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Abstract— Collaborative exploration in an unknown environ-
ment is an essential task for mobile robotic systems. Without
external positioning, multi-robot mapping methods have relied
on the transfer of place descriptors and sensor data for relative
pose estimation, which is not feasible in communication-limited
environments. In addition, existing frontier-based exploration
strategies are mostly designed for occupancy grid maps, thus
failing to use surface information of obstacles in complex three-
dimensional scenes. To address these limitations, we utilize
Gaussian Mixture Model (GMM) as the map form for both
mapping and exploration. We extend our previous mapping
work to exploration setting by introducing MR-GMMExplore,
a Multi-Robot GMM-based Exploration system in which robots
transfer GMM submaps to reduce data transmission and
perform exploration directly using the generated GMM map.
Specifically, we propose a GMM spatial information extraction
strategy that efficiently extracts obstacle probability information
from GMM submaps. Then we present a goal selection method
that allows robots to explore different areas, and a GMM-
based local planner that realizes local planning using GMM
maps instead of converting them into grid maps. Simulation
results show that the transmission of GMM submaps reduces
approximately 96% communication load compared with point
clouds and our mean-based extraction strategy is 4 times faster
than the traversal-based one. We also conduct comparative
experiments to demonstrate the effectiveness of our approach in
reducing backtracking paths and enhancing cooperation. MR-
GMMExplore is published as an open-source ROS package at
https://github.com/efc-robot/gmm explore.

I. INTRODUCTION

Autonomous exploration is critical in unknown environ-
ments such as disaster search and rescue (SaR) and the
subterranean environment [1], where the communication is
limited and external positioning is not accessible. Compared
with single-robot system, multi-robot system allows robots
to cooperatively map the 3D environment, thus improving
exploration efficiency. However, in the absence of external
positioning, robots have to transfer place descriptors and
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Fig. 1. GMM-based Multi-Robot Exploration System Architecture.

sensor data for relative pose estimation (RelPose) [2] [3],
which requires high communication volume. The occupancy
grid maps shared among robots for map merging also put
pressure on the communication bandwidth [4]. In addition,
complex environments bring challenges to the multi-robot
exploration task as the existing exploration strategies often
rely on the discrete grid map that is unable to precisely
describe the geometry information of obstacles [5].

To address the above challenges, we use Gaussian
mixture model (GMM) as the map form for both mapping
and exploration. The GMM map is suitable for scenarios
with communication constraint due to its small data volume,
reducing transmission data volume by approximately 200×
that of occupancy grid maps (from 1 MB/s to 5 KB/s)
[6]. Meanwhile, its continuous probability representation is
capable of capturing the occupied surface and free space
information in the 3D environment [5] and improves the
efficiency for real-time collision avoidance [7].

As illustrated in Fig. 1, our multi-robot exploration system
is composed of two parts: GMM mapping and GMM-based
exploration. For GMM mapping, the robots construct GMM
submaps from point clouds, in which an adaptive model
selection method [8] is applied to combine overlapped
Gaussian components. Then to further reduce the data
transmission, we adopt the submap-based framework [9]
where only GMM submaps are transmitted among robots.
The place recognition module extracts descriptors from GMM
submaps to decide whether different robots experience the
same place, and the inter-robot relative pose is estimated in
map registration module for incremental map merging.

For GMM-based exploration, upon the generation of a



GMM submap, robots extract the mean values of Gaussian
components to update the set of areas that have been explored.
Then, taking into account the height of the robot, we sample
the occupancy probabilities at different heights for each newly
explored area. In the goal selection module, the robot chooses
candidate target goals from the frontier of the explored
area with a maximum obstacle probability constraint. At the
beginning, robots haven’t observed the same scene. Therefore,
they select goals individually and then plan paths based on the
gradient of occupancy probability. When robots successfully
realize map merging, a cooperative exploration strategy is
performed to choose different goals and avoid inter-robot
collision during local path planning. The contributions are as
follows:

• A GMM spatial information extraction strategy that
efficiently extract exploration statement information and
obstacle probability information from GMM components
of each generated submaps.

• A goal selection method including individual goal
selection and cooperative goal selection.

• A GMM-based local planner which utilizes the gradient
of obstacle probability to plan paths.

The structure of the paper is as follows. We first present
current works on GMM mapping in robotic applications and
multi-robot exploration (Section II). Then we demonstrate
the representation of GMM map and the GMM submap
construction method (Section III). The GMM-based explo-
ration is composed of three modules mentioned before:
a. GMM Spatial Information Extraction (Section IV-A), b.
Goal Selection (Section IV-B) and c. GMM-based Local
Planner (Section IV-C). Afterwards, we conduct simulation
experiments to evaluate the performance of our GMM-based
exploration system (Section V). Finally, we conclude this
work (Section VI).

II. RELATED WORK

A. GMM Mapping in Robotic Applications

A GMM map is a continuous probabilistic representation
that models the environment as a finite set of Gaussian
distributions rather than discrete cells. Meadhra et al. [5]
propose a memory-efficient GMM mapping method for
deriving occupancy grid maps at arbitrary resolutions without
the need to store a grid map of the entire environment. To
meet the requirement of real-time GMM mapping, Xu et al.
[4] present an acceleration engine called GAME on embedded
FPGA. Various GMM model selection methods [8] [10] are
proposed to choose a suitable number of GMM components.
In terms of perception, Tabib et al. [11] present a real-time
distribution-to-distribution GMM registration methodology
to enable robust mapping and navigation in subterranean
environments. GMM is also employed in Huang et al. [12]
as a prior map for visual localization of a moving camera.

In terms of exploration, Dhawale et al. [7] leverage
geometric properties of GMM maps to efficiently avoid
collision given an arbitrary time-parameterized trajectory.
Tabib et al. [6] develop a single-robot GMM-based framework

for perception and exploration in communication-constrained
environments. Corah et al. [13] and Goel et al. [14] use
GMM for multi-robot mapping and local occupancy grid maps
are generated from GMM for use in planning. However, if
external positioning methods fail, additional information such
as sensor data needs to be shared in Corah et al. [13], which
is infeasible in communication-limited areas. Additionally,
Goel et al. [14] makes the assumption that relative initial
transforms between robots are known in advance.

B. Multi-Robot Exploration in Unknown Environments

Frontier-based exploration strategies [15] are widely used
for multi-robot exploration. Robots separate explored and
unexplored areas based on the current map, and then each
robot selects a goal from detected frontiers according to
different criteria, e.g., cost-based [16] [17], sample-based
[18] [19], and potential field-based [9]. Robots always move
towards the nearest frontier [20] in cost-based methods while
sample-based methods detect frontiers using multiple Rapidly-
exploring Random Trees (RRTs) [18]. Yu et al. [9] design a
potential field-based method to reduce back-and-forth changes
of goals for 2D exploration.

However, since frontier can be easily determined by grid
maps, these exploration methods are usually combined with
the occupancy grid, integrating new sensor measurements
straightforwardly [17]. When the 3D environment is described
by Gaussian mixture model, existing strategies cannot directly
make decisions based on detailed surface information of
objects. Even in GMM-based exploration frameworks [13]
[14], local occupancy grid maps are sampled from GMM
maps using Monte Carlo ray tracing for planning, while it has
been proven that using GMM directly for local navigation is
time-efficient and safety-guaranteed [8].

III. THE GMM MAP REPRESENTATION

A. Gaussian Mixture Model

GMM is a probabilistic model using a set of weighted
Gaussian distributions. Its probability density function is
defined as

p(x) =

N∑
i=1

πiN (x | µi,Σi) (1)

where each component N (x | µi,Σi) is a Gaussian
distribution parameterized by a mean value µi and a co-
variance matrix Σi. πi represents the probabilistic weight of
selecting the ith component which satisfies

∑N
i=1 πi = 1. The

GMM can be estimated by Expectation Maximization (EM)
algorithm [21] to achieve optimal parameters.

B. GMM Map

A GMM map G = p(x) provides the probability of
spatial occupancy at each location x [10]. In our GMM-
based exploration system, robots represent the explored
environment in the form of GMM and share GMM submaps
for map merging and collaborative exploration. The GMM
submap construction method is realized in our previous work
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[8]. Briefly speaking, for generating each GMM submap,
we first integrate 20 frames of adjacent point clouds and
remove duplicate points through voxel filtering. Then we
construct the GMM submap via the EM algorithm. However,
due to the uneven distribution of point clouds in the real
environment, the generated GMM submap has overlapped
Gaussian components. Therefore, we apply an adaptive
model selection method on the GMM submap to combine
components with similar positions and shapes.

IV. EXPLORATION BASED ON GMM MAP

The GMM map captures the surface information of
obstacles, which is helpful for robot exploration. Using the
real-time GMM submaps as the robots move, each robot
constantly chooses its next goal and plans paths until the
whole environment is explored. The process of GMM-based
multi-robot exploration is shown in Fig. 3.

A. GMM Spatial Information Extraction

The GMM map models the 3D environment observed
by robots as continuous probability, so we extract the
spatial information that is necessary for the exploration
task. Specifically, we define an exploration statement matrix
M = {Mxy|0 ≤ x < W, 0 ≤ y < L} to distinguish
explored and unexplored areas. Mxy = 1 means the area
[x∗l, (x+1)∗l]×[y∗l, (y+1)∗l] (called as one cell in Fig. 2)
has been explored, while Mxy = 0 means it has not. The size
length of cell l can be adjusted to meet the required accuracy
for exploration. M is updated every time the robot generates
a new GMM submap or receives a submap from other robots.
According to Eq. (1), we describe the GMM submap as
a parameter set Θgmm = {{πi,µi,Σi}Ni=1}. We do not
traverse each cell and calculate the occupancy probability at
every height to determine M. Such traversal-based strategy
is time-consuming and inaccurate as unexplored areas also
have small probability values. Instead, we present a mean-
based extraction strategy. For each component in Θgmm, the
exploration statement matrix updates as follows:

Mxy = 1 (2)

where x = ⌊µix

l ⌋, y = ⌊µiy

l ⌋ and µi = [µix, µiy, µiz].
It is sufficient to use only the mean value information

of every component because: 1) When generating a GMM
submap, we set a lower limit on the number of components

so that the mean value of at least one component falls into
the explored cell, illustrated in Fig. 2. 2) Even if there are
oversights, such as near the corner and other view blind areas,
our goal selection method in Section IV-B is fault-tolerant
and will not select these mislabeled points as goals. 3) As
the camera’s field of view changes during further exploration,
it is possible that the mislabeled points will eventually be
successfully marked as explored. Section V-B compares the
computation efficiency of two strategies.

In addition, we define an obstacle probability matrix P
that has the same size as M. Pxy refers to the probability for
a certain vehicle to encounter obstacle in the cell. Given a
GMM submap, the corresponding P varies depending on the
height of the robot. For example, suppose there is a box on
the group, the obstacle probability in this area for a ground
vehicle is high. However, a drone may has a low obstacle
probability since it may fly directly over the box. In this paper,
we consider the unmanned ground vehicle (UGV) with height
h. It can travel on flat ground and pass through the archway
shown in Fig. 2, so we need to know if there are obstacles in
the altitude range from 0 to h at each location. The obstacle
probability matrix is obtained through the following formula:

Pxy = max
j=1,...,n

N∑
i=1

πiN ((x, y, jz0) | µi,Σi) (3)

where z0 = h
n is the sampling interval in height direction

and n is the number of samples. Each time a new GMM
submap is added, we update M and then calculate the obstacle
probability of areas that have just been marked as explored.

B. Goal Selection

Robots continuously make decisions on which area to
explore and plan paths based on the acquired information
about the surrounding environment. We call the former step
as goal selection, where the robot selects a goal area from
the boundary between explored and unexplored areas. The
selection of goal needs to meet the three requirements: 1)
The goal has been explored and is a free space. 2) It is next
to unexplored areas. 3) For safety consideration, the area
around the goal is as free as possible of obstructions. We
choose a goal from the following candidate set L :

L = {(x, y)|Mxy = 1,Pxy < 0.01,

∃ (a, b) ∈ Uxy, s.t. Mab = 0,

∀ (a, b) ∈ Uxy, MabPab < 0.1}
(4)

where Uxy is the set of eight regions adjacent to the goal.
Each point (x, y) in L refers to a corresponding cell. As the
robot moves, it first determines whether the points in the
candidate set still satisfy the conditions of goal selection,
and removes them if they do not. Then the robot simply
judges whether the latest cells marked as explored are on the
boundary and adds points that meet the requirements.
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1) Individual Goal Selection: In the beginning, robots
perform individual mapping and exploration. Each robot
selects the point nearest to it from L as its goal. Since robots
update M and P based on their own collected GMM submaps,
their generated candidate sets are different. Therefore, robots
are unlikely to choose the same goal.

2) Cooperative Goal Selection: When robots recognize
that they have explored the same scene by means of place
recognition (PR), they perform relative pose estimation
(RelPose) and map merging. After that, robots use the merged
map and shared location for collaborative exploration. We
expect the robot to choose a goal that is close to itself but far
from other robots. So our distributed strategy is that, the robot
in pk = (x, y) calculate the scores of each goal candidate in
L and select the one with the highest score as the next goal
to be explored. The score s is defined as:

s =

∑M
m=1,m̸=k ||pL − pm||

||pL − pk||
(5)

where pL ∈ L is the candidate goal and M is the number of
robots.

C. GMM-based Local Planner

As the next goal is determined, robots perform local path
planning based on the obstacle probability of surrounding
areas extracted from the GMM map. The obstacle probability
matrix P demonstrates the environment as discrete probability.
Therefore, we make modifications on the gradient-based local
planner [8] by using difference to approximate the gradient
field. As noted in Eq. (3), Px0y0

is an obstacle probability
at a location (x0, y0). Its gradient at a direction r = (rx, ry)
is calculated by g(r) = P(x0+rx)(y0+ry) − Px0y0

, where
rx, ry ∈ {±1, 0} and (rx, ry) ̸= (0, 0). Then, we get the
gradient of eight directions ri, i = 1, .., 8. The robots can
move in any directions, with its direction falling into one
of the eight zones shown in Fig. 3. For a zone containing
direction ri, g(ri) represents the gradient of the whole zone.
For each robot, the obstacle probabilities at other robots’
positions are set to 1 so as to avoid inter-robot collisions.

Fig. 3 illustrates the online GMM-based path planner. Given
the current robot position and goal, the robot chooses the
direction directly towards the goal as the candidate direction
rcand. Then its gradient g(r2) is calculated to check whether
the robot will encounter obstacles. If g(r2) is smaller than
the threshold gthr, it implies that this direction is safe, and
the robot moves towards rcand. Otherwise, the robot selects
the peripheral direction rrand + 45◦ or rrand − 45◦ as the
candidate direction. If its corresponding gradient g(r1) <
gthr or g(r3) < gthr, the robot moves in rrand + 45◦ or
rrand − 45◦. If the candidate direction constraint is still
unsatisfied, we continue to choose its peripheral direction
until the gradient of a direction is less than gthr.

V. EXPERIMENTAL RESULTS

A. Setup

1) Simulation Environment: As shown in Fig. 4, we
create the simulation environment in Gazebo, which is
24m × 16m. Such cluttered environment includes straight
passageways, archway, regular corners and front obstacles
etc. The simulation robot is Turtlebot3 Waffle pi with a
180◦laser scanner, whose distance range is 5m. The height
of robot is 0.141(m). Each generated GMM submap is made
up of 80 components. We set the resolution for exploration
to l = 1m and the sampling interval for z-axis is 0.1m.
We implement the multi-robot GMM mapping utilizing the
ROS package gmm map python [22] and our GMM-based
exploration implementation is packaged in the ROS package
gmm explore.

All simulations and evaluations are performed on a Desktop
PC with an Intel Core i7-11700 processor and an NVIDIA
GeForce RTX 3050 GPU.

2) Exploration Strategies for Comparison: Our proposed
exploration strategy utilizes the 3D information extracted
from GMM submaps, which is called GMM 3dEnv Explore.
We perform comparison experiments by introducing GMM
2dEnv Explore, GMM rand Explore and GMM non-cooper
Explore. In GMM 2dEnv Explore strategy, robots directly use
the mean value of components, once the component satisfies
µiz > 0, the grid where x = ⌊µix

l ⌋, y = ⌊µiy

l ⌋ is judged to



Fig. 4. Simulation Environment. (This is the map for multi-robot exploration
while single-robot exploration adds a wall on it.)

be an obstacle area. GMM rand Explore strategy randomly
chooses the target goal from candidate set, while robots using
GMM non-cooper Explore strategy choose their own nearest
target goals.

TABLE I
COMPUTATION EFFICIENCY

Method Traversal-based Mean-based(ours)
Computation Time(s) 0.0628 0.0156

TABLE II
DATA TRANSMISSION BETWEEN TWO ROBOTS (BYTE)

Robot1 Robot2 Average of 2 robots
Point Cloud 85460 106212 95836

GMM 4032 4244 4138

B. Computation Efficiency for GMM Info Extraction

The exploration statement matrix M and the obstacle
probability matrix P are updated when a new GMM submap
is generated. We calculate the average computation time for
each update and the results in Tab. I show that our mean-based
extraction method is 4 times faster than the traversal-based
method.

C. Data Transmission in Multi-Robot System

Tab. II illustrates the average data transmission volume
of each submap transmitted between two robots. The rate
of adding novel point clouds into the submap is about 0.6
seconds per frame and each GMM submap is generated using
20 frames of point clouds. We can see that if robots transfer
point clouds, the average submap data volume is 95836
byte. If robots transfer GMM submaps with 80 Gaussian
components, the average data transmission is reduced to
4138 byte, thus saving approximately 96% communication
load.

D. GMM-based Exploration Evaluation

We firstly evaluate the performance of GMM-based explo-
ration on a single robot. Results in Fig. 5 show that our method
performs better in both exploration time and traveled path
length. The exploration time required to reach 95% coverage
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using GMM 3dEnv Explore, GMM 2dEnv Explore and GMM
rand Explore is 350.7s, 385.5s and 464.2s respectively, while
the path length is 60m, 70.5m and 83.5m. As illustrated in
Fig. 6, compared with GMM rand Explore, our method can
explore nearby areas in time, thus avoiding backtracking and
repeated trajectory. Additionally, the GMM 3dEnv Explore
makes better use of the information extracted from the 3D
environment. As we can see from the marked red circle in
Fig. 6, the robot using GMM 3dEnv Explore identifies an
archway and chooses to pass through it, which consumes less
time than driving around it in GMM 2dEnv Explore.

In order to clearly show the differences in exploration
performance of the multi-robot system compared to the single-
robot system, we find that two robots are most appropriate
for our simulation environment.Thus we deploy two robots in
the experiment with their exploration trajectories depicted in
Fig. 8. In the GMM non-cooper Explore strategy, two robots
repeatedly explore the same area, while in our method the
two robots explore different places with almost no repeated
path. Fig. 7 shows that in the first 50s, two robots perform
individual exploration since they have not mapped the same
area and estimated their relative pose. Therefore, the coverage
rates of GMM non-cooper Explore and GMM 3dEnv Explore
are similar. Afterwards, robots transfer GMM submaps with
each other, merging them into a global map. We can see
that the coverage rate of GMM 3dEnv Explore increases
much faster than GMM non-cooper Explore. As a result,
the exploration time when the coverage rate reaches 95% is
reduced from 253.85s to 177.61s. Unnecessary paths have
also been reduced seen in Tab. III. In addition, the exploration
time using two robots is approximately half of the time using
one robot.
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VI. CONCLUSION AND FUTURE WORK

In a communication-limited environment, it is important
for robots to efficiently explore the environment while
maintaining low data transmission. Thus, this work proposes
a Gaussian mixture model-based multi-robot exploration
system called MR-GMMExplore. The proposed GMM-based
exploration involves 1) a GMM spatial information extraction
strategy, 2) a goal selection method, 3) a GMM-based local
planner.

Future work will consider the air-ground exploration in the
communication-constrained environment. We expect to take
the respective characteristics of heterogeneous robots into
account and design more time-efficient and communication-
efficient mapping and exploration strategy.
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