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Abstract
Attention-free large language models (LLMs), such as Mamba and

RWKV, have emerged as promising architectures to address the qua-

dratic attention complexity of Transformer models. The inference

bottleneck of these models lies in memory-bound matrix-vector

multiplications (MVMs) and element-wise multiplications (EWMs).

The emerging RRAM/SRAM-based Processing-In-Memory (PIM)

architectures have shown great potential to overcome the memory

wall problem. However, constrained by the supported data format

and operator type, directly adopting PIM architectures for attention-

free models faces three challenges: (1) RRAM-based analog PIM

architectures perform integer (INT) MVMs using voltage, current,

and conductance in the analog domain, limiting their application

to the more accurate floating point (FP) data format; (2) SRAM-

based digital PIM architectures require additional decoder circuits

to support FP format, and the SRAM capacity cannot satisfy the

storage requirement of LLMs; (3) When performing EWMs using

PIM architectures, only one row/column or the diagonal memory

cells are activated, resulting in severe device under-utilization.

To tackle the above challenges, this paper proposes an RRAM

and 3D-SRAM-based hybrid PIM architecture with non-uniform

data format, achieving FP-based algorithm accuracy, high device

utilization, and high energy efficiency. At the software level, we
first analyze the impact of quantization errors on the accuracy of

attention-free LLMs. For the quantization error-insensitive MVM

operations, we propose the PIM-oriented exponent-free non-uniform
(PN) data format. The proposed PN format can be flexibly adjusted
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to fit the data distribution and approach the accuracy of the FP for-

mat using bit-slicing-based full INT operations. For the quantization

error-sensitive EWM operations, we introduce the multiplication-

free approximated FP multiplications to reduce the additional hard-

ware overhead for PIM. At the hardware level, we propose a

hybrid PIM architecture, including an RRAM analog PIM using shift-

and-add for PN-based MVMs, and a 3D-SRAM digital PIM with

high utilization for multiplication-free FP-based EWMs. Extensive

experiments show that the proposed PIM architecture achieves up

to 89× and 16× speedup with 2537× and 12 × energy efficiency

improvement compared with GPU and PIM-baseline, respectively,

while achieving FP-based algorithm accuracy.
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1 Introduction
Transformer has emerged as a foundation model architecture for

various tasks due to its excellent performance [3], while the self-

attention module [23] brings quadratic computational complexity

and makes it computationally and memory intensive. Recently,

attention-free large language models (LLMs) are proposed to cir-

cumvent the costly attention computation [8, 21, 17, 16, 9, 27].

Among them, Mamba [9] and RWKV [16] show remarkable capa-

bilities and receive widespread attention, which adopts the State

Space Module (SSM) [10] and linear attention as substitutes for
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Figure 1: (a)(b) Challenges of adopting PIM architectures for attention-free models. (c)(d) Our solutions: an RRAM and 3D-
SRAM-based hybrid PIM architecture with non-uniform data format and reduced multiplications.
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Figure 2: Memory-bounded MVM and EWM operations be-
come the inference bottlenecks.

the self-attention module, respectively. Compared to Transformer,

Mamba and RWKV realize an efficient Recurrent Neural Network

(RNN)-like decoding pattern, maintaining constant computational

and memory complexity during inference.

Despite the superiority of attention-free LLMs, these models

suffer from the severe memory wall problem in von Neumann ar-

chitectures. As shown in Figure 2, matrix-vector multiplications

(MVMs) and element-wise multiplications (EWMs) are the most

time-consuming parts in both Mamba and RWKV models, totally

accounting for about 80% of the inference decoding latency. Fur-

thermore, the ratio between computation amount and memory

movement of both two operations is extremely low, significantly

below the upper bound of GPU’s compute intensity (i.e., the amount

of computation that can be done per byte of memory movement).

This indicates that these operations are bound by massive memory

movements and can not fully utilize the computing power of GPUs.

In order to tackle thememorywall problem, researchers have pro-

posed emerging RRAM/SRAM-based Processing-In-Memory (PIM)

architectures that perform in-situ MVM computations to eliminate

the weight matrix data movements, improving performance and

energy efficiency [4, 19, 28, 11, 22, 24].

However, limitations exist in PIM architectures in terms of the

supported data format and operator type. Directly adopting exist-

ing PIM architectures for attention-free models leads to algorithm

accuracy loss and severe under-utilization of computing resources.

Firstly, RRAM-based analog PIM architectures are limited to per-

forming inaccurate integer (INT) and fixed-point-based MVMs.

Recently, the superiority of non-uniform data format has been val-

idated on LLMs [12, 7], especially in the case of low bit-width.

However, RRAM-based PIM architectures perform MVMs in the

analog domain, limiting the supported operation to only INT/fixed-

point multiplications [22], thereby resulting in significant accuracy

loss, as shown in Figure 1(a). Secondly, although SRAM-based PIM

architectures can perform MVMs in the more flexible digital do-

main, additional circuits to support the floating-point (FP) format

are required. Besides, the SRAM capacity is limited, making it diffi-

cult to meet the requirements of large language models. Thirdly,

performing EWMs using MVM-oriented PIM architectures causes

extremely low resource utilization. Unlike MVM operations, EWM

does not require any accumulation steps. One possible way to per-

form EWMs using PIM architecture is to store the vector on the

diagonal memory cell of RRAM crossbar or one row/column of

SRAM crossbar. Then, the calculation is executed in the form of

MVM. However, in this case, only a few memory cells are activated

in each row/column, causing severe device under-utilization, as

shown in Figure 1(b).

To address the above challenges of inaccurate INT data format,

hardware costly FP multiplications, and inefficient PIM implementa-

tion for EWMs, we propose an RRAM and 3D-SRAM-based hybrid

PIM architecture with non-uniform data format and reduced multi-

plications. Our key contributions include:

• At the software level, we adopt different data formats for dif-

ferent operations based on their quantization error sensitiv-

ity. For the quantization error-insensitive MVMs, we propose

a novel PIM-oriented exp-free non-uniform data format (PN),
enabling near-FP accuracy using bit-slicing-based full INT

operations. For the quantization error-sensitive EWM opera-

tions, we introduce the multiplication-free FP multiplication

approximation method, performing accurate FP multiplica-

tions using only INT-addition operations and reducing the

additional hardware overhead for PIM.

• At the hardware level, we propose a hybrid PIM architecture

for attention-free LLM. An RRAM-based analog PIM using

efficient shift-and-add operations is proposed for PN-based

MVMs and a 3D-SRAM-based digital PIM with high utiliza-

tion is adopted for multiplication-free FP-based EWMs.



Towards Attention-Free LLM: Hybrid PIM with Non-Uniform Data Format and Reduced Multiplications ICCAD ’24, October 27–31, 2024, NEW JERSEY, NJ, USA

• We conduct extensive experiments on Mamba/RWKV model

families. The results show that the proposed PN format

achieves FP-based accuracy with minimal overhead. Besides,

the proposed architecture achieves 89× and 16× speedup

with 2537× and 12 × energy efficiency improvement com-

pared with GPU and PIM baseline, respectively.

2 Background
2.1 Attention-Free Large Language Model
Various attention-free models have been proposed to mitigate the

quadratic attention complexity of Transformer models. Among

them, Mamba [9] and RWKV [16] exhibit performance comparable

to the Transformer. As shown in Figure 3, in addition to MVMs of

linear layers, a large number of EWM operations are introduced.

Specifically, Mamba block adopts the S4 module, which can be

defined with four parameters (∆,A,B,C) as follows:
B,C,∆ = 𝐿𝑖𝑛𝑒𝑎𝑟B,C,∆ (xt),
ht = 𝑒𝑥𝑝 (Δ ⊙ 𝑨) ⊙ ht−1 + Δ ⊙ 𝑩 ⊙ xt,

yt = 𝑪ht,

(1)

where 𝐿𝑖𝑛𝑒𝑎𝑟 (·) is the projection of linear layer and the hidden

state ht representing historical text information is updated each

step in the form of element-wise multiplication.

Different from the Mamba model, RWKV leverages past informa-

tion in the input dimension and adopts a linear attention module.

The input feature is generated by a linear interpolation between

the current and previous time-step input, followed by linear layers:

y = 𝐿𝑖𝑛𝑒𝑎𝑟 ((𝜇 ⊙ xt + (1 − 𝜇) ⊙ xt−1)). (2)

Besides, the proposed linear attention module is a variant of AFT

module [27], including EWMs and exponential calculations.

2.2 Data Format
In this paper, the data format we focus on primarily refers to the data

type, i.e., how to use binary encoding to represent a real number.

We can use the following equation to describe the relation between

the real number’s value 𝑉 and the n-bit encoded binary number 𝑥 :

𝑉 = 𝑓 (𝑥) = 𝑓 ({𝑥 [𝑛 − 1], ..., 𝑥 [0]}) . (3)

Based on Equation 3, we can categorize data formats into two

types, i.e., uniform data formats and non-uniform data formats.

The uniform data formats exhibit the characteristic that the value

differences between two adjacent encoded binary numbers are the

same, as shown in Equation 4. INT and fixed-point data formats

are two widely used uniform data formats.

∀ 𝑎𝑑 𝑗𝑐𝑒𝑛𝑡 (𝑥,𝑦), 𝑓 (𝑥) − 𝑓 (𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

𝐼𝑁𝑇 : 𝑓𝐼𝑁𝑇 (𝑥) = −𝑥 [𝑛 − 1] × 2
𝑛−1 +

𝑛−2∑︁
𝑖=0

𝑥 [𝑖]2𝑖 .
(4)

For the non-uniform data format, the differences between two

adjacent encoded binary numbers vary a lot. FP and NormalFloat

(NF) [7] are two representative non-uniform data formats:

𝐹𝑃 : 𝑓 (𝑥) = 𝑓 ({𝑆, 𝐸,𝑀}) = (−1)𝑆 × 2
𝐸− bias × (1 +𝑀);

𝑁𝐹 : 𝑓 (𝑥) = 1

2

(
𝑄

(
𝑓𝐼𝑁𝑇 (𝑥)
2
𝑛 + 1

)
+𝑄

(
𝑓𝐼𝑁𝑇 (𝑥 + 1)

2
𝑛 + 1

))
,

(5)
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where 𝑆 , 𝐸, and𝑀 are values of the sign, exponent, and mantissa,

respectively. 𝑛 is the bit-width of NF (usually 4-bit), and 𝑄 (·) is the
quantile function of the standard normal distribution 𝑁 (0, 1).

2.3 Processing-In-Memory Architecture
PIM architectures performMVM or logic computations inside mem-

ory to alleviate the memory wall problem. Existing PIM architec-

tures can be categorized into two types, i.e., analog PIM and digital

PIM, as shown in Figure 4.

The analog PIM architectures use voltage, current, capacitance,

and conductance to represent the matrix and vector data, and the

MVMs are performed in the analog domain according to Kirchhoff’s

law and Ohm’s law [19, 4]. For example, in the RRAM-based PIM,

the matrix and vector are represented by the RRAM conductance G
and the word-line voltage vector V, respectively. The MVM results

are derived by the output vector I from bit-lines. Based on the

above working principle, analog PIM is mainly suitable for directly

representing values using voltage and conductance, and it cannot

support FP computation because the FP format requires exponent

alignment before mantissa computation.

The digital PIM architectures have been proposed in recent

years [5, 25, 22]. In digital PIM architectures, the weight matrix is

stored in SRAM array, and the input vector is loaded to the memory

array bit-by-bit. The memory cell or the memory row in digital PIM

is attached to digital computing units such as logic gates, which

perform the in-situ bit-wise multiplication between weight bits and

input bits. After that, these bit-wise multiplication results are sent

to a near-memory adder tree to generate MVM results. Due to the

bit-wise operation characteristic, digital PIM architectures can sup-

port in-memory FP computation by adding additional alignment

and encoder/decoder circuits [22].
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Table 1: Comparison of different data formats for MVMs.
W𝑥A𝑦 means 𝑥-bit weight and 𝑦-bit activation. ↓ and ↑mean
lower is better and higher is better, respectively.

Mamba-130M Perplexity ↓ Accuracy ↑ Accuracy loss ↓
FP16 16.04 64.6 /

INTW8A8 17.90 63.6 1.00%
INTW4A8 617.2 59.4 5.20%

FPW4A8 65.38 60.8 3.80%

NFW4A8 38.05 60.8 3.80%

Perplexity: uncertainty of the generated text on LAMBADA dataset [15].

Accuracy: answer accuracy on PIQA question answering dataset [2].

3 Software Optimization: PIM-Friendly Data
Format and Approximated FP Multiplication

3.1 Motivations
In order to deploy attention-free LLMs on PIM architectures, the

first step is to determine which data format should be used for

computation on PIM. On the one hand, as introduced in Section 2.3,

different PIM approaches support different data formats. RRAM-

based analog PIM mainly performs INT-based computations, while

SRAM-based digital PIM supports FP and other data formats by in-

troducing additional data format processing modules. On the other

hand, different operators have varying sensitivity to quantization

errors. Therefore, to achieve a better tradeoff between accuracy and

computational performance, it is necessary to analyze the suitable

data format for each operator.

For MVMs in attention-free LLMs, Table 1 shows the compar-

ison results of Mamba-130M’s performance across different data

formats. Compared to the FP16-based baseline, INT W8A8 can

achieve comparable accuracy, showing that MVMs are quantization

error-insensitive. However, if a lower bit-width INT data format,

e.g., W4A8, is adopted to reduce the hardware overhead of PIM,

more accuracy loss occurs compared to other data formats with the

same bit-width. The superiority of FP and NF formats comes from

the characteristics of non-uniform data representation. As shown

in Figure 5, the INT format has uniform numerical representation

intervals, while FP and NF formats exhibit non-uniform represen-

tation. Given that the weights in pre-trained models usually have a

normal distribution with variable deviation, the non-uniform data

formats fit the weights better, bringing smaller quantization errors.

For EWMs in attention-free LLMs, we observe that they are

highly sensitive to quantization error. Specifically, adopting the

INT format for EWM operation results in a notable drop in model

performance, evenwith a relatively high bit-width of 8-bit, as shown

in Table 2. The performance will be worse with a lower bit width,

which is unacceptable for natural language tasks demanding high

accuracy. The reason for the performance drop is that the inputs of

EWMs are dynamically variable and have a wide dynamic range,

resulting in larger quantization errors.

(a) INT4 (c) NF4 (b) FP4 (d) PN4(ours) 

Error = 0.0157 Error = 0.0096Error = 0.0109 Error = 0.0109

Figure 5: Non-uniform data representation fits unevenly dis-
tributed weight better.

Table 2: Comparison of different data formats for EWMs
Mamba-130M HellaSwag acc↑ PIQA acc↑ Arc-E acc↑
Base 35.292 64.635 48.022

INT-W8A8 30.567 56.392 35.183

Approx-FP16 35.142 65.016 47.559

Inspired by the above observations, our key target is to reduce

PIM hardware overhead while maintaining high accuracy as FP-

based MVM & EWM computations.

3.2 PIM-oriented Exp-free Non-uniform data
format towards MVM Optimization

In RRAM-based analog PIM architectures, the multiplication of

MVM is performed by the RRAM device via Ohm’s law and the

accumulation step is achieved through the bit-line current accumu-

lation in the RRAM crossbar. Assume𝑤 and 𝑎 are the conductance

matrix and voltage vector, respectively, then the current accumula-

tion results of 𝑁 -row crossbar can be represented by:

𝑦 𝑗 =

𝑁−1∑︁
𝑖=0

𝑤𝑖 𝑗𝑎𝑖 . (6)

Considering the precision of RRAM device is limited, one RRAM

device can only store partial bits of one matrix value. Then, multiple

RRAM devices in the same row form the encoded binary number

of one weight according to Equation 3, e.g., 𝑊𝑖 𝑗 = 𝑓 ({𝑤𝑖 𝑗 [𝑛 −
1], ...,𝑤𝑖 𝑗 [0]}) and𝑤𝑖 𝑗 [𝑙] is stored in the 𝑙-th RRAM device. When

selecting a proper data format for the weight matrix in PIM, we

should guarantee that the MVM results can be obtained by combin-

ing the accumulated currents from different crossbar columns. For

example, when computing MVM between weight𝑊 and activation

𝑎, the INT format can be used to derive the correct results:

𝑌𝑗 =
∑︁
𝑖

𝑊𝑖 𝑗𝑎𝑖 =
∑︁
𝑖

(
∑︁
𝑙

𝑤𝑖 𝑗 [𝑙]2𝑙 )𝑎𝑖

=
∑︁
𝑙

(2𝑙
∑︁
𝑖

(𝑤𝑖 𝑗 [𝑙]𝑎𝑖 )) =
∑︁
𝑙

2
𝑙𝑦 𝑗 [𝑙] .

(7)

While for the FP format, the encoded binary numbers should be

aligned at the exponent bits before mantissa multiplication and

addition. Therefore, the direct current accumulation of 𝑤𝑖 𝑗 [𝑙]𝑎𝑖
from different crossbar rows can not yield correct MVM results,

causing the analog PIM to be difficult to support non-uniform data

formats like FP and NF.

PN Format Definition (Figure 6(a)). In order to reduce quan-

tization error using non-uniform data format and maintain the

bit-slicing computing paradigm of PIM (i.e., Equation 7), we pro-

pose a PIM-oriented non-uniform data format (PN) 𝑓𝑃𝑁 :

𝑓𝑃𝑁 (𝑥) =
∑︁
𝑙

𝑤 [𝑙]𝛼𝑙 , (8)

where {𝛼𝑙 } are the scaling factors. The key idea of the proposed

PN format is to replace the bit factors of {2𝑙 } in the INT format

with a set of non-uniform and adjustable bit factors, i.e., {𝛼𝑙 } in
Equation 8. By selecting proper values of {𝛼𝑙 }, the PN format can

be adjusted to fit the data distribution and reduce quantization error

similar to FP and NF formats. As examples shown in Figure 5 and

Figure 6, the PN format can adapt to normally distributed weight

data better, reducing quantization errors by more than 30%.
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Figure 6: Overview of PIM-oriented Exp-free Non-uniform data format: (a) PN Format Definition; (b) PN Scaling Factors Search.

More importantly, with the proposed PN format, the equivalence

and correctness of the bit-slicing-based multiply-accumulation flow

in analog domain remain as follows:

𝑌𝑗 =
∑︁
𝑖

𝑊𝑖 𝑗𝑎𝑖 =
∑︁
𝑖

(
∑︁
𝑙

𝑤𝑖 𝑗 [𝑙]𝛼𝑙 )𝑎𝑖

=
∑︁
𝑙

(𝛼𝑙
∑︁
𝑖

(𝑤𝑖 𝑗 [𝑙]𝑎𝑖 )) =
∑︁
𝑙

𝛼𝑙𝑦 𝑗 [𝑙] .
(9)

The only difference from original architecture is that the accu-

mulated output of the 𝑙-th crossbar needs to be multiplied by the

scaling factor 𝛼𝑙 rather than the fixed value 2
𝑙
.

PN Scaling Factors Search (Figure 6(b)).With the proposed

PN data format, we can obtain an accurate data representation if

the scaling factors are set properly. Thus, the most important thing

for the PN format is to select the appropriate scaling factors, which

is defined as follows:

min

𝜶
L (𝑓𝑃𝑁 (𝑾 | 𝜶 ),𝑾 ) , (10)

where 𝜶 denotes the bit-level scaling factors of PN format and W
denotes the model weights. L is the loss function representing the

difference between two sets of data. The details of the entire search

process for scaling factors are shown in Algorithm 1.

Due to the large range of weight values in the whole model,

adopting the same PN scaling factors for all the weights incurs

accuracy loss. In contrast, within a subset of model weights (a

weight group), both the number of weights and the range of values

are smaller, enabling lower representation error. Inspired by such

observation, we adopt the group-based search scheme to further

exploit the advantage of the proposed PN format. We partition the

weight tensor into several groups with the same number of values

(Algorithm 1 line 1) and search different PN scaling factors for

Algorithm 1 PN Parameter Search with Scaling Factor Alignment

Input: Pretrained model weights W, group size 𝑔, bit-width 𝑛.
Output: PN parameter list P𝐹𝑁 ={𝑆𝑦, I}𝑖→𝑁 .

1: Partition W into 𝑁 groups (W1→𝑁 ) of group size 𝑔
2: for 𝑖 = 1 → 𝑁 do
3: D𝑡𝑎𝑟𝑔𝑒𝑡 = GetOptimalDistribution(W𝑖 )

4: 𝛼𝑖 = InitPNParams(𝑛)
5: while True do
6: D𝑖 = GetFormatDistribution(𝛼𝑖 , 𝑓𝑃𝑁 )

7: 𝐿𝑜𝑠𝑠𝑖 = L(D𝑡𝑎𝑟𝑔𝑒𝑡 , D𝑖 )

8: 𝛼𝑖 = GradientDescentUpdate(𝛼𝑖 , 𝐿𝑜𝑠𝑠)
9: if 𝐿𝑜𝑠𝑠𝑖 < 𝑇ℎ𝑟𝑒𝑠 then
10: Break

11: 𝑆𝑦𝑖 , I𝑖 = INTmodeAlign(𝛼𝑖 )

12: Add 𝑆𝑦𝑖 , I𝑖 to P𝐹𝑁

different groups using gradient descent (Algorithm 1 line 5∼10). It
is worth mentioning that we only adopt the PN format for weights,

while the activation values are still represented by the INT format.

So the search process can be completed offline, i.e., post-training

data format conversion, eliminating runtime overhead.

With the PN format defined by the searched parameters, the

direct outputs of 𝑙-th RRAM crossbar need to be multiplied by

the scaling factor 𝛼𝑙 . To achieve high computing accuracy, the

scaling factor 𝛼𝑙 should be FP-based data, which brings excessive

FP multiplication and addition overhead. To solve this problem, we

propose the INT-mode alignment method to convert the FP-based

scaling factors to INT values (Algorithm 1 line 11):

𝛼𝑙 = 𝑆𝑦𝐼𝑙 , (11)

where 𝐼𝑙 is an 8-bit INT value and 𝑆𝑦 is a unified FP-based factor

to align the scaling factors with FP/INT format. Since 𝑆𝑦 is shared

among all weight groups in one layer, it is not involved in the actual

forward process of the PIM architecture. Instead, it can be passed

forward and processed at the output of the entire model, thereby

achieving full INT MVM operations during the runtime.

3.3 Mul-free FP Operation Approximation
towards EWM Optimization

Due to the significant accuracy loss when adopting 8-bit INT format

for EWMs, we conduct EWMs in 16-bit FP format and explore a

more efficient implementation. As shown in Figure 1(d), an FPmulti-

plication can be divided into three parts: XOR between the sign bits,

INT-addition between the exponent bits, and INT-multiplication

between the mantissa bits. Among them, the INT-multiplication

operation incurs the highest overhead.

In order to reduce the overhead of INT-multiplications, we intro-

duce the logarithmic approximation method based on 𝑙𝑜𝑔2 (1+𝑘) �
𝑘 to transform the INT-multiplication of mantissa bits to efficient

INT-addition operations [14]. Given two FP numbers 𝐴 and 𝐵, the

multiplication of the mantissa bits can be expressed as:

1 +𝑀𝐴𝐵 = (1 +𝑀𝐴) × (1 +𝑀𝐵). (12)

The logarithm of𝑀𝐴𝐵 is computed as:

log
2
(1 +𝑀𝐴𝐵) = log

2
(1 +𝑀𝐴) + log2 (1 +𝑀𝐵) � 𝑀𝐴 +𝑀𝐵 . (13)

Then we apply the anti-logarithm approximation, 2
𝑘 � 𝑘 + 1, to

approximate the calculation of𝑀𝐴 +𝑀𝐵 :

1 +𝑀𝐴𝐵 � 2
𝑀𝐴+𝑀𝐵 � 1 +𝑀𝐴 +𝑀𝐵, (14)

It is necessary to consider the overflow case for the mantissa cal-

culation. If 𝑀𝐴 + 𝑀𝐵 ≥ 1, the mantissa bits need to shift right
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3D-SRAM-based digital PIM for multiplication-free FP-based EWMs; LUT-based non-linear function unit and buffer.

for one bit and the exponent value is added by one. Finally, FP-

multiplication can be performed using only efficient INT-addition

operations, which can be easily deployed on digital PIM.

To verify the feasibility of the FP-multiplication approximation

method, we further analyze the representation error and evaluate

the model’s accuracy. The error between the approximated multi-

plication and the actual result is as follows:

Δ𝐴𝐵 = 𝐴𝐵 · 𝑀𝐴𝑀𝐵

1 +𝑀𝐴 +𝑀𝐵 +𝑀𝐴𝑀𝐵
. (15)

The accuracy results shown in Table 2 demonstrate that the FP

multiplication approximation for EWM operations incurs almost

no accuracy loss (i.e., <0.5%) while adopting 8-bit INT format results

in a larger performance drop (i.e., 10%).

4 Hardware Design
4.1 Overall Architecture
At the hardware level, we propose a hybrid PIM architecture for

attention-free LLM, supporting both PN-based MVM operations

and multiplication-free FP-based EWM operations, as shown in

Figure 7. The overall architecture mainly includes three parts: the

RRAM-based analog PIM part, the SRAM-based digital PIM part,

and a buffer for intermediate data. The RRAM-based analog PIM
part uses mixed-size RRAM processing elements (PEs) for MVM op-

erations with different dimensions to achieve high device utilization

rates for different workloads. Specifically, the large RRAM PEs use

256×256 RRAM crossbars for linear layers and the small RRAM PEs

use 16×16 crossbars for one-dimensional convolution layers. The
SRAM-based digital PIM part mainly contains four components,

i.e., an SRAM-based Look-Up-Table (LUT) for non-linear functions,

a two-layer 3D-SRAM-based EWM array, and two data format con-

version units for transferring data between MVM and EWM. The
buffer stores fixed parameters for EWMs, the hidden states that

need to be updated, and the intermediate results from MVM array

and EWM array. The MVM and EWM arrays communicate with

each other via the buffer.

4.2 RRAM-based Analog PIM for PN Format
As shown in Figure 7, the RRAM PEs are interconnected through a

2D-mesh-based Notwork-on-Chip (NoC). Each PE is adjacent to a

router with data merging functionality, which receives and merges

the data from other PEs, and outputs the result to other PEs or

the buffer. A PE contains multiple RRAM crossbars corresponding

to different bits of a weight matrix. In the existing INT-oriented

RRAM-based PIM, the outputs of each crossbar need to be right-

shifted based on the position of stored weight bits (Equation 7), and

then summed to obtain final results.

As introduced in Equation 9 and 11, to implement the PN format

in RRAM PE, the ADC outputs of each crossbar should be multiplied

with INT scaling factors {𝐼𝑙 } before summation. The additional INT

multiplier incurs extra hardware overhead compared to the shifter

in the existing PIM. In order to reduce the multiplication overhead,

we propose the shift-and-add-based approximation method. We

approximate 𝐼𝑙 as an 8-bit data consisting of three-bit "1"s and five-

bit "0"s. Then, the multiplication is converted into three consecutive

shift-and-add operations:

𝑦 · 𝐼 =
2∑︁

𝑘=0

𝑦 << 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝐼 [𝑚] = 1. (16)

The circuit implementation is shown in Figure 7. Since the original

RRAM-based PIM architecture also includes shifters and adders,

the main additional overhead is lightweight 3-stage barrel shifters.

The shift amount is read from the PN shift configuration register

file, which is configured offline after the PN scaling factors search.

4.3 3D-SRAM-based EWM Array
Existing SRAM-based digital PIM architectures are mainly designed

for MVMs. As a result, the weight data stored in one SRAM row

is simultaneously multiplied with the same input vector value,

enabling high column-wise computing parallelism. However, when

performing EWM using these digital PIM architectures, each matrix

data should be element-wise multiplied with the corresponding

input data. In this case, only part of SRAM columns can be activated,

resulting in lower computational utilization (e.g., ∼30%).
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Table 3: The comparison of algorithm accuracy on Mamba and RWKV model. W𝑥A𝑦 means 𝑥-bit weight and 𝑦-bit activation.
Mamba Method Hella./PIQA/Arc-E/Wino. acc Avg↑ RWKV Method Hella./PIQA/Arc-E/Wino. acc Avg↑

130M

FP16 35.29/64.64/48.02/52.02 49.99

169M

FP16 32.24/64.20/47.60/50.83 48.72

INT-W8A8 35.03/63.44/45.88/52.49 49.21 INT-W8A8 32.13/65.29/47.35/52.33 49.27

PN-W8A8 35.07/63.49/47.09/52.41 49.52 PN-W8A8 32.17/64.42/47.01/53.59 49.30

370M

FP16 46.45/69.48/55.01/55.25 56.55

430M

FP16 40.77/68.06/52.31/53.28 53.61

INT-W8A8 46.17/69.21/54.08/55.88 56.33 INT-W8A8 40.86/67.46/52.40/51.62 53.08

PN-W8A8 46.14/68.28/53.66/54.46 55.64 PN-W8A8 40.77/68.17/52.74/52.09 53.44

1.4B

FP16 59.08/74.16/65.49/61.17 64.97

1.5B

FP16 52.90/72.03/60.90/55.01 60.23

INT-W8A8 59.20/73.39/64.14/58.56 63.82 INT-W8A8 51.15/70.57/56.61/53.91 58.06

PN-W8A8 58.94/73.67/65.07/59.04 64.18 PN-W8A8 52.84/71.71/60.35/53.99 59.72

2.8B

FP16 66.09/75.08/69.69/63.06 68.48

3B

FP16 59.93/74.37/64.73/58.80 64.46

INT-W8A8 65.84/73.56/69.07/63.06 67.88 INT-W8A8 59.78/73.50/64.14/56.35 63.44

PN-W8A8 65.94/74.86/69.19/63.38 68.35 PN-W8A8 59.64/72.80/63.93/58.25 63.66

Inspired by the emerging high-density 3D-SRAM technology [1,

20], we propose the 3D-SRAM-based EWM array, consisting of two

SRAM dies and one base logic compute die. By vertically trans-

ferring data and performing multiplication-free FP computations,

the SRAM utilization rate is improved to nearly 100%. As shown

in Figure 7, we use an 8T SRAM cell structure to construct the

proposed 3D-SRAM. Besides the existing word-line (WL), a vertical

WL (VWL) is added, and VWLs of the two stacked SRAM dies are

connected vertically for each row. Additionally, each SRAM cell is

augmented with a vertical bit-line (VBL) for digital PIM computa-

tion. The VBLs are connected vertically to the bottom compute die.

It is worth noting that since only one VBL is added per SRAM cell,

SRAM die 0 adds the VBL on the right side of 6T-cell, while SRAM

die 1 on the left side, reducing layout and routing complexity.

The 3D-SRAM exhibits two operating modes. In the traditional

memory read/write mode, the WL and BL(BLB) of the two SRAM

dies are independently activated, allowing simultaneous writing

of two operands for EWM operations. In the digital PIM mode,

the VWL and VBL are activated. The 32-bit operands data (16

bits for each operand) from the two dies are sent via VBL to the

multiplication-free FP computation unit in the compute die for

calculation, as shown in Figure 7.

4.4 Other Components
Besides the core units for MVM and EWM, the proposed hybrid PIM

also contains a LUT-based non-linear function unit, as illustrated

in Figure 7. We implement four kinds of basic non-linear functions

with 8-bit inputs and 8-bit outputs to cover the computation require-

ments in attention-free LLMs. To improve computation parallelism,

we duplicate the non-linear function LUT into 64 copies.

Considering the difference in data formats between MVM and

EWM, we add INT and FP conversion units in the SRAM-based

digital PIM, placed at the input and output of the 3D-SRAM, respec-

tively. The detailed circuit designs of the data format conversion

units are shown in Figure 7. We implement these units using com-

binational logic circuits to reduce the time and hardware overhead.

5 Evaluation
5.1 Experimental Setup
Benchmarks. We evaluate the Mamba and RWKV model families

with different available sizes on a range of popular downstream

zero-shot evaluation datasets, including HellaSwag [26], PIQA [2],

Table 4: Hardware configurations.
GPU Platform: NVIDIA A100

Frequency 1.41GHz Bandwidth 2039GB/s

Peak performance 19.5TFLOPS Off-chip memory 80GB

RRAM-based Analog PE Array 3D-SRAM-based EWM Array

RRAM xbar size 256×256; 16×16 3D-SRAM size 2×64×64
Read latency 3.16ns Read latency 1.25ns

ADC 8-bit; 1.3GSps # INT-to-FP unit 64

# ADC 1 ADC @ 8 cols # FP-to-INT unit 64

Digital frequency: 1GHz; Buffer size: 192KB; LUT capacity: 64KB

Arc-Easy [6], andWinogrande [18]. The experiments are conducted

with different bit-widths and data format configurations.

Baselines.We compare the proposed hybrid-PIM architecture

with NVIDIA A100 GPU and an RRAM-based PIM baseline [28].

For the latter, both MVM and EWM operations are performed in

RRAM crossbars with INT format. Since some EWM’s inputs are

intermediate results from the previous layer, we take the overhead

of RRAM device writing into account.

Methodology. The hardware configurations are summarized

in Table 4. The numbers of RRAM PEs and 3D-SRAM-based EWM

arrays depend on the specific model size. The RRAM PEs are simu-

lated usingMNSIM 2.0 simulator [29].We implement and synthesize

the digital circuits by Synopsys Design Compiler
®

at TSMC 28nm

technology node. We use CACTI [13] for buffer and LUT simulation.

5.2 Algorithm Accuracy Evaluation
We report the accuracy results on both Mamba and RWKV model

families in Table 3. For the PN-W8A8 method, weights and activa-

tions are represented by 8-bit PN and INT format, respectively. As

Table 3 shows, the proposed PN format consistently outperforms

the INT format on different types and sizes of attention-free models,

while achieving near-FP accuracy.

Table 5: Comparison results in W4A8 configuration.
Model Method Hella./PIQA/Arc-E/Wino. acc Avg↑

Mamba

FP-W4A8 49.55/67.91/55.26/56.80 57.38

INT-W4A8 49.25/67.80/53.60/55.62 56.57

PN-W4A8 49.85/68.66/55.85/56.41 57.69

RWKV

FP-W4A8 45.46/68.38/54.12/53.00 55.24

INT-W4A8 44.69/67.56/52.35/52.41 54.25

PN-W4A8 45.33/68.51/53.80/53.77 55.35
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Figure 8: Comparison results for speedup and energy efficiency improvement on Mamba and RWKV model families. The
overall 40.8∼65.9× speedup and 235.7∼5023.1× energy efficiency improvement compared to the GPU baseline.
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Figure 9: Comparison with the hybrid-PIM baseline.

We further evaluate the average accuracy of the proposed PN

format with W4A8 configuration in Table 5. Compared to the INT

format, the proposed PN format achieves 1.12% and 1.10% higher

average accuracy on Mamba and RWKV models, respectively. Ad-

ditionally, the average accuracy of PN format is even slightly better

than that of the FP format. The accuracy gains come from the group-

based PN scaling factors search, which enables a more accurate

representation based on the weight distribution within each group.

5.3 Hardware Performance Evaluation
We compare the proposed architecture with GPU and PIM base-

line in terms of speedup and energy efficiency. As shown in Fig-

ure 8, compared to the performance of GPU baseline, the PIM

baseline achieves 3.1∼26.1× speedup and 65.7∼559.1× energy effi-

ciency improvement. Nonetheless, it exhibits inefficiency in INT

format EWM implementations and incurs ∼3% more accuracy loss.

By applying the multiplication-free FP multiplication method and

the hybrid PIM design, the proposed architecture further achieves

49.9∼89.6× speedup compared to GPU implementation, as well as

167.3∼2537.1× energy efficiency improvement.

We also compare with a hybrid PIM baseline, which adopts ReD-

CIM [22], a digital-SRAM-based architecture supporting FP format,

to perform the EWMs. The MVM operations are still performed

using the base RRAM-PIM design. As shown in Figure 9, the pro-

posed architecture achieves up to 3.1× speedup with comparable

overall energy efficiency. Since the two architectures only differ in

the implementation of EWM operations, we evaluate the perfor-

mance of EWMs specifically, and our architecture achieves 6.1×
speedup and 54.8× energy savings, which validate the efficiency of

approximated FP-multiplication and 3D-SRAM architecture.

5.4 Hardware Overhead
We evaluate the area and power consumption of one RRAM-based

analog PE and the 3D-SRAM-based EWM array, respectively, as

Table 6: Area and power breakdown of analog PE.
Component Area(𝑚𝑚2

) Breakdown Power(𝑚𝑊 ) Breakdown

XBAR 0.026 16.67% 4.96 0.97%

ADC 0.080 51.28% 494 96.26%

shift&adder 0.002 1.28% 4.27 0.83%

Others 0.048 30.77% 9.97 1.94%

Total 0.156 100% 513.2 100%

Table 7: Area and power breakdown of EWM array.
Component Area(𝑚𝑚2

) Breakdown Power(𝑚𝑊 ) Breakdown

3D-SRAM 0.0289 74.87% 9.19 83.47%

FP-to-INT 0.0039 10.10% 0.69 6.27%

INT-to-FP 0.0058 15.03% 1.13 10.06%

Total 0.0386 100% 11.01 100%

shown in Table 6 and Table 7. The overhead of the shifters and

adders introduced by the PN format implementation is negligible,

accounting for 1.28% of the total area and 0.83% of the total power.

Besides, the introduced format conversion units account for 25.13%

of the total area, with a power consumption less than 20%. For the

buffer and LUT, the area is 0.44𝑚𝑚2
and 0.13𝑚𝑚2

with the power

consumption of 129𝑚𝑊 and 98𝑚𝑊 , respectively.

6 Conclusions
In this work, we propose a hybrid PIM architecture for attention-

free large language models. We design a PIM-oriented non-uniform

data format, breaking the limitations of uniform data format on the

RRAM-based PIM architecture. We also adopt the approximated FP

multiplication method to perform element-wise multiplications on

PIM efficiently. Besides, a hybrid PIM architecture, including RRAM

and 3D-SRAM array, is proposed to implement the above techniques

with high device utilization and energy efficiency. Overall, the

proposed architecture achieves significant speedup and energy

efficiency improvement compared to the GPU and PIM baseline,

while achieving FP-based algorithm accuracy.
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