Fig. 1. The overview of GATES. Upper: The general flow of the predictor-
based NAS. Lower: Illustration of GATES’ encoding processes of an
OON cell architecture and the usage of ranking losses.

Multiple pieces of information are aggregated at each
node using summation. Finally, after obtaining the virtual
information at all the nodes, the information at the output
node is used as the embedding of the entire cell architecture.
For search spaces with multiple cells (e.g., normal and
reduce cells in ENAS), GATES encodes each cell indepen-
dently, and concatenates the embeddings of cells as the
embedding of the architecture.

Fig. 2 illustrates two examples of the encoding process
in the OON and OOE search spaces. As can be seen, the
encoding process of GATES mimics the actual feature map
computation. For example, in the example of the OON
search space, the actual feature map computation at node
2 is F2 = Conv3x3(F0 + F1), where Fi is the feature map at
node i. To model the information processing of this feature
map computation, GATES calculates the information (node
embedding) at node 2 by N2 = σ(EMB(Conv3x3)Wo) �
(N0 + N1)Wx, where σ(·) is the sigmoid function, and

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 5

Feature	map	computation:
• 𝐹!: Input	feature	map
• 𝐹" = Conv1x1(𝐹!)
• 𝐹# = MaxPool	(𝐹!) +

AvgPool	(𝐹")
• 𝐹$ = Conv1x1(𝐹")	+	

Conv3x3(𝐹#)
• 𝐹% = Aggregate(𝐹", 𝐹#, 𝐹$)

Operation on Edge

1 2

3

4

0

𝑵𝟎 = 𝑬

σ EMB CONV1x1 𝑊! ⨀𝑁!𝑊"

Conv1x1 𝑵𝟏

Conv3x3 𝑵𝟐
σ(EMB CONV3x3 𝑊!)	⨀(𝑁#+𝑁$)𝑊"

MaxPool 𝑵𝟑
σ(EMB(MaxPool)𝑊!)	⨀(𝑁$+𝑁%)𝑊"

Operation on Node

N! N!

N"

N" N#

N"

N$

Output 𝑵𝟒
Sum(𝑁", 𝑁$)

	𝑵𝟏	
σ(EMB CONV1x1 𝑊!)	⨀𝑁#𝑊"

𝑵𝟑
σ(EMB CONV1x1 𝑊!)	⨀𝑁$𝑊"+
σ(EMB CONV3x3 𝑊!)	⨀𝑁%𝑊"

Feature	map	computation:
• 𝐹!: Input	feature	map
• 𝐹" = Conv1x1(𝐹!)
• 𝐹# = Conv3x3(𝐹! + 𝐹")
• 𝐹$ = MaxPool(𝐹" + 𝐹#)
• 𝐹% = Aggregate(𝐹", 𝐹$)

1 2

3

4

0

Conv
1x1

MaxPoolConv
1x1

AvgPool

𝑵𝟎 = 𝑬

Conv
3x3

Output 𝑵𝟒
Sum(𝑁", 𝑁#, 𝑁$)

𝑵𝟐
σ(EMB MaxPool 𝑊!)	⨀𝑁#𝑊"+
σ(EMB AvgPool 𝑊!)	⨀𝑁$𝑊"

GATES	encoding	process	(4	steps):
• 𝑁!: Input	information	E
• 𝑁" = σ(EMB CONV1x1 𝑊&)	⨀𝑁!𝑊'
• 𝑁# = σ(EMB CONV3x3 𝑊&)	⨀(𝑁!+𝑁")𝑊'
• 𝑁$ = σ(EMB(MaxPool)𝑊&)	⨀(𝑁"+𝑁#)𝑊'
• 𝑁% = Sum(𝑁", 𝑁$)

GATES	encoding	process	(4	steps):
• 𝑁!: Input	information	E
• 𝑁" = σ(EMB CONV1x1 𝑊&)	⨀𝑁!𝑊'
• 𝑁# = σ(EMB MaxPool 𝑊&)	⨀𝑁!𝑊'

+ σ EMB AvgPool 𝑊& ⨀𝑁"𝑊'
• 𝑁$ = σ(EMB CONV1x1 𝑊&)	⨀𝑁"𝑊'

+ σ EMB CONV3x3 𝑊& ⨀𝑁#𝑊'
• 𝑁% = Aggregate(𝑁", 𝑁#, 𝑁$)

Fig. 2. Feature map (Fi) computation and GATES encoding process (Ni). Left: The “operation on node” cell search space, where operations (e.g.,
Conv3x3) are on the nodes of the DAG (e.g., NAS-Bench-101 [23], randomly wired search space [30]). Right: The “operation on edge” cell search
space, where operations are on the edges of the DAG. (e.g., NAS-Bench-201 [31], NAS-Bench-301 [15], ENAS [18]).

TABLE 1
Notations to illustrate the basic methodology of GATES. E, EMB, Wo and Wx are all trainable parameters.

ni
number of input nodes: 1, 1, 2 for NAS-Bench-101, NAS-Bench-201 and ENAS, respectively

No number of operation primitives
ho embedding size of operation
hi embedding size of information

E ∈ Rni×hi the embedding of the information at the input nodes
EMB ∈ RNo×ho the operation embeddings
Wo ∈ Rho×hi the transformation matrix on the operation embedding
Wx ∈ Rhi×hi the transformation matrix on the information

Wo ∈ Rho×hi is a transformation matrix that transforms the
ho-dim operation embedding into a hi-dim feature. That is
to say, the summation of feature maps F0 + F1 corresponds
to the summation of the virtual information N0 + N1, and
the data processing function o(·) (Conv3x3) corresponds to
a transform f(·) that processes the information x = N0+N1

by fo(x) = σ(EMB(o)Wo)� xWx.
Intuitively, to encode a cell architecture, GATES models

the operations in the architecture as the “soft gates” that
control the flow of virtual information, and the output infor-
mation is used as the embedding of the cell architecture. The
key difference between GATES and GCN is: In GATES, the
operations (e.g., Conv3x3) are modeled as the processing of
the node attributes (i.e., virtual information), whereas GCN
models them as the node attributes themselves.

To summarize, the representational power of GATES
for neural architectures comes from two aspects: 1) The
more reasonable modeling of operations in data-processing
DAGs. 2) The intrinsic proper handling of DAG iso-

morphism. The following section provides discussions on
GATES’s ability to handle isomorphic architectures.

4.2 Discussion on Isomorphism Handling
4.2.1 GATES correctly maps ismorphic architectures
The encoding process of GATES mimics the actual compu-
tation flow: GATES uses multiplicative transforms to mimic
the forward process of operations (e.g., Conv3x3), and
uses commutative aggregation to mimic actual commutative
aggregation of the feature maps. Naturally, GATES would
encode two architectures that give out the same feature
map results into the same representation. That is to say, the
embedding space of GATES is more meaningful. However,
GATES might fail to map non-isomorphic architectures to
different representations. And we leave it to future work to
further increase the discriminative power of GATES.

In the search spaces which we have experimented with
(i.e., NAS-Bench-101, NAS-Bench-201, and ENAS), the com-
bination of feature maps at internal nodes is done via

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 6

TABLE 2
Kendall’s Tau on 1) NAS-Bench-101 test set 2) the 7-vertex subset of

test set 3) all isomorphic counterparts of the 7-vertex subset (w.o.
de-duplication). The last column shows the sum of variances of

predicted scores in every isomorphic architecture group. All predictors
are trained using the hinge pairwise ranking loss on 0.1% training data.

Encoders
test set 7-vertex test set 7-vertex test set w.o. de-dup.
(42362) (36064) (116102)

τ τ τ Total Var.

MLP [10] 0.5272 0.5143 0.4729 43.58
LSTM [10] 0.5993 0.5877 0.5656 18.80
GCN [12] 0.5790 0.5876 0.6169 1.16E-11

GATES 0.7789 0.7724 0.7758 9.24E-12

addition operation, which is commutative. Therefore, for
encoding the architecture, GATES also uses commutative
addition to combine the “virtual information”. Note that if
the feature map aggregation at some internal node is not
commutative (e.g., concatenation), we should use a non-
commutative aggregation of the virtual information too.

We conduct a simple experiment to verify GATES’s abil-
ity to map isomorphic architectures to the same represen-
tation on NAS-Bench-101. After splitting the train and test
sets, there are 36064, 6037, 256, 5 testing architectures with
7, 6, 5, 4 vertices, and 323018, 55973, 2185, 79, 6, 1 training
architectures with 7 6, 5, 4, 3, 2 vertices respectively. Since
all isomorphic architectures are already removed in NAS-
Bench-101, we generate the isomorphic architectures for the
36064 unique testing architectures with 7 vertices, and get
116102 architectures. Among the 36064 architectures, there
are 20994 architectures that have isomorphic counterparts.
Table 2 shows the test results of different predictors trained
with 0.1% training samples on these 116k architectures.
Since sequence-based encoding schemes cannot map iso-
morphic architectures to the same representation, the rank-
ing correlation decreases if no de-duplication procedure is
carried out. The last column shows the sum of variance
of predicted scores in every isomorphic architecture group.
We can see that GATES and GCN can map isomorphic
architectures to the same representation (a variance of 0
with negligible numeric errors), since only isomorphism-
invariant aggregation is used in the encoding process.

4.2.2 Two counter-examples of an ad-hoc GCN encoder
Since GCN cannot be directly applied to encoding archi-
tectures from the OOE search spaces, a recent study [11]
proposes an ad-hoc solution for the ENAS search space.
They represent each node by the concatenation of the oper-
ation embeddings on the input edges. This solution cannot
generalize to search spaces where nodes could have dif-
ferent input degrees. What’s more, since the concatenation
operation is not commutative, this encoding scheme could
not map isomorphic architectures to the same representation
correctly. Fig. 3 illustrates two minimal counter-examples.

4.3 Implementation of GATES
In practice, to calculate the information propagation follow-
ing the topological order of different graphs in a batched
manner, we use a stack of GATES layers. In the forward

1

0

Conv3x3 Conv1x1

[EMB(Conv3x3), EMB(Conv1x1)]

1

0

Conv3x3Conv1x1

[EMB(Conv1x1), EMB(Conv3x3)]

1

0
Conv1x1

Conv1x1
2

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

[EMB(Conv1x1), EMB(Conv3x3)] [EMB(Conv3x3), EMB(Conv1x1)]

4

0

2

2

0
Conv1x1

Conv1x1
1

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

Fig. 3. An ad-hoc graph-based solution [11] for encoding the architecture
(in an OOE search space) fails to map isomorphic architectures to the
same representation. In the upper case, the two architectures are the
same graph, but the embeddings of Node 1 differ. In the lower case,
these two architecture are isomorphic, since the feature map aggrega-
tion at Node 3 is a commutative element-wise addition. However, this
encoding scheme cannot guarantee to map these two architectures to
the same representation, since the original node embeddings already
differ at Node 3. The failure to handle the isomorphism is because
that the non-commutative characteristics of the concatenation operation
causes the encoding process to be not permutation-invariant to node
and edge order.

process of each GATES layer, one step of information prop-
agation is taken place at every node. That is to say, if a graph
is fed into a GATES encoder with N layers, the information
is propagated and aggregated for N steps along the graph.

The detailed formulas and implementations of one
GATES layer for OON and OOE search spaces are described
as follows, and the notations are summarized in Table 3.

4.3.1 Operation On Node (OON) Search Space

For the OON case, we take the NAS-Bench-101 search space
as an example. In the cell architecture, there is ni = 1 input
node, and at most V = 7 nodes. For batch computation,
we pad zero columns and rows into the adjacent matrix to
ensure that all adjacent matrices are of size 7 × 7, and add
“none” operations into the corresponding positions in the
operation list. The calculation of the k-th GATES layer is

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1),

X(k) = σ(EMB(o)W (k)
o)� (AX(k−1)W (k)

x),
(3)

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and

E,EMB,W (k)
o ,W

(k)
x are trainable parameters.

In practice, we found that for the OON search space,
adding a self-loop of the information propagation would
lead to slightly better performance.

X(k) = σ(EMB(o)W (k)
o)� (ÃX(k−1)W (k)

x),

Ã = A+ I.
(4)

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 7

TABLE 3
Notations used in the implementation of GATES with support for batched computation.

V maximum number of nodes: 7, 4, 6 for NAS-Bench-101 [23], NAS-Bench-201 [31] and ENAS [18],
respectively

ni number of input nodes: 1, 1, 2 for NAS-Bench-101, NAS-Bench-201 and ENAS, respectively

No number of operation primitives

ho embedding size of operation
h
(k)
i embedding size of information in the k-th layer

E ∈ Rni×h
(0)
i the embedding of the information at the input nodes

EMB ∈ RNo×ho the operation embeddings

W
(k)
o ∈ Rho×h

(k)
i

the transformation matrix on the operation embedding (the k-th layer)

W
(k)
x ∈ Rh

(k−1)
i ×h

(k)
i

the transformation matrix on previous layer’s output information (the k-th layer)

b batch size
A ∈ Rb×V×V adjacency matrix

X(k) ∈ Rb×V×h
(k)
i the output virtual information of the k-th layer

EMB(o) ∈ Rb×V×ho (NAS-Bench-101) the embeddings of the operations on nodes
EMB(o) ∈ Rb×V×V×ho (NAS-Bench-201) the embeddings of the operations on edges

nd (ENAS) maximum input degree of nodes
EMB(od) ∈ Rb×V×V×ho (ENAS) the embeddings of operations on the d-th input edge for nodes

4.3.2 Operation On Edge (OOE) Search Space
For the OOE search spaces, the calculation of a GATES layer
could be written as

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1),

S = EXPAND(X(k−1)W (k)
x , 1),

X(k) = SUM(
nd∑
d=1

EXPAND(A, 3)� σ(EMB(od)W (k)
o)� S,

dim=2),
(5)

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and

EXPAND(A,dim) denotes the operation to insert a new
dimension as the “dim”-th dimension.

For the search spaces where there is at most one edge
between each pair of nodes (e.g., NAS-Bench-201), the above
calculation could be simplified to

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1),

S = EXPAND(X(k−1)W (k)
x , 1),

X(k) = SUM(EXPAND(A, 3)� σ(EMB(o)W (k)
o)� S,

dim=2),

(6)

4.4 The Training Scheme
The most common practice [8], [9] to train the predictors
is to minimize the Mean Squared Error (MSE) between the
predicted scores and the true performances.

L({aj , yj}j=1,··· ,N) =
N∑
j=1

(P(aj)− yj)2, (7)

where N denotes the number of training architectures, aj
denotes one architecture, and yj denotes the true perfor-
mance of aj .

Nevertheless, in NAS applications, the relative ranking
order of architectures is more important in guiding the
search process rather than the absolute performance values.

And since ranking losses are better surrogate losses [46], [47]
for the ranking quality than the regression loss, we propose
to employ ranking losses to train the predictors.1 Moreover,
using ranking losses also open up possibilities for utilizing
supervisory signals of different fidelities to train a predictor.
For example, a work [49] following our conference version
uses ranking losses to leverage supervisory signals from
different training epochs.

We utilize different pairwise and listwise ranking losses
for training the predictor [50], [51], [52]. The pairwise rank-
ing loss could be written as

Lp(S̃) =
N∑
i=1

∑
j∈{j|yi<yj}

φ(P (aj), P (ai)). (8)

We experiment with two different choices of φ. 1) The
binary cross entropy function φ(sj , si) = log(1 + e(sj−si));
2) The hinge loss function φ(sj , si) = max(0,m− (sj − si)),
where m is a positive margin.

We also experiment with a pairwise comparator: We
construct an MLP that takes the concatenation of two
architecture embeddings as input and outputs a score:
s = MLP([E(aj), E(ai)], and a positive s indicates that aj is
better than ai. Note that the total-orderness of the architec-
tures is not guaranteed using this comparator. So, we add a
simple anti-symmetry regularization term in the training of
the comparator. The loss for training the comparator is:

Lp(S̃) =
N∑
i=1

∑
j∈{j|yi<yj}

max(0,m−MLP([E(aj), E(ai)])

+ max(0,m+ MLP([E(ai), E(aj)])).
(9)

1. A concurrent work [48] with our conference version also proposes
to use ranking loss to train the predictor.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 8

GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input
Information

Architecture
Embedding

Zero-Shot Metrics

Predicted
Score

Architecture Performance

s "" 92.7%

s' y

Input

Ground-Truth
Performance

Predicted
Score

Information

Op Embedding

Gradnorm

Synflow

Snip

…

Op EmbeddingZero-shot
Information

，GATES++

Encode Zero-Shot Information
In OP Embedding
(Generating OP mask?)

architecture-level zero-shot
into training: As an auxiliary

regression target

operation-level zero-
shot into construction:
As a part of operation
embedding

Regression

Ranking

Construction Training

Fig. 4. The overview of GATES++.

We also use a listwise ranking loss, ListMLE [52]:

Ll(S̃) =
∑
U⊂S̃

|U |∑
i=1

{−P (a(i),U) + log

|U |∑
j=i

exp(P (a(j),U))},

(10)
where U are subsets of S̃, |U | denotes the size of U , a(i),U

denotes the architecture whose true performance y(i),U is
the i-th best in the subset U .

5 GATES++: INCORPORATING MULTIFACETED
ARCHITECTURAL INFORMATION INTO GATES
GATES is reasonable modeling of data-processing DAGs,
since it models and learns the virtual information process-
ing of data-processing operations. However, its construction
and training are completely unaware of the concrete com-
puting semantics of NNs. At the operation level, the GATES
construction initializes the embeddings of different opera-
tions indistinguishably, and is unaware of which operations
are parameterized, and which two operations should be
closer. At the architecture level, GATES is only trained with
the pairs of descriptions and ground-truth performances of
architectures, without other relatively low-level information
related to the actual computation of these NN architectures.

We propose GATES++, an enhanced encoder for NN
DAGs that incorporates multifaceted architectural informa-
tion about NN’s operation-level and architecture-level com-
puting semantics into its construction and training, respec-
tively. Sec. 5.1 describes how we incorporate the operation-
level information, which provides prior knowledge to the
predictor. And Sec. 5.2 describes how we incorporate the
architecture-level information, which adds additional obser-
vation information to better train the predictor. These two
techniques of GATES++ are illustrated in Fig. 4.

5.1 The Encoding Scheme

As we have introduced in Sec. 2.5, the NN pruning liter-
atures have proposed various per-parameter saliency met-
rics. We use four types of zero-shot per-parameter saliency
metrics, grad norm, plain [39], snip [37], synflow [40], which
are computed with the gradients obtained through a single
forward and backward pass of the actual NN architecture,

and two complexity metrics params, flops. The four saliency
metrics are computed as follows.

grad norm : S(θ) = |∂L
∂θ
|2,

plain : S(θ) = ∂L
∂θ
� θ,

snip : S(θ) = |∂L
∂θ
� θ|1,

synflow : S(θ) = ∂R
∂θ
� θ;R = 1

T (
∏
θi∈θ
|θi|)1,

(11)

where L denotes the loss function, and θ denotes the pa-
rameters, and � denotes the Hadamard product.

GATES++ encodes an architecture α as follows. We
firstly random initialize a candidate model with architecture
α, and conduct a single forward and backward pass on
a data batch. Then we can compute six parameter-level
metrics for all parameters. Note that as we are encoding
architecture descriptions from cell-based search spaces, an
operation in the cell architecture description stands for
multiple parameters in the candidate model. For example,
on NAS-Bench-201, each operation in the cell architecture
description corresponds to 15 actual NN operations, since
the cell architecture is stacked 15 times to construct a
candidate model. Therefore, for an operation o in the cell
architecture description, we calculate the average of metrics
of its corresponding parameters in the candidate model,
and get a 6-dim vector zo(o) ∈ R6 (the superscript o
denotes “operation-level”), with each dimension standing
for one metric type. For nonparametrized operations such
as MaxPool, we just set the 6-dim vector to ~0. Finally, we
concatenate zo(o) onto the trainable operation embedding
of the operation EMB(o). That is to say, for an operation o in
the architecture description, GATES++ calculate its attention
mask as σ(CONCAT[EMB(o), zo(o)]Wo).

Jumping out of the details, these zero-shot metrics pro-
vides prior knowledge regarding NN’s actual operation-
level computing semantics. For example, almost all types of
zero-shot metrics can reflect that Conv3x3 is more similar to
Conv5x5 than MaxPool. To give some quantitive evidence
for this claim, we provide some analyses in the appendix.
This prior knowledge helps GATES++ model NN architec-
tures better, especially when there are only a small number
of training architectures.

5.2 The Training Scheme

Apart from incorporating operation-level information into
the construction of GATES++, we would also like to incor-
porate more architecture-level information into the train-
ing of GATES++. We use five types of architecture-level
zero-shot metrics, including relu logdet [44], and four other
architecture-level metrics [42] summing up per-parameter
saliency metrics (i.e., grad norm, plain, snip, synflow).

Among these zero-shot metrics, the most special one
is relu logdet [44], which is a zero-shot measure of the
architecture discriminability. Instead of simply aggregating
per-parameter gradients, relu logdet measures the activation

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 9

differences at all ReLU layers between different input im-
ages:

s = log ||KH ||

KH =

NA − dH(c1, c1) · · · NA − dH(c1, cN)
...

. . .
...

NA − dH(cN , c1) · · · NA − dH(cN , cN)

 ,

(12)
where ci is a binary mask indicating whether each feature
value is larger than 0 at all ReLU layers for input data i. And
dH(ci, cj) is the Hamming distance between the binarized
activation code of the i-th and the j-th data, and NA is the
number of rectified linear units.

To train GATES++, we add an auxiliary regression head
to fit these architecture-level zero-shot metrics. The regres-
sion target is a 5-dim vector za (the superscript a denotes
“architecture-level”). And an auxiliary loss term is added
onto the loss function introduced in Sec. 4.4:

Laux =
N∑
j=1

(MLPreg(Enc(αj))− zaj)2, (13)

where MLPreg is an auxiliary MLP head with an output
dimension of 5, and Enc is the shared GATES++ encoder.

From a high-level viewpoint, these metrics provide mul-
tifaceted architecture-level information of NN, and learning
to fit this information could encourage the encoder to learn
better architecture representation. Note that we use the
regression loss for the auxiliary head instead of the ranking
loss. This is because we neither use the output of the auxil-
iary head to rank architecture nor seek to provide the correct
ranking of these zero-shot metrics. Thus it is not necessary
to use the ranking loss for the auxiliary head. Another minor
consideration is that more architecture-level information can
be brought into the encoder by the regression objective
than by a ranking objective, as the ranking objective only
preserves the ranking information and discards the absolute
values and differences.

6 EXPERIMENTS

This section is organized as follows. Firstly, Sec. 6.1 describes
the evaluation benchmarks and criteria. Sec. 6.2 gives out
experimental setup regarding predictor the training process
and encoder construction. Then, Sec. 6.3 compares GATES,
GATES++, and baseline encoders, including MLP, LSTM,
and other GCN encoders. And Sec. 6.4 and Sec. 6.5 give out
abalation studies of techniques in GATES and GATES++,
respectively. Next, we compare architecture search results
with different encoders in Sec. 6.6. Finally, Sec. 6.7 shows
the perfomances of discovered architecture performances
on CIFAR-10 and ImageNet. Code is available at https:
//github.com/walkerning/aw nas.

6.1 Benchmarks and Criteria

Evaluation Benchmarks Experiments in Sec. 6.3, Sec. 6.4
and Sec. 6.6 are carried out on benchmark search spaces,
including an OON search space, NAS-Bench-101 [23], and
one of its sub search space, NAS-Bench-1shot-3 [53], and two

OOE search spaces, NAS-Bench-201 [31] and NAS-Bench-
301 [15]. We introduce these benchmarks and the available
baseline encoders on them as follows.
• NAS-Bench-101 provides the performances of the 423k

unique architectures in an OON search space. When
evaluating the ranking qualities of predictors, we use the
first 90% (381262) architectures as the training data, and
the other 42362 architectures as the testing data. In our
experiments, we use the first 50% (7813) as the training
data, and the remaining 7812 architectures as the testing
data. Sequence-based encoding schemes [10], and graph-
based encoding schemes [12] are proposed for encoding
architectures on NAS-Bench-101.

• NAS-Bench-1shot-3 is a sub search space of NAS-Bench-
101, in which all architectures have 5 internal nodes and
the node degrees are designated. We conduct GATES++
experiments on NAS-Bench-1shot-3. NAS-Bench-1shot-3
has about 14k architectures, in which the first 50% (7290)
architectures are used as the training data, and the other
7290 are used as the testing data.

• NAS-Bench-201 provides the performances of all the
15625 architectures in an OOE search space. The first
50% (7813) architectures are used as the training data,
and the other 7812 architectures are used as the testing
data. Since the vanilla GCN encoder cannot be directly
applied to OOE search spaces, we adopt a line graph
solution [12], [54] for applying GCN to encode OOE
architectures following three steps: 1) Convert the graph
to a line graph; 2) Apply a vanilla GCN; 3) Concatenate
the node embeddings as the graph representation.

• Compared to the previous two benchmarks, NAS-
Bench-301 is a surrogate-based benchmark on a much
larger OOE search space. It provides the tabular per-
formances of ∼60k anchor architectures, and predicts
performances of other architectures using these anchor
performances. For a fair evaluation of predictors, we
only use the tabular performances, in which 5896 archi-
tecture performance pairs are used as the training data,
and the remaining anchor data are used as the testing
set. Sequence-based encoding schemes [9], and graph-
based encoding schemes [11] are proposed for encoding
architectures on NAS-Bench-301.

Evaluation Criteria We use three ranking measures to
evaluate the trained architecture performance predictors.
The first one is the commonly used Kendall’s Tau ranking
correlation [55]. In Kendall’s Tau , all discordant pairs are
treated equally. However, in NAS applications, the relative
rankings among the poorly performing architectures are
not of concern. Therefore, we design another two ranking
measures that have a more direct correspondence with the
NAS flow: 1) N@K: The best true ranking among the top-
K architectures selected according to the predicted scores.
2) Precision@K: The proportion of true top-K architectures
among the top-K predicted architectures.

6.2 Training and Construction Setup
Predictor Training For each configuration of training ratio
(i.e., training set size), we randomly sample 3 different train-
ing sets, and train the predictor on each training set with 3

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 10

TABLE 4
Kendall’s Tau of using different encoders on NAS-Bench-1shot-3, NAS-Bench-201, and NAS-Bench-301 benchmarks.

NAS-Bench-1shot-3

Encoder Proportions of 7290 training samples

0.1% 0.25% 0.5% 0.75% 1% 2.5% 5% 10% 50% 100%

MLP [10] 0.0772 0.2384 0.3116 0.3413 0.3937 0.4988 0.5318 0.5703 0.6225 0.6307
LSTM [10] 0.1614 0.3843 0.4588 0.5055 0.5476 0.5826 0.5876 0.6040 0.6196 0.6131

GCN (global node) [12] 0.1692 0.1983 0.2595 0.3081 0.3668 0.4898 0.5973 0.6927 0.7520 0.7689
ReNAS [48] 0.1969 0.3589 0.4346 0.4899 0.5131 0.5792 0.6151 0.6250 0.6422 0.6473
NAOCE [33] 0.1511 0.3635 0.3823 0.5094 0.5542 0.5845 0.5985 0.6083 0.6780 0.7123

GATES 0.1744 0.4580 0.6168 0.6309 0.6557 0.7260 0.7494 0.7742 0.8102 0.8165
GATES Large 0.1816 0.4595 0.6117 0.6450 0.6735 0.7357 0.7448 0.7860 0.8180 0.8221

GATES++ 0.2014 0.4517 0.6001 0.6260 0.6965 0.7365 0.7555 0.7904 0.8016 0.8085

NAS-Bench-201

Encoder Proportions of 7813 training samples

0.1% 0.25% 0.5% 0.75% 1% 2.5% 5% 10% 50% 100%

MLP [10] 0.0162 0.0703 0.0863 0.1613 0.1756 0.2514 0.3885 0.5492 0.8198 0.8728
LSTM [10] 0.1935 0.4348 0.5079 0.5181 0.5691 0.6025 0.669 0.7395 0.8757 0.9011

Line-Graph GCN [12] 0.2461 0.2071 0.3113 0.3536 0.4080 0.4797 0.5461 0.6095 0.7733 0.8257
NAOCE [33] 0.4249 0.4890 0.5040 0.5452 0.5673 0.6565 0.6904 0.7240 0.7774 0.7991

GATES 0.4309 0.6087 0.6702 0.7328 0.7571 0.8195 0.8583 0.8823 0.9189 0.9258
GATES Large 0.3543 0.5852 0.6653 0.7261 0.7546 0.8288 0.8640 0.8824 0.9192 0.9265

GATES++ 0.5020 0.6284 0.7021 0.7404 0.7729 0.8331 0.8664 0.8848 0.9116 0.9210

NAS-Bench-301

Encoder Proportions of 5896 training samples

0.1% 0.25% 0.5% 0.75% 1% 2.5% 5% 10% 50% 100%

MLP [10] 0.1346 0.1901 0.2758 0.3549 0.4018 0.4997 0.5373 0.5687 0.6237 0.6485
LSTM [9] 0.3958 0.4235 0.5161 0.5539 0.5689 0.6513 0.6893 0.7144 0.7531 0.7665
GCN [11] 0.0336 0.0927 0.0951 0.1313 0.1280 0.2436 0.2673 0.2835 0.3146 0.3242

NAOCE [33] 0.1257 0.3915 0.4617 0.4928 0.5270 0.6259 0.6959 0.7265 0.7672 0.7866

GATES 0.1020 0.3144 0.4889 0.5209 0.5590 0.6452 0.7142 0.7430 0.7695 0.7887
GATES Large 0.1782 0.4346 0.4966 0.5253 0.5632 0.6664 0.7169 0.7494 0.7685 0.7810

GATES++ 0.2285 0.4330 0.5329 0.5713 0.5833 0.6545 0.7048 0.7333 0.7785 0.7858

random seeds (21, 2021, 202121). The average Kendall’s Tau
on the testing set across these nine experiments is reported.

In each predictor training experiment, the predictor is
trained with an ADAM optimizer with a learning rate 1e-3
and a batch size of 512 for 200 epochs. And the average of
testing Kendall’s Taus in the last five epochs is recorded.

In Sec. 6.4, we find that the performances of different
ranking losses are close, and the pairwise hinge loss is a
good choice. Therefore, in our experiments, the pairwise hinge
loss with a margin 0.1 is used to train all the predictors unless
otherwise stated.
Encoder Construction On NB101, we follow the serializa-
tion method and the model settings in [10] for the construc-
tion of the MLP and LSTM encoders. Specifically, the MLP is
constructed by 4 fully-connected layers with 512, 2048, 2048,
and 512 nodes, and the output of dimension 512 is used as
the cell’s embedding. The embedding and hidden sizes of
the LSTM are both set to 100, and the final hidden state
is used as the cell’s embedding. For the GCN and GATES
encoders, we construct the encoder by stacking five 128-
dim GCN or GATES layers. All the embedding sizes are set
to 48, including the operation embedding in GCN, and the
operation and information embedding in GATES. For GCN,
the average of all the nodes’ features is used as the cell’s
embedding. In GCN with global node [12], the feature of
the global node is used as the architecture embedding. For
ReNAS [48], we reproduce the encoder based on their open-

source code, and use the same configuration in the original
paper.

On NB201, we use the 6 elements of the lower trian-
gular matrix (excluding the diagonal ones) as the input
of sequence-based baselines (MLP and LSTM). Four fully-
connected layers with 512, 2048, 2048, 512 nodes are used in
the MLP encoder. The embedding and hidden size of the 1-
layer LSTM is set to 100, and the final hidden state is used as
the architecture embedding. And we use five layers without
self-loop for line-graph GCN, GATES, and GATES++.

On NB301, we concatenate the lists of nodes and oper-
ations as the input of sequence-based encoders (MLP and
LSTM). Specifically, the MLP encoder is constructed with
three 128-dim fully-connected layers and the output dim is
set to 32. The embedding and hidden size of the 1-layer
LSTM are set to 48 and 128, respectively, and the final hid-
den state is used as the architecture embedding. For GCN
and GATES encoders, we construct the encoder by stacking
three 32-dim GCN layers and four 64-dim GATES layers,
respectively. The average embeddings of all internal nodes
are used as the architecture embedding. All the embedding
sizes are set to 32, including the operation embedding in
GCN, and the operation and information embedding in
GATES. We construct the GCN encoder following [11].

Besides, a recent work, NAOCE [33], adopts GATES as
the base design, and uses a weighted aggregation of infor-
mation flow from different operations. Since the authors do

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 11

0 1.4k 2.9k 4.3k 5.8k 7.2k
0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

MLP
LSTM
GCN
GATES
GATES++

(a) NAS-Bench-1shot-3

0 1.6k 3.1k 4.7k 6.2k 7.8k
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

MLP
LSTM
GCN
GATES
GATES++

(b) NAS-Bench-201

0 10.2k 20.4k 30.6k 40.8k 51.0k
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

MLP
LSTM
GCN
GATES
GATES++

(c) NAS-Bench-301

Fig. 5. Precision@K of different encoders on three benchmarks.

not provide the code, we carefully follow their descriptions
in the paper to reproduce the code base on our GATES
implementation. The configurations are aligned with the
ones of GATES in our experiments.

6.3 Comparison of Different Encoders

Table 4 shows the comparison of GATES, GATES++ encoder,
and various baseline encoders trained using different pro-
portions of training data on three benchmarks. Note that
we use the same training loss (the pairwise hinge loss with
a margin of 0.1) for training all these encoders. As can be
seen, on all three benchmarks, GATES could achieve higher
Kendall’s Taus on the testing architectures than the baseline
encoders consistently with different training proportions.

Note that when there are few training architectures, the
advantages of GATES and GATES++ over other baselines
are especially significant, and the advantages of GATES++
over GATES is also larger in this case. For example, on NAS-
Bench-201, when only 7 (0.1%) architectures are seen by the
performance predictor, utilizing the same training settings,
GATES and GATES++ achieve a test Kendall’s Tau of 0.4309
and 0.5020, respectively, whereas Kendall’s Taus achieved
by MLP, LSTM, and Line-Graph GCN variant are 0.0162,
0.1935, and 0.2461, respectively.

The concatenation of zero-shot metrics in GATES++ en-
larges the embedding dimension. To make the comparison
more rigorous, we enlarge the embedding dimension of
GATES by 6 to be the same as that of GATES++, and denote
this encoder as GATES Large. GATES Large increases the
encoder capacity but does not incorporate new zero-shot
information. We can see that increasing the embedding
dimension does bring improvements, but GATES++ still
outperforms GATES in most cases. More specifically, in
the cases that GATES outperforms GATES++, GATES Large
performs better. While in the cases that GATES++ outper-
forms GATES, GATES with increased embedding dimension
(i.e., GATES Large) still gets inferior performances than
GATES++.

We also show the comparison of Precision@K and N@K
measures in Fig. 5 and Tab. 5. We can see that GATES and
GATES++ achieve consistently better performances than
other encoders across different Ks on all three benchmarks.
We show the scatter plot of the predicted scores and ground-

truth performances and the scatter plot of the predicted
ranking and ground-truth ranking in the appendix.

The results indicate that the proper modeling of data-
processing DAGs in GATES and GATES++ enables us to
learn a good performance predictor for unseen architectures
after evaluating only a small set of architectures. Also, when
there are only a few architecture-performance pairs for train-
ing the predictor, the prior operation-level information and
extra architecture-level information in GATES++ are indeed
beneficial.

6.4 Ablation Studies of GATES

We compare the results of using four types of ranking losses
and the regression loss to train the GATES predictor on
NAS-Bench-101 in Table 6. The four types of ranking losses
are 1) Pairwise loss with binary cross-entropy φ. 2) Pairwise
loss with a hinge loss function φ. 3) Pairwise comparator
loss. 4) Listwise (ListMLE). We can see that compared with
using the regression loss, using ranking losses bring consis-
tent improvements. In our experiments, we also find that
training with regression loss requires a smaller learning rate
and longer time to converge, and does not work well with
deep GCN or GATES models.
Evaluation Details of the Comparator Note that the eval-
uation of the comparator-based ranking loss is a little dif-
ferent than the evaluation of other ranking losses. For other
ranking losses, we first compute the predicted score P(a)
for each test architecture, and then calculate the ranking
correlation between all predicted scores and all true accura-
cies. However, a comparator trained using the comparator-
based ranking loss must take a pair of architectures as
the input and outputs a comparison result. Therefore, for
evaluating the performance of a comparator, we run the
randomized quick-sort procedure with the comparator to
get the predicted rankings of the testing architectures. Since
the comparator might not be a proper total order operator,
different choices of the random pivots in the randomized
quick-sort could lead to different sorted sequences. There-
fore, we run randomized quick-sort with 3 different random
seeds, and report the average Kendall’s Tau. In practice, we
find that Kendall’s Taus calculated using different random
seeds are very close.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 12

TABLE 5
N@K on three benchmarks. All predictors are trained with 1% (72 architectures), 2.5% (195 architectures), 2.5% (147 architectures) of the training

data on NAS-Bench-1shot-3, NAS-Bench-201, and NAS-Bench-301, respectively. The percentage in the bracket is the normalized N@K
calculated by dividing the testing set size.

Encoder NAS-Bench-1shot-3 NAS-Bench-201 NAS-Bench-301

N@5 N@10 N@5 N@10 N@5 N@10

MLP [10] 140 (1.92%) 98 (1.34%) 107 (1.37%) 89 (1.14%) 139 (0.27%) 139 (0.27%)
LSTM [9], [10] 155 (2.13%) 45 (0.62%) 9 (0.12%) 9 (0.12%) 260 (0.51%) 247 (0.48%)
GCN [11], [12] 146 (2.00%) 111 (1.52%) 77 (0.99%) 77 (0.99%) 1991 (3.90%) 477 (0.93%)

GATES 49 (0.67%) 23 (0.32%) 4 (0.05%) 3 (0.04%) 247 (0.48%) 102 (0.20%)
GATES++ 9 (0.12%) 6 (0.08%) 1 (0.01%) 1 (0.01%) 120 (0.23%) 13 (0.03%)

TABLE 6
GATES ablation study: Kendall’s Tau of using different loss functions on the NAS-Bench-101 benchmark. All experiments except “Regression

(MSE) + GCN” use the GATES encoder.

Loss Proportions of 381262 training samples

0.05% 0.1% 0.5% 1% 5% 10% 50% 100%

Regression (MSE) + GCN† 0.4536 0.5058 0.5587 0.5699 0.5846 0.5871 0.5901 0.5941

Pairwise (Hinge) + GCN 0.5343 0.5790 0.7915 0.8277 0.8641 0.8747 0.8918 0.8950

Regression (MSE) + GATES† 0.4935 0.5425 0.5739 0.6323 0.7439 0.7849 0.8247 0.8352

Pairwise (BCE) + GATES 0.7460 0.7696 0.8352 0.8550 0.8828 0.8913 0.9006 0.9042
Pairwise (Comparator) + GATES 0.7250 0.7622 0.8367 0.8540 0.8793 0.8891 0.8987 0.9011

Pairwise (Hinge) + GATES 0.7634 0.7789 0.8434 0.8594 0.8841 0.8922 0.9001 0.9030
Listwise (ListMLE) + GATES 0.7359 0.7604 0.8312 0.8558 0.8852 0.8897 0.9003 0.9009

†: For evaluating regression loss, we use a 1-layer GCN, and a 3-layer GATES encoder rather than 5-layer models, since we find
that training deep GCN or GATES with the regression loss is unstable, and often fails to learn anything meaningful. With MSE loss,
1 layer of GCN and 3 layers of GATES achieve the best results among all layer number choices using 0.1% training data.

TABLE 7
GATES++ ablation study: Kendall’s Tau of using the EES (zero-shot as a part of operation embedding) and ETS (zero-shot as an auxiliary

regression target) techniques in GATES++.

Encoder NAS-Bench-1shot-3 (7290 training) NAS-Bench-201 (7812 training) NAS-Bench-301 (5896 training)

0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5%

GATES 0.6168 0.6309 0.6557 0.7260 0.6702 0.7328 0.7571 0.8195 0.4889 0.5209 0.5590 0.6452
GATES with EES 0.5886 0.6383 0.6796 0.7405 0.6913 0.7322 0.7651 0.8310 0.5339 0.5660 0.5815 0.6483
GATES with ETS 0.6053 0.6447 0.6922 0.7289 0.6918 0.7389 0.7770 0.8349 0.4998 0.5276 0.5616 0.6572

GATES++ 0.6001 0.6260 0.6965 0.7365 0.7021 0.7404 0.7729 0.8331 0.5329 0.5713 0.5833 0.6545

6.5 Ablation Study of GATES++
GATES++ incorporates multifaceted architectural informa-
tion into GATES by the enhanced encoding scheme (EES)
and the enhanced training scheme (ETS). We conduct an
ablation study on the usage of these two schemes. Table 7
shows the results on NAS-Bench-1shot-3, NAS-Bench-201,
and NAS-Bench-301. We can see that both the enhanced en-
coding scheme and the enhanced training scheme improve
the ranking quality of GATES. And in most cases, GATES++
equipped with these two schemes in the meantime obtain
the best performance. For example, on NAS-Bench-201,
when utilizing 39 (0.5%) architectures to train, GATES with
EES, GATES with ETS, and GATES++ can obtain a relative
improvement of 0.0211, 0.0216, and 0.0319 in Kendall’s Tau,
respectively.

Furthermore, to understand which metrics are useful, we

conduct an item-wise ablation analysis to explore the truly
useful zero-shot metrics for EES and ETS. Specifically, we
separately use each metric in the EES or ETS, and demon-
strate the ranking quality in Tab. 8 and Tab. 9, respectively.
The results show that, in most cases, all the chosen zero-
shot metrics are beneficial to the ranking quality. Among
these metrics, grad norm and snip help to obtain the largest
improvement in both EES and ETS. Besides, we note that
although relu logdet itself can rank the architectures more
accurately [21], it obtains a relatively minor improvement
in ETS for GATES++. Based on the above analysis, all the
chosen zero-shot metrics are used to improve the ranking
quality of GATES++.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 13

TABLE 8
GATES++ ablation study: Kendall’s Tau of using the EES (zero-shot as a part of operation embedding) with each of the metrics in GATES++.

Metric NAS-Bench-1shot-3 (7290 training) NAS-Bench-201 (7812 training) NAS-Bench-301 (5896 training)

0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5%

None 0.6168 0.6309 0.6557 0.7260 0.6702 0.7328 0.7571 0.8195 0.4889 0.5209 0.5590 0.6452
grad norm 0.6052 0.6378 0.6816 0.7429 0.6906 0.7406 0.7691 0.8365 0.5474 0.5664 0.6031 0.6611

snip 0.5945 0.6403 0.6796 0.7415 0.6868 0.7380 0.7686 0.8352 0.5419 0.5677 0.6015 0.6620
plain 0.6036 0.6290 0.6684 0.7312 0.6889 0.7432 0.7696 0.8363 0.5444 0.6090 0.6025 0.6613

synflow 0.6111 0.6396 0.6709 0.7328 0.6848 0.7386 0.7702 0.8345 0.5579 0.5814 0.6090 0.6622
flops 0.6058 0.6292 0.6672 0.7312 0.6872 0.7411 0.7679 0.8353 0.5451 0.5722 0.6054 0.6622

params 0.6041 0.6431 0.6753 0.7298 0.6865 0.7396 0.7591 0.8349 0.5406 0.5710 0.6021 0.6588

TABLE 9
GATES++ ablation study: Kendall’s Tau of using the ETS (zero-shot as an auxiliary regression target) with each of the metrics in GATES++.

Metric NAS-Bench-1shot-3 (7290 training) NAS-Bench-201 (7812 training) NAS-Bench-301 (5896 training)

0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5% 0.5% 0.75% 1% 2.5%

None 0.6168 0.6309 0.6557 0.7260 0.6702 0.7328 0.7571 0.8195 0.4889 0.5209 0.5590 0.6452
grad norm 0.6267 0.6389 0.6768 0.7363 0.6777 0.7426 0.7746 0.8385 0.4958 0.5203 0.5639 0.6650

snip 0.6307 0.6394 0.6735 0.7398 0.6726 0.7434 0.7689 0.8359 0.4995 0.5182 0.5675 0.6670
plain 0.6304 0.6490 0.6864 0.7447 0.6848 0.7273 0.7608 0.8234 0.4915 0.5220 0.5569 0.6666

synflow 0.6155 0.6350 0.6859 0.7270 0.6918 0.7278 0.7657 0.8230 0.4953 0.5202 0.5772 0.6615
relu logdet 0.6064 0.6424 0.6813 0.7146 0.6909 0.7260 0.7661 0.8162 0.4934 0.5251 0.5804 0.6583

TABLE 10
Accuracy comparison of the discovered architectures by using GATES, GATES++ and baseline encoders on three benchmarks. For each

configuration, the mean and standard deviation of 27 results are averaged (3 training seeds, 3 training sets, 3 sample seeds).

Encoder NAS-Bench-1shot-3 NAS-Bench-201 NAS-Bench-301

Training Proportion 1% 2.5% 1% 2.5% 1% 2.5%

MLP [10] 0.9330±0.0104 0.9401±0.0030 0.8820±0.0736 0.9120±0.0460 0.9442±0.0021 0.9443±0.0025
LSTM [9], [10] 0.9388±0.0052 0.9397±0.0048 0.9334±0.0045 0.9317±0.0042 0.9440±0.0022 0.9452±0.0016
GCN [11], [12] 0.9026±0.1119 0.9360±0.0069 0.9244±0.0151 0.9255±0.0107 0.9214±0.0185 0.9321±0.0087

GATES 0.9420±0.0025 0.9416±0.0020 0.9341±0.0102 0.9361±0.0051 0.9454±0.0538 0.9468±0.0024
GATES++ 0.9424±0.0028 0.9424±0.0020 0.9352±0.0080 0.9371±0.0045 0.9468±0.0060 0.9468±0.0025

TABLE 11
Comparison of NAS-discovered architectures on CIFAR-10.

Method Test Error (%) #Params (M) #Archs
Evaluated

NASNet-A [5] 2.65 3.3 20000
AmoebaNet-B [7] 2.55 2.8 27000

NAONet [9] 2.98 28.6 1000
PNAS [8] 3.41 3.2 1160

NAONet-WS† [9] 3.53 2.5 -
DARTS† [56] 2.76 3.3 -
ENAS† [18] 2.89 4.6 -

GATES 2.58 4.1 800
GATES++ 2.47 4.0 600

6.6 Architecture Search with Different Encoders
We conduct predictor-based architecture search using the
GATES and GATES++ on three benchmarks, and show the

TABLE 12
Comparison of NAS-discovered architectures on ImageNet.

Method Top-1 Test Error (%) #Params (M)

NASNet-A [5] 26.0 5.3
AmoebaNet-B [7] 27.2 5.3

PNAS [8] 25.8 5.1

DARTS [56] 26.9 4.9
GHN [57] 27.0 6.1

GATES 24.1 5.6
GATES++ 24.1 5.6

results in Table 10. Specifically, when utilizing the trained
predictor to sample architectures, we randomly sample 200
architectures from the search space and pick the architec-
ture with the highest predicted score. Table 10 shows that
after evaluating the same number of architectures, GATES

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 14

and GATES++ can help discover architectures with higher
accuracies than using the baseline encoders.

6.7 Performances on CIFAR-10 and ImageNet
We show the comparison of the test errors of different
architectures in Table 11, and our discovered architectures
are shown in the appendix. We can see that the architec-
tures discovered by GATES and GATES++ can achieve a
competitive test error rate of 2.58% and 2.47%, respecitvely.

We transfer the discovered architecture to ImageNet and
show the training results in Tab. 12. Specifically, we increase
the base channel number to 48 and stack 14 cells to construct
the model. The augmented model is trained for 300 epochs
with batch size 256, and the learning rate is decayed from 0.1
to 0 following a cosine schedule. We use a weight decay of
3e-5, and auxiliary towers with weight 0.4, and no dropout.

7 CONCLUSION

This paper proposes GATES, a graph-based neural archi-
tecture encoder with better representation ability for neural
architectures. Due to its reasonable modeling of the neural
architectures and intrinsic ability to handle DAG isomor-
phism, GATES significantly improves the predictor fitness
on various cell-based search spaces.

Moreover, we propose an enhanced version of GATES,
GATES++, by incorporating multifaceted architectural in-
formation about NN’s operation-level and architecture-level
computing semantics into the construction and training of
the predictor. Specifically, operation-level zero-shot metrics
are concatenated onto the trainable operation embedding
of GATES, and architecture-level zero-shot metrics are used
as the auxiliary regression targets when training GATES.
Utilizing GATES and GATES++ in predictor-based NAS
could improve the search results. Extensive experiments on
three benchmark search spaces and DARTS demonstrate the
effectiveness of the proposed methods.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (No. U19B2019, 62171313, 61832007),
Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua EE Xilinx AI Research
Fund, and Beijing Innovation Center for Future Chips.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Annual
Conference on Neural Information Processing Systems (NIPS), vol. 25.
Curran Associates, Inc., 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[5] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in International Conference on Learning Representa-
tions (ICLR), 2017.

[6] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural architecture search:
A survey.” Journal of Machine Learning Research (JMLR), vol. 20,
no. 55, pp. 1–21, 2019.

[7] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evo-
lution for image classifier architecture search,” in AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[8] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural
architecture search,” in European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[9] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” in Annual Conference on Neural Information Process-
ing Systems (NIPS). Curran Associates, Inc., 2018, pp. 7816–7827.

[10] L. Wang, Y. Zhao, Y. Jinnai, and R. Fonseca, “Alphax: exploring
neural architectures with deep neural networks and monte carlo
tree search,” arXiv preprint arXiv:1805.07440, 2018.

[11] Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang,
“Nat: Neural architecture transformer for accurate and compact
architectures,” in Annual Conference on Neural Information Process-
ing Systems (NeurIPS), 2019, pp. 735–747.

[12] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang, “Bridging the gap
between sample-based and one-shot neural architecture search
with bonas,” Annual Conference on Neural Information Processing
Systems (NeurIPS), vol. 33, 2020.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations (ICLR), 2017.

[14] X. Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang, “A generic
graph-based neural architecture encoding scheme for predictor-
based nas,” in European Conference on Computer Vision (ECCV),
2020, pp. 189–204.

[15] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter,
“Nas-bench-301 and the case for surrogate benchmarks for neural
architecture search,” arXiv preprint arXiv:2008.09777, 2020.

[16] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural
architecture search using performance prediction,” in International
Conference on Learning Representations Workshop (ICLRW), 2018.

[17] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
International Conference on Machine Learning (ICML). PMLR, 2018,
pp. 550–559.

[18] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient
neural architecture search via parameters sharing,” in International
Conference on Machine Learning (ICML). PMLR, 2018, pp. 4095–
4104.

[19] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun,
“Single path one-shot neural architecture search with uniform
sampling,” in European Conference on Computer Vision (ECCV).
Springer, 2020, pp. 544–560.

[20] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating
the search phase of neural architecture search,” in International
Conference on Learning Representations (ICLR), 2020.

[21] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang,
“Evaluating efficient performance estimators of neural architec-
tures,” in Annual Conference on Neural Information Processing Sys-
tems (NeurIPS), vol. 34, 2021, pp. 12 265–12 277.

[22] Z. Zhou, X. Ning, Y. Cai, J. Han, Y. Deng, Y. Dong, H. Yang,
and Y. Wang, “Close: Curriculum learning on the sharing extent
towards better one-shot nas,” arXiv preprint arXiv:2207.07868, 2022.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 15

[23] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hut-
ter, “Nas-bench-101: Towards reproducible neural architecture
search,” in International Conference on Machine Learning (ICML).
PMLR, 2019, pp. 7105–7114.

[24] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu, “Hierarchical representations for efficient
architecture search,” in International Conference on Learning
Representations (ICLR), 2018.

[25] R. Negrinho and G. Gordon, “Deeparchitect: Automatically
designing and training deep architectures,” arXiv preprint
arXiv:1704.08792, 2017.

[26] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P.
Xing, “Neural architecture search with bayesian optimisation and
optimal transport,” in Annual Conference on Neural Information
Processing Systems (NeurIPS), 2018, pp. 2016–2025.

[27] L. Dudziak, T. Chau, M. Abdelfattah, R. Lee, H. Kim, and N. Lane,
“Brp-nas: Prediction-based nas using gcns,” Annual Conference on
Neural Information Processing Systems (NeurIPS), vol. 33, pp. 10 480–
10 490, 2020.

[28] M. Huang, Z. Huang, C. Li, X. Chen, H. Xu, Z. Li, and
X. Liang, “Arch-graph: Acyclic architecture relation predictor for
task-transferable neural architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 11 881–11 891.

[29] P. Stagge and C. Igel, “Neural network structures and isomor-
phisms: Random walk characteristics of the search space,” in IEEE
Symposium on Combinations of Evolutionary Computation and Neural
Networks. IEEE, 2000, pp. 82–90.

[30] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly
wired neural networks for image recognition,” in IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019, pp. 1284–1293.

[31] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of
reproducible neural architecture search,” in International Conference
on Learning Representations (ICLR), 2020.

[32] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: a
variational autoencoder for directed acyclic graphs,” in Annual
Conference on Neural Information Processing Systems (NeurIPS), 2019,
pp. 1588–1600.

[33] Z. Chen, Y. Zhan, B. Yu, M. Gong, and B. Du, “Not all operations
contribute equally: Hierarchical operation-adaptive predictor for
neural architecture search,” in IEEE International Conference on
Computer Vision (ICCV), 2021, pp. 10 508–10 517.

[34] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Annual Conference
on Neural Information Processing Systems (NIPS), vol. 28, 2015.

[35] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Annual Conference on Neural
Information Processing Systems (NIPS), 2016, pp. 2074–2082.

[36] X. Ning, T. Zhao, W. Li, P. Lei, Y. Wang, and H. Yang, “Dsa: More
efficient budgeted pruning via differentiable sparsity allocation,”
in European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 592–607.

[37] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” in International Confer-
ence on Learning Representations (ICLR), 2019.

[38] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” in International Conference on
Learning Representations (ICLR), 2020.

[39] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,” in
Annual Conference on Neural Information Processing Systems (NIPS),
1989, pp. 107–115.

[40] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neu-
ral networks without any data by iteratively conserving synaptic
flow,” Annual Conference on Neural Information Processing Systems
(NeurIPS), vol. 33, 2020.

[41] M. Zhang, S. Su, S. Pan, X. Chang, W. Huang, and G. Haffari,
“Differentiable architecture search without training nor labels: A
pruning perspective,” arXiv preprint arXiv:2106.11542, 2021.

[42] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane,
“Zero-Cost Proxies for Lightweight NAS,” in International Confer-
ence on Learning Representations (ICLR), 2021.

[43] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and
R. Jin, “Zen-nas: A zero-shot nas for high-performance deep image
recognition,” in IEEE International Conference on Computer Vision
(ICCV), 2021, pp. 347–356.

[44] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architec-
ture search without training,” in International Conference on Machine
Learning (ICML), 2021.

[45] J. Wu, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z. Wang, Z. Liu,
M. Chen, and L. Yuan, “Stronger nas with weaker predictors,” An-
nual Conference on Neural Information Processing Systems (NeurIPS),
vol. 34, pp. 28 904–28 918, 2021.

[46] W. Chen, T. yan Liu, Y. Lan, Z. ming Ma, and H. Li, “Ranking
measures and loss functions in learning to rank,” in Annual
Conference on Neural Information Processing Systems (NIPS). Curran
Associates, Inc., 2009, pp. 315–323.

[47] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foun-
dations and Trends® in Information Retrieval, vol. 3, no. 3, pp. 225–
331, 2009.

[48] Y. Xu, Y. Wang, K. Han, Y. Tang, S. Jui, C. Xu, and C. Xu,
“Renas: Relativistic evaluation of neural architecture search,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 4411–4420.

[49] R. Wang, X. Chen, M. Cheng, X. Tang, and C.-J. Hsieh, “Rank-nosh:
Efficient predictor-based architecture search via non-uniform suc-
cessive halving,” in IEEE International Conference on Computer
Vision (ICCV), 2021, pp. 10 377–10 386.

[50] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender, “Learning to rank using gradient descent,”
in International Conference on Machine Learning (ICML), 2005, pp.
89–96.

[51] A. Shashua and A. Levin, “Ranking with large margin principle:
Two approaches,” in Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2003, pp. 961–968.

[52] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach
to learning to rank: theory and algorithm,” in International Confer-
ence on Machine Learning (ICML), 2008, pp. 1192–1199.

[53] A. Zela, J. Siems, and F. Hutter, “Nas-bench-1shot1: Benchmarking
and dissecting one-shot neural architecture search,” in Interna-
tional Conference on Learning Representations (ICLR), 2019.

[54] Wikipedia contributors, “Line graph — Wikipedia, the free
encyclopedia,” 2004, [Online; accessed 22-July-2004]. [Online].
Available: https://en.wikipedia.org/wiki/Line graph

[55] P. K. Sen, “Estimates of the regression coefficient based on
kendall’s tau,” Journal of the American Statistical Association, vol. 63,
no. 324, pp. 1379–1389, 1968.

[56] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi-
tecture search,” in International Conference on Learning Representa-
tions (ICLR), 2019.

[57] C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for
neural architecture search,” in International Conference on Learning
Representations (ICLR), 2019.

Xuefei Ning received her B.S. and Ph.D. de-
grees in electronic engineering from Tsinghua
University, in 2016 and 2021. Xuefei’s research
mainly focuses on efficient deep learning algo-
rithm design and neural architecture search.

Yin Zheng is currently a senior researcher with
Weixin Group, Tencent. He received his Ph.D
degree from Tsinghua University in 2015. He
serves as a PC member or reviewer for many
journals and conferences in his area.

JOURNAL OF LATEX CLASS FILES, JANUARY 2022 16

Zixuan Zhou received his B.S. degree in elec-
tronic engineering from Tsinghua University in
2021. He is currently pursuing his Ms. degree
at EE Department, Tsinghua University. His re-
search interest mainly focuses on neural archi-
tecture search.

Tianchen Zhao received his B.S. degree in elec-
tronic engineering from Beihang University in
2020. He is currently pursuing his Ms. degree at
EE Department, Beihang University, and is a vis-
iting student at Tsinghua University. His research
interest mainly focuses on efficient deep learning
algorithm design.

Huazhong Yang (M’97-SM’00-F’20) received
B.S. degree in microelectronics in 1989, M.S.
and Ph.D. degree in electronic engineering in
1993 and 1998, respectively, from Tsinghua Uni-
versity, Beijing. In 1993, he joined the Depart-
ment of Electronic Engineering, Tsinghua Uni-
versity, Beijing, where he has been a Professor
since 1998. Prof. Yang was awarded the Distin-
guished Young Researcher by NSFC in 2000,
Cheung Kong Scholar by the Chinese Ministry
of Education (CME) in 2012, science and tech-

nology award first prize by China Highway and Transportation Society in
2016, and technological invention award first prize by CME in 2019. He
has been in charge of projects sponsored by the national science and
technology major project, 863 program, NSFC, and several international
research projects. Prof. Yang has authored and co-authored over 500
technical papers, 7 books, and over 180 granted Chinese patents.
His current research interests include wireless sensor networks, data
converters, energy-harvesting circuits, nonvolatile processors, and brain
inspired computing. He has also served as the chair of Northern China
ACM SIGDA Chapter science 2014, general co-chair of ASPDAC’20,
navigating committee member of AsianHOST’18, and TPC member for
ASP-DAC’05, APCCAS’06, ICCCAS’07, ASQED’09, and ICGCS’10.

Yu Wang (M’07-SM’14-F’22) received the B.S.
and Ph.D. (with honor) degrees from Tsinghua
University, Beijing, in 2002 and 2007. He is cur-
rently a tenured professor with the Department
of Electronic Engineering, Tsinghua University.
His research interests include application spe-
cific accelerators, brain inspired computing, par-
allel circuit analysis, and power/reliability aware
system design. He has authored and coauthored
more than 300 papers in refereed journals and
conferences. He has received Best Paper Award

in ASPDAC 2019, FPGA 2017, NVMSA 2017, ISVLSI 2012, and Best
Poster Award in HEART 2012 with 10 Best Paper Nominations. He is
a recipient of DAC under 40 innovator award (2018), IBM X10 Faculty
Award (2010). He served as the TPC chair, finance chair, track chair, PC
member and editors for top EDA and FPGA conferences and journals.
He is the co-founder of Deephi Tech (acquired by Xilinx in 2018), which
is a leading deep learning computing platform provider.

