
WESCO: Weight-encoded Reliability and Security
Co-design for In-memory Computing Systems

Jiangwei Zhang∗, Chong Wang∗, Yi Cai∗, Zhenhua Zhu∗, Donald Kline, Jr†, Huazhong Yang∗, Yu Wang∗
Department of Electronic Engineering, Tsinghua University∗

Intel Corporation †
{jwzhang.pitt@gmail.com, yu-wang@mail.tsinghua.edu.cn}

Abstract—Non-volatile memory (NVM) based in-memory com-
puting (IMC) systems can avoid expensive data movement by
implementing matrix-vector-multiplication calculations in mem-
ory, significantly reducing the power consumption and memory
bandwidth requirements of deep neural networks (DNNs). Due
to the non-volatility and the limited endurance of NVM devices,
the system is ideal for low-power and retrain-free applications.
However, NVM devices have reliability problems caused by device
faults and data security risks due to non-volatility, making the
system unreliable and unsecure. We observe that the impact of
high-bit faults (HBFs) of quantized weights is far greater than
low-bit faults (LBFs) on the classification accuracy of DNNs.
Leveraging this observation, this paper proposes a lightweight and
efficient co-design of reliability and security for retrain-free IMC
systems, called WESCO, that can simultaneously tolerate faults
and obfuscate the network. The weight matrices are encoded in
row level by swapping the HBFs into LBFs to reduce the impact
of faults on network accuracy without retraining; meanwhile, the
implementation of our HBF and LBF swapping simultaneously
obfuscates the network, so that the models cannot be accurately
extracted from the stolen weights. The experimental results
demonstrate WESCO can restore the classification accuracy of
the DNN models to the baseline level at high fault rate of 5E-3
with a low area overhead of 1.17%, and limit the possibility of
attackers stealing the model to infeasible brute force attacks.

Index Terms—DNN, Non-volatile memory (NVM), In-memory
computing, Reliability, Security, Fault-Tolerance

I. INTRODUCTION

Smart devices or Internet of things (IoT) nodes are widely

used in various fields, and they provide specific functions

through Deep Neural Network (DNN) inference. Due to their

constrained energy, an energy-efficient implementation of DNN

inference is highly preferred. In many important real-world

scenarios, retraining is not applicable because of the lack of

manpower or training data [1]. What’s more, to retrain DNN

models requires large-scale calculation and data migration,

which is time- and power- consuming. Retrain-free accelerators

with in-memory computing (IMC) implementations using non-

volatile memory (NVM) such as Resistive Random Access

Memory (RRAM) and Ferroelectric Random Access Memory

(FeRAM) are promising solutions, which can augment neural

network inference with low power and high efficiency. NVM

devices are great carriers to perform matrix vector multi-

plication (MVM)—a dominant operation of neural network

computation. Prior to NVM adaption to DNN accelerators,

however, there are inherent reliability and security issues which

must first be resolved [2], [3].

RRAM devices have potential faults such as manufacturing

defects, aging, heat, and random noise interference, which make

some units unable to accurately store and calculate, directly

resulting in loss of accelerator accuracy when utilized for

that purpose [4], [5]. Although DNNs innately have a degree

of fault tolerance, the accuracy of DNN will drop rapidly if

the fault rate exceeds a certain limit [6]. Take VGG16 as an

example, in Figure 1, when the fault rate exceeded 1E-5, the

classification accuracy of Origin (without protection) began to

deteriorate. This deterioration can be significantly mitigated if

we can guarantee protection of the first 4 (H4 correct) or 2

(H2 correct) bits of the weights. The lines for H4 correct and

H2 correct remained at the baseline level until the fault rate

surpassed 2E-4 and 3E-3, respectively, which were 20× and

300× improvements over the counterpart, while the line for

L4 Correct (the last 4 bits protected) did not show any benefit.

Therefore, it is clear that the importance of correcting high-bit

faults (HBFs) is much higher than that of low-bit faults (LBFs).

The security issues of the DNN accelerator are partly related

to the non-volatility of the devices [2]. NVM such as RRAM

will not lose data after power is turned off. Although the static

power consumption is low, it also brings the security risk of

data theft. If an attacker obtains memory hardware, the DNN

models may be stolen, causing significant loss of intellectual

property. Therefore, it is essential to encrypt the data so that

even if the hardware is lost, the model will not be stolen.

This paper endeavors to solve both the hardware faults of

NVM devices and the risk of model theft caused by their

non-volatility by creating a reliability and security co-design,

WESCO, which is short for “Weight-encoded Reliability and

Security Co-design”. This is the first co-design work towards

the two problems to produce robust retrain-free NVM-based

IMC systems. Existing methods primarily focus on either

solving reliability or security. Our method converts HBFs into

LBFs through bit swapping by encoding the weight matrices

and simultaneously obfuscates the weight matrices that the

accuracies of the models are decreased to an invalid level.

In summary, the main contributions of this paper are sum-

marized as follows:

1) It proposes a new fault tolerance method, called WESCO,

according to the asymmetric impact of HBFs and LBFs,

which converts HBFs to LBFs by bit swappings and

corrects the majority of the faults

2) It simultaneously obfuscates the weight matrices due to

296

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/22/$31.00 ©2022 IEEE
DOI 10.1109/ISVLSI54635.2022.00065

Fig. 1. (a) Hardware Faults in the quantized weights. (b) The impact of HBFs
on the classification accuracies of VGG16 at different fault rates.

the swappings of faulty rows, so the model is made secure

against physical theft

3) It provides characterizations of the tolerance of stuck-

at faults and the obfuscation of the weight matrices

of WESCO and conducts an extensive study based on

Alexnet, VGG16, and Resnet18, illustrating the signifi-

cant improvements brought by the proposed strategy

II. BACKGROUND AND RELATED WORK

A. DNNs

Convolutional neural networks (CNNs) are one of the most

widely used classes of DNNs. CNNs are mainly composed

of convolution (CONV) and fully-connected (FC) layers. The

core calculation of these layers is MVM, that is, the dot

product of the input data and the weight matrix. The traditional

calculation complexity is O(n2), while Processing-in-memory

(PIM) design reduces the complexity to O(1). DNN usually

has two stages, training and inference. In the training stage, the

network learns certain tasks or patterns from the input datasets;

the inference stage is when the results of this training are used

for practical applications. We assume that the training stage is

done on fault-free memory, a one-time large-scale procedure,

and the trained model is deployed to the NVM-based PIM

hardware with potential device faults for low-energy inference

operations. As the faults in NVM array are randomly distributed

and fault pattern of each NVM array is distinct, if each array is

customized during training based on its fault pattern, the cost

of training will be extremely high.

B. NVM Devices and Security

NVM devices include emerging devices such as RRAM,

Phase Change Memory (PCM), and FeRAM. The devices are

utilized as high-density crossbars and are commonly used in

PIM-based DNN accelerators. NVM devices can be manufac-

tured as single-level cell (SLC) and multi-level cell (MLC).

This paper focuses on SLC devices.

MIT tested abandoned hard disks and successfully recovered

most of the hard disk data [7]. After stealing the non-volatile

device, the attacker can not only obtain the DNN model,

which makes it easier to carry out adversarial attacks, but upon

learning the model may perform more sophisticated attacks

leveraging the knowledge of the layout to cause the outcome

of a query to change in a specific way (for example, making a

user or competitor come to the wrong conclusion), greatly in-

creasing the security risk. Therefore, NVM-based DNNs clearly

need security protection. Apart from model stolen attack, fault

injection attacks cause inference errors by injecting faults to

reduce network accuracy [2]. Side channel attacks (SCAs) steal

information through methods other than looking at the input and

output data alone, such as using this information in conjunction

with latency, temperature, and a wide variety of other indirect

information. In this paper, we focus specifically on security

concerns related to physical device theft or direct/indirect

observation of data stored in NVM memory. Software threats,

transmission-time side channel attacks, and manufacturing-time

hardware Trojans are orthogonal to our application of NVM for

DNNs.

C. Related Work
There are four main classes of error correction methods

for existing DNN accelerators: First is redundant replacement,

including row/column-level replacement [8] and Dual/Triple

Modular Redundancy (DMR/TMR)) [9]. Fundamentally, this

concept is to store duplicates of data, and use the duplicates to

correct faulty bits, at the cost of rows or columns, resulting

in large area overhead. The second class is to utilize the

inherent fault tolerance or redundancy of DNNs to improve

the reliability through fault tolerance training or pruning [10].

In the case of high fault rate, each chip has a different fault

distribution, the training or pruning overhead is significant and

to some extent the improvement is limited [11]. This class

of methods requires changes to the DNN models and have

high dynamic energy consumption. The third class reduces

the impact of faults on network accuracy, including limiting

the value range of weights, and intervening and regulating the

values that exceed the limit, so that the network accuracy is

maintained at a high level [5]. This class of methods have low

error correction cost but limited error correction capability, and

are only suitable for memory with low fault rates. The fourth

class is algorithm-based fault tolerance or error correction

coding techniques. Checksum [12] and arithmetic codes [3] are

mainly used to detect and correct soft faults at runtime with

low fault rate. Traditional memory error correction methods,

including Error Correction Codes (ECC) [13] and other NVM-

oriented methods can tolerate stuck-at faults [14]–[17]. They

are not suitable for in-memory processing and do not fully

utilize the fault tolerance of DNN itself. Consequently, at a

relative high error rate (1E-5 to 1E-2), existing methods are

not yet able to maintain the accuracy of the network without

retraining at a relatively low area cost.
For the security problem caused by the theft of non-volatile

memory, the existing solutions mainly fall into three categories.

First is full encryption, which encrypts all data. Encryption is

effective and versatile, but the cost of encryption and decryption

is high. For devices with limited endurance, the large number

of write operations generated by encryption and decryption

accelerates the wear of the device [18]. Second is the partial

encryption method, which uses gradient matrix or Hessian

matrix to filter out the weights that have a greater impact on the

classification accuracy [2]. Encrypting the key weights makes

297

the inference of the encrypted model invalid. However, this

category of methods also has the problem of device wear in

the position of the key weights. Third is to protect the model

information by obfuscating the weight matrix. One method

in this category is that RRAM sometimes uses positive and

negative arrays to represent the weight matrix. Through row-

level random shifting, the positive and negative arrays cannot

correspond correctly [19]. This method has only be applied to

RRAM with two arrays. The other method in this category

is to cut the large weight matrix into small matrices, and

randomly shifts the small matrices along the column dimension,

so that the multiplication of the input and the weights cannot

be corresponded [20]. This method has a limited number

of shifting cases. Besides, both methods cannot tolerate any

fault for potential faulty NVM array. More importantly, these

methods have limited encryption options restricted by the

attached multiplexers. If unluckily, these options are leaked,

they can no longer protect the model. Our method does not rely

on multiplexers to obfuscate the network and has tremendous

options.

III. METHODOLOGY

A. Fault tolerance

To tolerate each fault individually is expensive (by recording

the address of the fault and the correct data), our method deals

with the faults in a row simultaneously. The proposed method

not only swaps the high-impact faults in high bits to low-impact

low bits to reduce the impact of the faults on network accuracy,

but in many cases also tolerates them.

Faults are injected into the NVM array and a certain number

of cells are regarded as stuck-at ‘0’ or ‘1’ faults. The quantized

weights of pretrained model are written into the NVM array

with hard faults. Since they only need to be written once when

the model is deployed, in general, there will be no new faults

introduced during usage of one particular model. If any, the

few faults can be easily detected. If the written data does

not match the data in the stuck-at cells, they are Stuck-at

Wrongs (SAWs), while if the written data is consistent with

the data in the devices, they are Stuck-at Rights (SARs). In

addition, for non-permanent faults or “weak” cells discovered

after fabrication, we can also treat them as permanent SAWs.

The faults are detected by using Read after Write (RAW)

technique. SARs faults do not affect the model accuracy, while

SAWs do, especially the SAWs in high bits of the weights.

If the swapping transfer SAWs into SARs, when the data bits

of the weights are written to different NVM devices, the SAWs

are regarded as being corrected. To correct a SAW (stuck-at ‘0’

or ‘1’), you need to correspond it with a bit valued ‘0’ or ‘1’,

and similarly, to keep the correctness of a SAR (stuck-at ‘0’

or ‘1’), correspond it with the same data or keep unchanged.

If faults cannot be corrected by encoding, we have as a final

protection the structure of the DNN itself to help protect against

faults. For example, VGG16 itself can tolerate the faults when

the fault rate is lower than 1E-5.

Swapping needs auxiliary bits each row to record as an

encoding. Theoretically, the more encodings, the higher the

Fig. 2. An example of WESCO to convert an HBF to an LBF and tolerate the
fault with two auxiliary bits per row to record the encodings.

probability of HBFs being converted to LBFs without new

HBFs created. Therefore, as the anticipated fault rate of a

weight matrix increases, we need more auxiliary bits (b) to

record the encodings. When b=1, there are two encodings that

‘0’ means no swapping and ‘1’ means swapping that the bits

in a weight are shifted in ‘9 − x’ transformation, where x
represents the bit position, marked from the most significant

bit (Bit ‘1’) to the least significant bit (Bit ‘8’). When b=2 or

3, there are four or eight encodings. We will next illustrate the

method using b=2 for example.

As shown in Figure 2, NVM devices are reset and 8-bit

input data (‘00010010’) is to be written to the devices. Bit ‘2’

is stuck at ‘1’ (SA1), but the data is ‘0’, so that it becomes a

SAW and also a HBF that needs to be handled. We partition

the weight into four groups, with two bits in each group,

numbered G1 to G4. Figure 2 lists the four swapping modes,

encodings and fault conditions after swapping. The swapping

method is mirror interchange, where G1<->G4 means that G1

and G4 are interchanged, that is, Bit ‘0’ and Bit ‘1’ in G1 are

mutually exchanged with Bit ‘7’ and Bit ‘6’ in G4, respectively.

Meanwhile, G2<->G3 means that Bit ‘2’ and Bit ‘3’ in G2

are exchanged with Bit ‘5’ and Bit ‘4’ in G4, respectively.

The encoding ranges from ‘00’ to ‘11’. HBF (W1) still exists

at encodings ‘00’ and ‘11’, while HBF is converted to LBF

(W1) at encoding ‘10’, and HBF is shifted to the low position

and corrected at encoding ‘01’. Therefore, the encodings ‘01’

and ‘10’ swaps the HBF to LBF, while the encoding ‘01’ also

tolerates the fault.

When b=3, four additional encodings are created by the

parity bit conversion of the four encodings at b=2 in Figure 2.

With the eight encodings, any bit can be interchanged to any

position, and any bit will not overlap in positions between two

encodings. Therefore, faults can search for matching data as

far as possible within the weights.

B. Security

Bit swappings of the weights can not only weaken the impact

of or correct faults, but can also be utilized to provide security

protection. The swappings can encrypt the weight matrix and

the key is the encodings. If the encoded matrix is directly used

for MVM calculation, the accuracy of DNNs will be greatly

influenced, being as low as the level of random chance.

298

In order to prevent the attacker from obtaining the encodings,

the auxiliary bits need to be encrypted and stored in a separate

and safe memory, being invisible to users. Since the number of

auxiliary bits is not large, during use they can be stored locally

in CPU caches or in other memories.
The difficulty of attack is related to the ratio of swapped

rows and the number of encodings. The more encodings, the

more difficult it is for an attacker to recover the network using

the brute-force attack. Theoretically, if the number of rows in

a certain weight matrix is ni and the number of encodings is

mi (≤2b), the attacker needs to perform mni
i times of MVM

calculations to traverse all possible situations of the weight

matrix. For the entire DNN model,
∏NM

i=1 m
ni
i times of MVM

calculations are required, where NM is the number of weight

matrices. Even if b=1, for a large DNN it will be astronomically

expensive for the attacker to calculate
∏NM

i=1 2
ni times.

If the attacker could read the values of device, and he or she

could also know the locations and faulty types of the faulty

devices by probing, the attacker might reverse the encodings of

the faulty rows. To reduce this risk, we strategically encode the

non-faulty rows by random encodings. Even if all the encodings

of the faulty rows are reversed, the encodings of the non-

faulty rows can still protect the model from being stolen. If

the numbers of faulty rows and non-faulty rows are nif and

ni-nif , respectively, for weight matrix i. It will still be very

expensive for the attacker to calculate
∏NM

i=1 mi
ni−nif times.

C. In-memory Computing Design
Since the bit swappings may change the order of the bits of

the weights in the faulty rows, the MVM calculation cannot be

directly implemented. We separate the multiplication of an in-

put vector and a weight matrix into m times of multiplications,

that is, each encoding needs one multiplication. Since m ≤ 2b

and b=1, 2, 3, the computational complexity is still O(1).
Figure 3 is a demonstration to calculate the sum of the

weights in four rows, when b=2. The gray and white bits of

the input data are ‘1’ and ‘0’, respectively. The input data (IN)

is ‘1111’. There are four rows in the weight matrix (WM),

and each row has only one weight (INT8). The encodings of

each row are recorded in auxiliary bits (AUX), including ‘00’,

‘01’ and ‘11’. We divide IN into INi (i=1,2,3), each of which

represents the input data of an encoding. INi is set that the

input data corresponding to the rows of the encoding i is copied

from IN, and the remained data are set ‘0’. In Figure 3, WM

contains the weights after swapping. The first and third rows

remain unchanged because there is no SAW. The second and

fourth rows are swapped to convert the high SAW to the low

SAR respectively. Next, each INi is multiplied with WM to

get Yi, which is reversed to obtain Y
′
i according to AUX, and

finally Y =
∑3

i=1 Yi.
Therefore, the calculation for each encoding requires to set

the input data, do matrix multiplication, reverse the swap-

ping, and calculate the summation. Finally, Y =
∑m

i=1 Yi =∑m
i=1 INi ·WM. When m < 2b, there is one or several possible

encodings that do not exist in AUX, less times of calculations

are required. Hence, if the number of rows of any encoding is

very few, we could cut off the encoding to reduce calculation,

Fig. 3. An example of in-memory computing design of WESCO to perform
summation of four weights.

by distributing the rows to their secondary encodings. In the

following section, we analyze the latency, area, and power

overhead of WESCO.

IV. OVERHEAD ANALYSIS

The hardware implementation of in-memory computing com-

monly divides a large matrix with N rows into multiple small

matrices with 8 rows, and then does dot multiplication for

each small matrix, and finally accumulates the calculation re-

sults [21]. WESCO can easily be applied to the implementation

with very low overhead. We can group the rows of one encoding

into the same small matrices. If the number of rows of one

encoding is less than 8, we can randomly select fault-free

rows and encode them using this encoding to make up the

difference; if the number of rows of one encoding is greater

than 8, we can separate the rows into small matrices, and make

up the difference if necessary. Thus, the operations of MVM

calculation for each small matrix and the summation of each

MVM result are not extra procedure for WESCO.

Besides, to implement WESCO, we need to traverse AUX

to search the rows of each encoding and set the input data.

And also, after each MVM calculation, we need to remap the

swapped weights. These two operations can be hidden in the

system level by accomplishing them in parallel with the MVM

calculation. As to security purposes, due to the small relative

size of the auxiliary bits, they can be cached and quickly

fetched for resolving each MVM calculation result.

For the area overhead, as the weights in each row share an

encoding, the overhead is low. If each row has M weights, b
auxiliary bits, and the weight quantization is q integral bits,

the area overhead is b/(Mq). For example, if b=2, M=128,

and q=8, the area overhead is only 0.195%.

We assume the number of rows in each weight matrix is

constant. When M is increased by c times, the number of

matrices decreases by c times. These weight matrices can be

calculated in parallel, and the latency is basically no increase.

The number of DACs and ADCs will increase by c times

because of more matrices, so the area and power consumption

of DACs and ADCs will encounter the same times of increase.

However, the overhead of ADCs can be partially offset by

increasing the number of rows per matrix.

V. EVALUATION

We use VGG16, Alexnet, and Resnet18 to verify the ef-

fectiveness of WESCO in terms of reliability and security.

These models were trained and tested on CIFAR-10 with INT8

quantization. The weights were bit sliced and mapped to the

same rows of the NVM array with each bit corresponding to a

299

single-level NVM device. The number of weights M per row

in the array is set to 32/64/128. The fault model adopted was

consistent with the Ares fault model [4]. The faults (stuck-at ‘0’

and ‘1’) were injected in a randomly uniform distribution. The

weights were quantized with the benchmark of the maximum

absolute value of the weights in each layer of the DNN models,

so the quantized weights were bounded by the maximum value.

The faults in the convolutional layers were data-independent,

which were injected in the pretrained model, while the faults

in the activation layers were data-dependent, which were in-

jected layer by layer during the inference process. The results

reported are the average values of 50 experiments, which is

reasonable for compute-intensive DNN inference. The primary

baseline classification accuracies offered by VGG16, Alexnet,

and Resnet18 were 85%, 81%, and 92% without any fault,

respectively, while the secondary baseline accuracies offered

are the results with HBFs guaranteed protection (H4 Correct) at

different fault rates. Thus, at any fault rate, H4 correct actually

has half of those faults, since we assume through redundancy

or another competing method the high bits have guaranteed

protection. We use ‘Origin’ to refer to the case without any

protection. Note that for CIFAR-10, which has 10 classified

objects, the classification accuracy 10% means that the network

inference is equivalent to random chance, and thus invalid.

To validate WESCO in fault tolerance, we compare with

BReLU [11], Ranger [22], and ClipAct [5], which tolerate

faults without retraining. BReLU is the state-of-the-art method.

Compared to the baseline, we record the fault rate when the

accuracy drops by one percent for each method. WESCO has a

1.17% area overhead in maximum, while BReLU, Ranger, and

ClipAct have 13%, 10%, and 10% overhead, respectively [11].

Figure 4 shows the classification results of VGG16 when

the fault rate ranges from 1E-6 to 1E-2. ‘WESCO 3b 32w’

refers to WESCO with 3 auxiliary bits and 32 weights per

row. The line for Origin keeps constant at baseline level until

the fault rate exceeds 1E-5. At the fault rates of 1E-4 and

1E-3, the results of Origin dropped to 72% and 10%, with

13 and 75 percents decrease from the baseline, respectively.

At the fault rates of 2E-3, 1E-3, and 1E-3, the lines of

BReLU, Ranger, and ClipAct started to decrease, respectively.

WESCO 3b 32w, WESCO 3b 64w, and WESCO 3b 128w

achieved full protection at the fault rates of 5E-3, 3E-3, and

2E-3, respectively. WESCO achieved up to 2.5x improvement

over the state-of-the-art method. It can be seen from Figure 4

that the lines of WESCO 3b 32w and H4 Correct are almost

overlapped. H4 Correct had a full protection of the model

before the fault rate exceeds 3E-3, while WESCO 3b 32w

achieved 1.7x improvement of the point over H4 Correct. This

means that, WESCO 3b 32w surpassed the secondary baseline

(H4 Correct). At the high fault rate of 1E-2, the results of

WESCO 3b 32w and BReLU are 80% and 34%, respectively.

The increase in accuracy is 46 percents.

To further validate WESCO, we apply it to Alexnet and

Resnet18 when b ranges from 1 to 3. As shown in Figure 5

and Figure 6, the lines of Origin for Alexnet and Resnet18

started to decrease at the fault rates of 1E-5 and 1E-4, respec-

Fig. 4. The impact of faults on the classification accuracies of VGG16 with
the protection of various methods. There are 32/64/128 weights per row.

tively, indicating that Alexnet had a comparable ability of fault

tolerance to VGG16, but Resnet18 obtained 10x improvement

over these two models. WESCO 1b 128w, the weakest version

of WESCO shown in the figures, improved 30x and 8x of

the starting points over the corresponding Origins, respectively,

for Alexnet and Resnet18. The strongest version of WESCO,

WESCO 3b 32w, achieved full protection at the fault rates of

5E-3 and 8E-3 for Alexnet and Resnet18, respectively, 2.5x and

1.1x over the comparable points of H4 Correct. At the high

fault rate of 1E-2, the results of WESCO 3b 32w for Alexnet

and Resnet18 are only 2 and 0.5 percent below the primary

baselines, respectively.

Table I lists the number of rows N , the ratio of faulty

rows RF , the ratios of swapped rows (over the number of

faulty rows) at b=1 (R1b), b=2 (R2b), and b=3 (R3b), with

the fault rate ranging from 1E-6 to 1E-2 and M=32/64/128.

N is inversely proportional to M . If the attacker directly

uses the encoded model to do inference without decoding, the

classification accuracy of the model is around 10%, despite

the fault rates and M in the table, which is the invalid level

for inference. As the fault rate increased from 1E-6 to 1E-2,

RF increased dramatically from 0.03%, 0.05%, and 0.11% to

92.37%, 99.42%, and 100.00%, respectively, for M=32, 64,

and 128. R1b, R2b, and R3b kept almost constant, regardless

of M , as the fault rate rises from 1E-6 to 1E-4, and increased

moderately as the fault rate reaches 1E-3, and finally jumped

to higher levels at the high fault rate of 1E-2. When b increased

from 1 to 3, the ratios of swapped rows increased, which

Fig. 5. The impact of faults on the classification accuracies of Alexnet with
the protection of various methods. There are 32/64/128 weights per row.

300

Fig. 6. The impact of faults on the classification accuracies of Resnet18 with
the protection of various methods. There are 32/64/128 weights per row.

TABLE I
THE SECURITY ANALYSIS OF VGG16 WITH 32/64/128 WEIGHTS PER ROW

AT THE FAULT RATES RANGE FROM 1E-6 TO 1E-2.

M N Fault rates RF (%) R1b (%) R2b (%) R3b (%)
1E-6 0.03 30.56 44.37 50.18
1E-5 0.26 30.43 44.20 49.97

32 4196954 1E-4 2.53 30.65 44.32 50.22
1E-3 22.60 31.83 46.37 52.46
1E-2 92.37 41.49 63.19 71.33
1E-6 0.05 30.56 44.38 50.18
1E-5 0.51 30.44 44.23 50.00

64 2098493 1E-4 4.99 30.78 44.55 50.47
1E-3 40.09 33.10 48.6 54.91
1E-2 99.42 46.87 71.89 81.97
1E-6 0.11 30.56 44.37 50.19
1E-5 1.02 30.47 44.27 50.04

128 1049261 1E-4 9.74 31.05 45.02 50.97
1E-3 64.11 35.53 52.86 59.61
1E-2 100.00 49.50 75.09 86.81

indicated that more faults were tolerated by swapping.

As for brute force attacks, at the fault rate no less than 1E-6,

M=32, 64 and 128, the minimum numbers of calculations are

as large as 24196954, 22098493, and 21049261, respectively. The

numbers are far greater than (16!)16 reported in Ref. [20] and

(16!)17 in Ref. [19]. Even if the attacker somehow discovers

the faulty rows and their encodings, the minimum numbers

of calculations are still as large as 22455637, 21114929, and

2415192, respectively. These numbers are still much larger than

the numbers reported in Ref. [20] and Ref. [19].

VI. CONCLUSION

Aiming at the reliability and security problems in the NVM-

based in-memory computing systems, this paper proposed to

convert the high-bit faults of the quantized weights into low-bit

faults by bit swapping, which greatly improved the reliability

of DNN inference and protected the models in the case of

theft of the NVM device. At fault rate of 5E-3, WESCO

restored the classification accuracies of Alexnet, VGG16, and

Resnet18 to their baseline levels. At 1E-2, WESCO achieved 46

percents increase in accuracy over the state-of-the-art method

with a much smaller area overhead. The protection of the

models stolen only required to store a small amount of auxiliary

bits in a separate and safe memory. In future work, we will

try to optimize the encodings to further improve WESCO’s

practicability, on the premise of ensuring the effectiveness of

the models.

VII. ACKNOWLEDGE

This work was supported by National Natural Science

Foundation of China (No. 61832007, U19B2019, 62104128),

National Key RD Program of China (No. 2017YFA02077600);

Tsinghua EE Xilinx AI Research Fund; Beijing National Re-

search Center for Information Science and Technology (BN-

Rist); Beijing Innovation Center for Future Chips.

REFERENCES

[1] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural
network quantization without retraining using outlier channel splitting,”
ICML, pp. 7543–7552, 2019.

[2] Y. Cai, X. Chen, L. Tian, Y. Wang, and H. Yang, “Enabling Secure NVM-
Based in-Memory Neural Network Computing by Sparse Fast Gradient
Encryption,” IEEE TC.

[3] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network
accelerators reliable,” HPCA, pp. 52–65, IEEE, 2018.

[4] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” DAC, pp. 1–6, IEEE, 2018.

[5] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance using
clipped activation,” DATE, pp. 1241–1246, IEEE, 2020.

[6] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: Towards efficient
neural acceleration with refresh-optimized embedded DRAM,” ISCA,
pp. 340–352, IEEE, 2018.

[7] P. Roberts, “MIT: Discarded hard drives yield private info,” Computer-
World, Vol. 16, 2003.

[8] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang,
and H. Yang, “Stuck-at fault tolerance in RRAM computing systems,”
IEEE JETCAS, Vol. 8, pp. 102–115, 2017.

[9] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to
improve computer reliability,” IBM journal of research and development,
Vol. 6, pp. 200–209, 1962.

[10] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang, “Fault-tolerant
training enabled by on-line fault detection for RRAM-based neural
computing systems,” IEEE TCAD, Vol. 38, pp. 1611–1624, 2018.

[11] J. Zhan, R. Sun, W. Jiang, Y. Jiang, X. Yin, and C. Zhuo, “Improving
Fault Tolerance for Reliable DNN using Boundary-Aware Activation,”
IEEE TCAD, 2021.

[12] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “FT-CNN: Algorithm-based fault tolerance for convolutional
neural networks,” IEEE TPDS, Vol. 32, pp. 1677–1689, 2020.

[13] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs
Technical Journal, Vol. 29, pp. 147–160, 1950.

[14] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” ACM SIGARCH Computer
Architecture News, Vol. 38, pp. 141–152, ACM, 2010.

[15] J. Zhang, D. Kline, L. Fang, R. Melhem, and A. K. Jones, “Dynamic
partitioning to mitigate stuck-at faults in emerging memories,” ICCAD,
pp. 651–658, IEEE, 2017.

[16] J. Zhang, D. Kline, L. Fang, R. Melhem, and A. K. Jones, “Yoda: Judge
me by my size, do you?,” ICCD, pp. 395–398, IEEE, 2017.

[17] D. Kline, J. Zhang, R. Melhem, and A. K. Jones, “Flower and fame: A
low overhead bit-level fault-map and fault-tolerance approach for deeply
scaled memories,” HPCA, pp. 356–368, IEEE, 2020.

[18] Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, and H. Yang, “Long
live TIME: Improving lifetime and security for NVM-based training-in-
memory systems,” IEEE TCAD, Vol. 39, pp. 4707–4720, 2020.

[19] M. Zou, Z. Zhu, Y. Cai, J. Zhou, C. Wang, and Y. Wang, “Security
enhancement for rram computing system through obfuscating crossbar
row connections,” DATE, pp. 466–471, IEEE, 2020.

[20] Y. Wang, S. Jin, and T. Li, “A Low Cost Weight Obfuscation Scheme for
Security Enhancement of ReRAM Based Neural Network Accelerators,”
ASP-DAC, pp. 499–504, 2021.

[21] C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C.
Chang, P. Chen, T.-W. Liu, C.-J. Jhang, C.-I. Su, et al., “A 22nm 4Mb
8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7
TOPS/W for Tiny AI Edge Devices,” ISSCC, Vol. 64, pp. 245–247, 2021.

[22] Z. Chen, G. Li, and K. Pattabiraman, “A Low-cost Fault Corrector for
Deep Neural Networks through Range Restriction,” DSN, pp. 1–13, 2021.

301

