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Abstract

Client-wise data heterogeneity is one of the major is-
sues that hinder effective training in federated learning (FL).
Since the data distribution on each client may vary dramat-
ically, the client selection strategy can significantly influ-
ence the convergence rate of the FL process. Active client
selection strategies are popularly proposed in recent stud-
ies. However, they neglect the loss correlations between
the clients and achieve only marginal improvement com-
pared to the uniform selection strategy. In this work, we
propose FedCor—an FL framework built on a correlation-
based client selection strategy, to boost the convergence rate
of FL. Specifically, we first model the loss correlations be-
tween the clients with a Gaussian Process (GP). Based on
the GP model, we derive a client selection strategy with a
significant reduction of expected global loss in each round.
Besides, we develop an efficient GP training method with
a low communication overhead in the FL scenario by uti-
lizing the covariance stationarity. Our experimental results
show that compared to the state-of-the-art method, FedCorr
can improve the convergence rates by 34% ∼ 99% and
26% ∼ 51% on FMNIST and CIFAR-10, respectively.

1. Introduction

As a newly emerging distributed learning paradigm, fed-
erated learning (FL) [9, 12, 13, 17, 23] has recently attracted
attention because of the offered data privacy. FL aims at deal-
ing with scenarios where training data is distributed across a
number of clients. Considering limited communication band-
width and the privacy requirement, in each communication
round, FL usually selects only a fraction of clients, and the
selected clients will perform multiple iterations of local up-
dating without exposing their own datasets [23]. This special
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scenario also introduces other challenges that distinguish FL
from the conventional distributed learning [2, 35].

One major challenge in FL is the high degree of client-
wise data heterogeneity [17], which is the inherent charac-
teristic of a large number of clients. There have been many
studies [10, 15, 16, 18, 20, 25, 27, 32] trying to tackle non-IID
(independent and identically distributed) and unbalanced
data of the clients in FL. Most of these studies [10,18,20,32]
focus on amending the local model updates or the central
aggregation based on FedAvg [23].

Recently, active client selection arises as a complement
of the aforementioned studies, aiming at accelerating the
convergence of FL with non-IID data. Some recent studies
propose to assign higher probability of being selected to the
clients with larger training loss value [4, 6]. However, they
neglect the correlations between the clients and consider
their losses independently, which leads to only marginal
performance improvement. In this paper, we propose a
correlation-based active client selection strategy that can
effectively alleviate the accuracy degradation caused by data
heterogeneity and significantly boost the convergence of FL.
Our key idea is mainly based on the following intuitions:

1. Clients do not contribute equivalently. For example,
training with a large and balanced dataset on a “good”
client can reduce the losses of most clients, while train-
ing with a small and extremely biased dataset on a “bad”
client may increase the losses of other clients.

2. Clients do not contribute independently. The influence
of selecting one client depends on the other selected
clients because their local updates will be aggregated.

A toy experiment shown in Fig. 1 also illustrates the ne-
cessity of considering the correlations for client selection. In
this experiment, each client has only one data sample, and
thus each data point in the figure represents a client. The
task is to select two clients (different markers represent the
client selections of different strategies) for training a binary



Figure 1. A toy experiment of different client selection strategies.

classifier (shown as the lines). The selection strategy that in-
dependently selects two clients with the highest local losses
(“Ind Result”) fails to reduce the global loss. In contrast, our
method considers the correlations between the clients (“Cor
Result”) and derives a client selection that can achieve an
almost lowest global loss (“Opt Result”).

Based on the above intuitions, this work proposes Fed-
Cor, an FL framework built on a correlation-based client
selection strategy, to boost the convergence of FL. Our main
contributions are summarized as follows:

1. We model the client loss changes with a Gaussian Pro-
cess (GP) and propose an interpretable client selection
strategy with a significant reduction of the expected
global loss in each communication round.

2. We propose a GP training method that utilizes the co-
variance stationarity to reduce the communication cost.
Experiments show that the GP trained with our method
can capture the client correlations well.

3. Experimental results demonstrate that FedCor stabilizes
the training convergence and significantly improves the
convergence rates by 34% ∼ 99% and 26% ∼ 51% on
FMNIST and CIFAR-10, respectively.

2. Related Work
An important characteristic of FL [12, 13, 23] is the het-

erogeneity of clients, which raises new challenges of the
training [9, 17, 31]. There are two kinds of heterogeneity in
FL: systemic heterogeneity (computation ability, communi-
cation bandwidth, etc.) and statistical heterogeneity (non-
IID, imbalanced data distribution) [17,18]. This work mainly
focuses on the latter one. A number of methods have been
proposed to improve the basic FL algorithm, FedAvg [23], in
heterogeneous settings. Some of them manipulate the local
training loss like adding regularization terms to stabilized
the training [8,10,18,20,26], while some other works amend
the aggregation method to reduce the variance [24, 32].

Complementary to such methods, another way to improve
the convergence of FL in non-IID settings is active client

selection, which tries to strategically select clients for train-
ing in each round in stead of uniformly selecting. Goetz
et al. [6] first propose to assign a high selection probabil-
ity to the clients with large local loss. Cho et al. [4] select
C clients with the largest loss among a randomly sampled
subset A ⊆ U with size d > C to reduce the selection bias.
However, neither of them consider the correlations between
clients while making the client selection.

3. Preliminary
FL seeks for a global model w that achieves the best

performance (e.g., the highest classification accuracy) on all
N clients. The global loss function in FL is defined as:

L(w) =

N∑
k=1

|Dk|∑
j |Dj |

l(w;Dk) =

N∑
k=1

pklk(w), (1)

lk(w) = l(w;Dk) =
1

|Dk|
∑
ξ∈Dk

l(w; ξ), (2)

where l(w; ξ) is the objective loss of data sample ξ evaluated
on model w. We refer to lk(w) as the local loss of client k,
which is evaluated with the local dataset Dk (of size |Dk|)
on client k. The weight pk = |Dk|/

∑
j |Dj | of the client k

is proportional to the size of its local dataset.
In consideration of the privacy and communication con-

straints, FL algorithms usually assume partial client par-
ticipation and perform local model updates. In particu-
lar, in communication round t, only a subset Kt with size
|Kt| = C ≤ N of the overall client set U is selected to
receive the global model wt and conduct training with their
local dataset for several iterations independently. After the
local training, the server collects the trained models from
these selected clients and aggregates them (usually by av-
eraging [23]) to produce a new global model wt+1. We
formulate this procedure as follows:

wt+1
k = wt − ηt∇̃lk(wt), (3)

wt+1(Kt) =
1

C

∑
k∈Kt

wt+1
k (4)

= wt − ηt
C

∑
k∈Kt

∇̃lk(wt), (5)

where ηt is the learning rate and ∇̃lk(wt) is the equivalent
cumulative gradient [32] in the t-th communication round.
More specifically, for an arbitrary optimizer on the client k,
it produces ∆wt,τ

k = −ηdt,τ
k as the local model update at

the τ -th iteration in this round, and the cumulative gradient
is calculated as ∇̃lk(wt) =

∑
τ d

t,τ
k .

4. Methodology
In this section, we elaborate our proposed method, i.e.,

FedCor, that can effectively boost the convergence of FL.



We first formulate our goal of accelerating the convergence
of FL as optimization problems that maximize the poste-
rior expectation of loss decrease in Sec. 4.1. Then, Sec. 4.2
demonstrates empirical evidence that the prior distribution of
loss changes in each communication round can be modeled
as Gaussian Processes (GP). Based on this observation, we
utilize GP to solve the optimization problems and obtain an
effective client selection strategy for heterogeneous FL in
Sec. 4.3. We further analyze the selection criterion of our
client selection strategy and give out its intuitive interpreta-
tion in Sec. 4.4. Finally, in Sec. 4.5, we describe how we
train the GP parameters in communication-constrained FL.

4.1. Problem Formulation

To achieve a fast convergence, we hope to find the client
selection strategy which can lead to the maximal global loss
decrease after each communication round. Accordingly, we
define our target as solving a series of optimization problems,
one for each communication round t:

min
Kt

∆Lt(Kt) = L(wt+1(Kt))− L(wt)

subject to wt+1(Kt) = wt − ηt
C

∑
k∈Kt

∇̃lk(wt).
(6)

It is impractical in FL to search for the best client selec-
tion with multiple trials of different client selections since it
introduces large communication and computation overhead.
Therefore, we need an efficient way to predict the global
loss decreases for different client selections and make a de-
cision with very limited trials. To achieve this goal, we first
reformulate the optimization problem in Eq. (6) with the fol-
lowing lemma. The proof of this lemma is in Appendix A.2.

Lemma 1. The optimization problem in Eq. (6) is approxi-
mately equivalent to the following probabilistic form.

min
Kt

E∆lt|∆ltKt
(Kt)

[∑
i

pi∆lti

]
=

∑
i

piµ̃
t
i(∆ltKt

(Kt)),

(7)
where ∆lt = [∆lt1, · · · ,∆ltN ] is the loss changes of all
clients in round t, which is a random variable w.r.t random
client selection in round t. µ̃t(∆ltKt

(Kt)) is the posterior
mean of ∆lt conditioned on ∆ltKt

(Kt) = [∆lti(Kt)]i∈Kt
.

The reformulated objective in Eq. (7) tells that if we can
predict the loss changes of those clients selected for training
(∆ltKt

(Kt)), we can predict the global loss change with its
posterior mean and make decision according to it. Now what
we need is a probabilistic model of the loss changes ∆lt to
make the prediction and calculate the posterior.

4.2. Modeling Loss Changes with GP

It is a common practice to assume a GP prior over an
unknown objective function in Bayesian Optimization [3,30].

Figure 2. Histograms of the first principle component in Non-IID
FL [23]. More details and full results can be found in Appendix D.2.

Our preliminary investigation (partly) shown in Fig. 2 also
indicates that the prior distribution of the loss changes in
one communication round follow a GP. Specifically, we
randomly sample a number of client selections and perform
one round of training to get samples of the loss changes.
Then, we conduct PCA on these loss change samples and
plot histograms of the first several principle components.
The red line in the Fig. 2 is the Gaussian PDF with the
sample mean and sample variance. And we can see that
this Gaussian distribution can approximate the distribution
of the samples well. A mathematical explanation of this
observation is also given out in Appendix A.1.

Accordingly, we propose to model the loss changes in
one communication round t with a GP prior as follows:

∆lt = [∆lt1, · · · ,∆ltN ] ∼ N (∆lt;µt,Σt). (8)

Remark. In order to efficiently learn the covariance in FL,
rather than directly working with the covariance matrix, we
embed all clients into a continuous vector space and use a
kernel function to calculate the covariance (see Sec. 4.5).
Thus, we still use the term GP instead of Multivariate Gaus-
sian Distribution, though the dimension of ∆lt is finite.

A good property of GP is that we can get a closed form of
the posterior expectation in Eq. (7), which makes our client
selection strategy interpretable. In the next sections, we will
propose our client selection strategy based on the GP model,
and then give an interpretation of it. We leave the training
method for the parameters (µt,Σt) in GP to Sec. 4.5.

4.3. Client Selection Strategy

While we have get the probabilistic model to calculate
the posterior expectation, it is still not determined how to
predict the loss changes of the clients selected for training,
namely ∆ltKt

(Kt). Inspired by UCB methods [1, 5, 28], we
develop an iterative method that predict the loss change and
select one client in each iteration, as shown in Algorithm 1.
There are three steps in one iteration:
(i) Prediction. In each iteration, we first make an prediction
∆l̂tk for each client k if it is selected. Generally, the selected
client would have a large loss decrease since it directly par-
ticipate in the model update. Thus, we propose to use the



Algorithm 1 Client Selection Strategy with GP

Require: µt and Σt of the GP, scale factor αt

Ensure: Client Selection Kt

1: Initialize Kt ← ∅, P← U.
2: while |Kt| < C do
3: for each client k ∈ P do
4: Predict its loss change if select it: ∆l̂tk = µt

k −
αt
kσ

t
k.

5: Calculate the posterior mean of the loss changes
µ̃t(∆l̂tk).

6: end for
7: Select the client by k∗ = argmink

∑
i piµ̃

t
i(∆l̂tk).

8: Add k∗ into Kt and remove it from P.
9: µt ← µ̃t(∆l̂tk∗),Σt ← Σ̃t(∆l̂tk∗).

10: end while

lower confidence bound as the prediction:

∆l̂tk = µt
k − αt

kσ
t
k; αt

k = aβτt
k , (9)

where σt
k =

√
Σt

k,k, and a is a scale constant. β ∈ (0, 1)

is an annealing coefficient, and its index τ tk denotes how
many times client k has been selected. We will discuss this
annealing coefficient more in Sec. 4.5.
(ii) Selection. The client k∗ is selected to minimize the
posterior expectation of the overall loss conditioned on its
loss change prediction made in the last step:

k∗ = argmin
k

∑
i

piµ̃
t
i(∆l̂tk) (10)

(iii) Posterior. After selecting the client k∗, we update the
GP for the next iteration with the posterior conditioned on
the loss change prediction of k∗:

µt ← µ̃t(∆l̂tk∗), Σt ← Σ̃t(∆l̂tk∗). (11)

By updating the GP with its posterior, we iteratively add
conditions into the probabilistic model to approach the fully
conditioned distribution p(∆lt|∆ltKt

(Kt)), and make the
next prediction of the loss change more accurate.

There are some similarities between our method and tra-
ditional Bayesian Optimization: Using GP as a prior of the
objective function, and using UCB as well as posterior dis-
tribution for iterative selection [3, 5, 28]. However, there is a
key difference: In each communication round, we determine
the client selection with only predictions instead of measure-
ments of the global loss changes, while traditional Bayesian
Optimization requires a sequence of measurements as new
information to make decisions. The measurements of global
loss changes will introduce large communication overhead
and are unfeasible in FL.

Algorithm 2 FedCor

1: Initialize X0 and Global Model w0.
2: for each round t = 0, 1, ... do
3: if t%∆t==0 then
4: Uniformly sample S client selections St,i, i =

1, 2, ..., S.
5: for i = 1, 2, ..., S do
6: wt+1(St,i)← wt − ηt

C

∑
k∈St,i ∇̃lk(w

t).
7: Collect ∆lt(St,i)← l(wt+1(St,i))− l(wt).
8: end for
9: Reset αk ← 1,∀k ∈ U.

10: end if
11: Update Xt with Eq. (16).
12: Select clients Kt with Algorithm 1 (µt = 0,Σt =

XtTXt,αt = α).
13: wt+1 ← wt+1(Kt) = wt − ηt

C

∑
k∈Kt

∇̃lk(wt).
14: Update αKt

← βαKt
.

15: end for

4.4. Insights into Our Selection Strategy

In this section, we give an intuitive interpretation of our
selection strategy and show the benefits of it within a simple
case. A more detailed analysis of the selection criterion and
convergence of FedCor can be found in Appendix B.

For simplicity, we omit all superscript t in this section.
Lemma 2 gives the selection criterion of FedCor in a simple
case where we only select two clients, and the proof can be
found in Appendix A.3.

Lemma 2. The selection criterion of FedCor when selecting
two clients k1 and k2 can be written as

k1 = argmax
k

βτk
∑
i

piσirik, (12)

k2 = argmax
k′

βτk′
[ (A)︷ ︸︸ ︷∑

i

piσirik′ −rk1k′

(B)︷ ︸︸ ︷∑
i

piσirik1

]
√
1− r2k′k1

,

(13)

where rij = Σi,j/σiσj is the Pearson correlation coefficient.

(i) Single-Iteration. Eq. (12) has a clear interpretation to
select the client that has large correlations with other clients
(rik), so that other clients can benefit more from training on
the selected client. Our selection criterion takes the correla-
tions between the clients into consideration, and can conduct
better selection compared with those algorithms that only
consider the loss of each client independently [4, 6].
(ii) Multi-Iteration. In Eq. (13), term (A) and (B) are the
single-iteration selection criterion in Eq. (12) of client k′

and k1, respectively. Since we have maximized (B) when



selecting client k1, term (B) is usually positive. Therefore,
the selection of k′ does not only consider its correlations
with other clients (rik′ ), but also prefers the clients that have
small correlations rk1k′ with the previous selected client k1.
This criterion penalizes selection redundancy and leads to a
client selection with diverse data, which reduces the variance
and makes the training process more stable. Since clients
with similar data generate similar local updates, selecting
redundant clients only brings marginal gains to the global
performance or would even drive the optimization into bad
local optimum. This selection preference is also demon-
strated in Fig. 1, where FedCor chooses one positive and one
negative point as the optimal selection does.

4.5. Training GP in FL

As a classical machine learning model, GP has been
widely discussed and well studied [33]. There have been
many methods to train the parameters in GP, namely, the
covariance Σt in Eq. (8) 1. Nevertheless, to make the GP
training feasible in the communication-constrained FL proce-
dure, we should revise the GP training method to reduce the
number of samples and better utilize historical information.

In GP, a kernel function K(xi,xj) is used to calculate the
covariance [33] as Σt

i,j = K(xt
i,x

t
j), where xt

i,x
t
j are the

features of the data points i and j, respectively. Following
this, we assign a trainable embedding in a latent space to
each client. The embedding of the k-th client is noted as
xt
k ∈ Rd (d < N ), and we choose the kernel function as

K(xt
i,x

t
j) = xt

i
T
xt
j , (14)

which is a homogeneous linear kernel [33]. This low-rank
formulation reduces the number of parameters we need to
learn, thus making the GP training more data-efficient.

A commonly used GP training method is maximum likeli-
hood evaluation, where we uniformly sample S client selec-
tion {St,i : i = 1, · · · , S}, and maximize the likelihood of
the corresponding loss changes {∆lt(St,i) : i = 1, · · · , S}
to learn the embedding matrix Xt = [xt

1, · · · ,xt
N ]:

Xt = argmax
X

S∑
i=1

log p(∆lt(St,i)|X). (15)

However, to collect each sample ∆lt(St,i), we have to broad-
cast wt+1(St,i) to all the clients. And since a large S is
usually required for an unbiased estimation in each commu-
nication round t, the vanilla training procedure in Eq. (15)
introduces a high communication overhead.

Actually, the correlations between loss changes of dif-
ferent clients mainly arise from similarities between their
datasets, which are invariant during the FL process. Thus,

1We do not train µ and set it to 0, since it does not affect the selection
strategy as we can see in Lemma 2 and Appendix B.

Figure 3. Covariance Stationarity in Non-IID FL [23]. Full experi-
ment results and more details can be found in Appendix D.3.

we hypothesise that the covariance also changes slowly in
the concerned time range. To verify this, we use a large
number of samples to evaluate the covariance Σt in each
communication round, and calculate the cosine similarity
between Σt and Σt+∆t. We set ∆t = 10 for FMNIST and
∆t = 50 for CIFAR-10. As shown in Fig. 3, we can see
that the similarity keeps very high (> 0.97 for FMNIST and
> 0.95 for CIFAR-10) during the whole FL training process.

Accordingly, we do not need to update Xt in every round
but inherit the embedding matrix Xt−1 from the last round
and train it only every ∆t rounds. Furthermore, we can reuse
historical samples for GP training to reduce the number of
samples S that we need to collect in each GP training round.
We summarize our update rule of Xt as follows:

Xt =

{
Xt−1, t%∆t ̸= 0;

argmaxX Φt(X), t%∆t = 0,
(16)

where

Φt(X) =

M∑
m=0

S∑
i=1

γm log p(∆lt−m∆t(St−m∆t,i)|X).

(17)

M is the number of reused historical samples, and γ < 1
is the discount factor to weight the historical samples. Our
method is able to reduce the communication overhead with
a large ∆t and S = 1, while guaranteeing the performance.

As we only update the covariance Σ every ∆t rounds, the
annealing factor βτk can prevent us from making the same
selection during the ∆t rounds. Repeatedly training with
the same group of clients would cause the global model to
overfit on their data, which may hinder the convergence of
FL. In practice, we reset τk to 0 after each GP training round
to achieve the fastest convergence while avoiding overfitting
on some clients.

We summarize our overall framework FedCor in Algo-
rithm 2. It is noteworthy that our method is orthogonal to
existing FL optimizers that amend the training loss or the
aggregation scheme, e.g., FedAvg [23] and FedProx [18]. So
our method can be combined with any of them.



Figure 4. Test accuracy on FMNIST and CIFAR-10 under three heterogeneous settings (2SPC, 1SPC and Dir). All experiments in one figure
share the same hyperparameters except for the client selection strategy.

Method FMNIST CIFAR-10
2SPC(69%) 1SPC(62%) Dir(64%) 2SPC(62%) 1SPC(36%) Dir(54%)

Rand 295.8± 92.0 N/A 141.0± 73.0 1561.2± 236.2 1750.4± 190.3 N/A
AFL 218.6± 117.3 N/A 169.0± 166.1 N/A 1845.2± 28.8 1524.4± 267.9

Pow-d 126.6± 78.2 167.2± 72.3 123.0± 101.0 1558.2± 227.0 1752.2± 186.2 1355.2± 151.3
FedCor (Ours) 94.8± 18.4 84.0± 53.1 68.8± 27.5 1033.4± 123.7 1269.2± 70.6 1076.8± 262.8

Table 1. The number of communication rounds for each selection strategy to achieve target test accuracies (specified in parentheses) under
three heterogeneous settings (2SPC, 1SPC and Dir). The results consist of the mean and the standard deviation over 5 random seeds. N/A
means that the corresponding selection strategy cannot achieve the target accuracy with some random seeds within the maximal number of
communication rounds (500 for FMNIST and 2000 for CIFAR-10).

5. Experiments

5.1. Experiment Settings

We conduct experiments on two datasets, FMNIST [34]
and CIFAR-10 [14]. For FMNIST, we adopt an MLP model
with two hidden layers, and this model achieves an accuracy
of 85.92% with centralized training. For CIFAR-10, we
adopt a CNN model with three convolutional layers followed
by one fully connected layer, and this model can achieve an
accuracy of 73.84% with centralized training. More details
on the model construction and training hyperparameters can
be found in Appendix C.1. For each dataset, we experiment
with three different heterogeneous data partitions on N =
100 clients as follows.

(i) 2 shards per client (2SPC): This setting is the same as
the non-IID setting in [23]. We sort the data by their labels
and divide them into 200 shards so that all the data in one
shard share the same label. We randomly allocate these
shards to clients, and each client has two shards. Since all
the shards have the same size, the data partition is balanced.

That is to say, all the clients have the same dataset size. We
select C = 5 clients in each round within this setting.
(ii) 1 shard per client (1SPC): This setting is similar to the
2SPC setting, and the only difference is that each client only
has one shard, i.e., each client only has the data of one label.
This is the data partition with the highest heterogeneity, and
it is also balanced. We select C = 10 clients in each round
within this setting.
(iii) Dirichlet Distribution with α = 0.2 (Dir): We inherit
and slightly change the setting from [7] to create an unbal-
anced data partition. We sample the ratio of the data with
each label on one client from a Dirichlet Distribution pa-
rameterized by the concentration parameter α = 0.2. More
details can be found in the Appendix C.2. We select C = 5
clients in each round within this setting.

We divide the training process of FedCor into two phases:
(i) Warm-up phase: We uniformly sample client selection
Kt and collect the loss values of all the clients in U to train
the GP in each round, i.e., ∆t = 1 and S = 1. We set the
length of the warm-up phase to 15 for FMNIST and 20 for
CIFAR-10. (ii) Normal phase: After the warm-up phase, we



Figure 5. Test accuracy with different GP training interval ∆t on FMNIST and CIFAR-10 under 2SPC, 1SPC and Dir.

follow Algorithm 2 to select clients and update the GP.
In all the experiments, we use FedAvg [23] as the FL

optimizer. We present the average results using five random
seeds in all experiments. We will first show that our method
can achieve faster and more stable convergence, compared
with three baselines: random selection (Rand), Active FL
(AFL) [6] and Power-of-choice Selection Strategy (Pow-
d) [4]. Then, we will give ablation studies on the GP training
interval ∆t as well as the annealing coefficient β. Finally,
we visualize the client embeddings X with t-SNE [21] and
show that FedCor can effectively capture the correlations.

5.2. Convergence under Heterogeneous Settings

We compare the convergence rate of our method FedCor
with the other baselines on both FMNIST and CIFAR-10,
and demonstrate the results in Figure 4. We set the GP update
interval ∆t = 10 and the annealing coefficient β = 0.95
for FMNIST experiments, and ∆t = 50 and β = 0.9 for
CIFAR-10 experiments.

As shown in Figure 4, FedCor achieves the highest test ac-
curacy and the fastest convergence in all experiments. While
other active client selection strategies show only slight or
even no superiority compared with the fully random strategy,
our method clearly outperforms all baselines, especially un-
der the extremely heterogeneous setting when data on each
client contains only one label (1SPC). Furthermore, the learn-
ing curves of FedCor are more smooth and less noisy than
those of other methods, meaning that FedCor reduces the
variance and makes the federated optimization more stable.

Table 1 shows the numbers of communication rounds for
each selection strategy to achieve a specified test accuracy.
We can see that FedCor achieves the specified accuracy

34% ∼ 99% and 26% ∼ 51% faster than Pow-d on FMNIST
and CIFAR-10, respectively.

5.3. Results with Larger GP Training Interval

Collecting training data in the GP update rounds brings
communication overhead, since we need to broadcast the
model to all the clients. Thus, it is important to investi-
gate the minimal GP update frequency. We vary the GP
training interval and show the accuracy curves in Figure 5.
We set ∆t = 10, 20, 500 with β = 0.95, 0.95, 0.99 for the
experiments on FMNIST, and ∆t = 50, 100, 2000 with
β = 0.97, 0.97, 0.999 for the experiments on CIFAR-10,
respectively. As shown in the figures, the performance de-
grades very slightly with larger training intervals. It is note-
worthy that even if we do not update the GP model after
the warm-up phase (noted as ∆t = 500 for FMNIST, and
∆t = 2000 for CIFAR-10), FedCor still achieves faster con-
vergence than the random selection strategy. These results
indicate that the correlations learned by the GP model are
stable, which supports our assumption in Section 4.5. In a
word, one can largely reduce the communication overhead
by training the GP model with a very low frequency while
guaranteeing the convergence rate and accuracy under the
communication-bounded FL setting.

5.4. Influence of Annealing Coefficient

We also conduct experiments with different annealing
coefficient β that controls how “concentrated” the client
selection is. We perform FedCor with ∆t = 10 and
β = 0.5, 0.75, 0.9 for FMNIST, and ∆t = 50, β =
0.9, 0.95, 0.99 for CIFAR-10. The learning curves as well
as the client selection frequencies under 2SPC setting are



Figure 6. Test accuracy and client selection frequency with different annealing coefficient β on FMNIST and CIFAR-10 under the 2SPC
setting. The frequency is represented as the number of times each client is selected during the whole training process.

Figure 7. Visualization of client embedding under the 1SPC setting.

shown in Fig. 6, and we leave the full results under the 1SPC
and Dir settings to Appendix D.1. We observe that when
using a smaller β, the overall client selections appear to be
more “uniform”, while the learning curves are almost in-
variant. Notice that this does not mean that FedCor with
small β is equivalent to uniform sampling, instead, FedCor
still achieves consistent improvements compared to uniform
sampling. And Sec. 4.4 havs discussed the reason: FedCor
not only considers the benefit that each client brings to the
federation, but also considers the correlations among the
clients to select the best group of clients. The experimental
results here show that it is more important to select a good
“group” of clients than just good individuals.

5.5. Visualization of Client Embedding

To obtain an insight into the correlations learned by the
GP model, we show the t-SNE [21] plot of the client embed-
dings learned in the warm-up phase under the 1SPC setting.
In Fig. 7, each embedding is labeled with the only data label
on the corresponding client. We normalize the length of
embedding vectors to 1 so that the distance between two

embeddings can reveal the correlation. We can see that the
embeddings of clients with the same label are clustered to-
gether, which demonstrates that FedCor has captured the
correlations between clients correctly in the warm-up phase.

6. Conclusion and Future Work
This work proposes FedCor, an FL framework with a

novel client selection strategy for heterogeneous settings.
FedCor is based on the intuition that it is crucial to utilize
the correlations between clients to achieve a faster and more
stable convergence in heterogeneous FL. Specifically, we
model the client correlations with a GP, and design an ef-
fective and interpretable client selection strategy based on it.
We also develop a efficient method to train the GP with a low
communication overhead. Experimental results on FMNIST
and CIFAR-10 show that FedCor effectively accelerates and
stabilizes the training process under highly heterogeneous
settings. In addition, we verify that FedCor captures the
client correlation correctly using only the loss information.
How to extend FedCor to the other tasks and further utilize
the captured correlations is an interesting direction for fu-
ture work. Besides, our method focuses on the cross-silo
federated learning scenario [9], and how to extend it to the
cross-device scenario is a meaningful topic.
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A. Theoretical Analysis
A.1. Analytical Insight into Gaussian Processes

In this section, we give a mathematical explanation about
why the loss changes obey Gaussian Distributions. Our
analysis based on the following assumption where we as-
sume that the global weight update in one communication
round follow a Gaussian Distribution under uniformly client
selection.

Assumption 1. In any communication round t, if the client
selection Kt is a random variable sampled from a uni-
form distribution, the global model update ∆wt(Kt) =
wt+1(Kt)−wt follows Gaussian Distribution, i.e.,

Kt ∼ Uniform
(
{K ⊆ U : |K| = C}

)
⇒∆wt(Kt) ∼ N (∆wt;−ηtg̃t,

η2tBBT

C
),

(18)

where g̃t = Ek[∇̃lk(wt)] is the mean cumulative gradient
of all the clients in U, and B is a constant matrix.

Assumption 1 is inspired by [22] who assumes the
stochastic gradients in SGD are Gaussian, and therefore
the parameter update after one iteration follows a Gaussian
Distribution. Note that in the FL procedure, the form in Eq. 5
is very similar to that in the SGD update. The only differ-
ence is that the average gradients within one mini-batch is
replaced by the average cumulative gradients of the selected
clients. Therefore, it is reasonable to make this assumption
similar to [22].

To make a distinction, we use ∆w without parentheses
to denote a random variable w.r.t. the uniformly sampled
client selection, and use ∆w(K) to denote a determinate
value without randomness where the client selection K is
determined. The rule for ∆l and ∆l(K) in the following
contents is the same.

Based on this assumption, we can easily show that the loss
changes in each communication round follow a Gaussian
Process under first-order approximation, with the property
of Gaussian Distribution.

Corollary 1. In any communication round t, ∀S =
{i1, · · · , i|S|} ⊆ U, the loss changes ∆ltS =

[∆lti1 , · · · ,∆lti|S| ]
T follow a Multivariate Gaussian Distribu-

tion (or a Gaussian Process) under first-order approximation,
i.e.,

∆ltS ∼ N (∆ltS;µ
t
S,Σ

t
S),

where

µt
S = −ηtGt

S
T
g̃t;

Σt
S =

η2t
C

Gt
S
T
BBTGt

S;

Gt
S =

[
∇li1(wt), · · · ,∇li|S|(wt)

]
.

(19)

We remove the subscript S to simplify the corresponding
representation for the client set U as

∆lt ∼ N (∆lt;µt,Σt), (20)

which is exactly the result in Eq. 8. And we can also obtain
a mathematical reason from Eq. 19 for our choice of homo-
geneous linear kernel in Section 4.5, where Xt = BTGt.

Remark Although an uniformly sampled client selection
is required in Assumption 1 to get the loss changes to follow
a GP prior, it is not necessary for the final selection to be
uniformly sampled since we are predicting its loss changes
with the GP posterior conditioned on the selected clients. We
can view each posterior during the iterative selection process
in Section 4.3 as the distribution of the loss changes w.r.t. the
client selection that consists of two parts: (i) fixed selected
clients in the previous iteration and (ii) uniformly sampled
clients from the rest of the clients.

A.2. Proof of Lemma 1

To prove Lemma 1, we first introduce another assumption.

Assumption 2. In any communication round t, for any client
selection K, we have

Pr(K|∆ltK(K)) ≈ 1. (21)

This assumption asserts that for any client selection K,
there is unlikely another client selection other than K which
can produce the same loss changes on K, i.e.,

∀K′,K ⊆ U, |K′| = |K|
⇒Pr(∆ltK(K′) = ∆ltK(K)|K′ ̸= K) ≈ 0.

(22)

We anticipate that this is a realistic assumption because of the
heterogeneity between clients and the highly complexity of
the neural network. When selecting different clients, the data
used for training varies a lot under heterogeneous federated
learning settings. This fact makes it almost impossible to
produce the same neural network, and thus the same loss
changes, with two different client selections. Furthermore,
the selected clients usually have larger loss decreases than
other clients who are not selected, because the model update
is based on the mean cumulative gradient of these selected
clients. The other client selection is unlikely to generate the
same large loss decreases on all of them.

With Assumption 2, we can get the following corollary 2.

Corollary 2. In any communication round t, for any client
selection K, we have

Pr(∆lt(K)|∆ltK(K)) ≈ 1. (23)



Proof. When client selection K is given, we get the deter-
minate model update ∆wt(K), thus the loss changes are
known without randomness. In the other word,

Pr(∆lt(K)|K) = 1 (24)

always holds. Besides, we can extend the condition in Eq. 21
to the loss changes of all the clients and get

Pr(K|∆lt(K)) ≈ 1. (25)

Combining Eq. 21, Eq. 24 and Eq. 25, we have

Pr(∆lt(K)) ≈Pr(∆lt(K),K) (26)
=Pr(K) (27)

=Pr(∆ltK(K),K) (28)

≈Pr(∆ltK(K)) (29)

By substituting Eq. 29 into the expression of
Pr(∆lt(K)|∆ltK(K)), we get

Pr(∆lt(K)|∆ltK(K)) =
Pr(∆lt(K),∆ltK(K))

Pr(∆ltK(K))
(30)

=
Pr(∆lt(K))

Pr(∆ltK(K))
(31)

≈1. (32)

Now we are ready to prove Lemma 1.

Lemma 1. The optimization problem in Eq. (6) is approxi-
mately equivalent to the following probabilistic form.

min
Kt

E∆lt|∆ltKt
(Kt)

[∑
i

pi∆lti

]
=

∑
i

piµ̃
t
i(∆ltKt

(Kt)),

(33)
where ∆lt = [∆lt1, · · · ,∆ltN ] is the loss changes of all
clients in round t, which is a random variable w.r.t random
client selection in round t. µ̃t(∆ltKt

(Kt)) is the posterior
mean of ∆lt conditioned on ∆ltKt

(Kt) = [∆lti(Kt)]i∈Kt
.

Proof. According to Corollary 2, we can transform the opti-
mization problem in Eq. 6 into the form in Eq. 33.

min
Kt

∆Lt(Kt) (34)

=min
Kt

∑
i

pi∆lti(Kt) (35)

≈min
Kt

Pr(∆lt(Kt)|∆ltKt
(Kt))

∑
i

pi∆lti(Kt) (36)

≈min
Kt

E∆lt|∆ltKt
(Kt)

[∑
i

pi∆lti

]
(37)

=min
Kt

∑
i

piµ̃
t
i(∆ltKt

(Kt)). (38)

A.3. Proof of Lemma 2

Lemma 2. The selection criterion of FedCor when selecting
two clients k1 and k2 can be written as

k1 = argmax
k

βτk
∑
i

piσirik, (39)

k2 = argmax
k′

βτk′
[∑

i piσirik′ − rk1k′
∑

i piσirik1

]
√

1− r2k′k1

,

(40)

where rij = Σi,j/σiσj is the Pearson correlation coefficient.

Proof. We first deduce Eq. 39 for the first client k1. By
substituting the loss change estimation ∆l̂k from Eq. 9 into
the criterion in Eq. 10, we can calculate the weighted sum of
the posterior mean as∑

i

piµ̃i(∆l̂k) (41)

=
∑
i

piµi +
∑
i

pi
Σi,k

σ2
k

(∆l̂k − µk) (42)

=
∑
i

piµi − aβτk
∑
i

piσirik, (43)

where rik is the Pearson correlation coefficient. The first
item in Eq. 43 and the factor a are constant for all k, thus
the selection strategy becomes

k1 = argmax
k

βτk
∑
i

piσirik, (44)

which is Eq. 39.
Then we deduce Eq. 40 for selecting k2. We can calculate

the posterior covariance conditioned on ∆l̂k1
as

Σ̃i,j(∆l̂k1) = Σi,j −
Σi,k1

Σk1,j

σ2
k1

(45)

= σiσj(rij − rik1
rk1j) (46)

σ̃i(∆l̂k1) =

√
Σ̃i,i(∆l̂k1) (47)

= σi

√
1− r2ik1

. (48)

We substitute the posterior covariance into the simplified
selection criterion in Eq. 44 and get

βτk′
∑
i

pi
Σ̃i,k′(∆l̂k1

)

σ̃k′(∆l̂k1
)

=
βτk′

[∑
i piσirik′ − rk1k′

∑
i piσirik1

]
√

1− r2k′k1

.

(49)



So we have Eq. 40:

k2 = argmax
k′

βτk′
[∑

i piσirik′ − rk1k′
∑

i piσirik1

]
√
1− r2k′k1

.

(50)

B. Selection Criterion and Convergence Analy-
sis

In this section, we will analyse FedCor when selecting
arbitrary number of clients. While the iterative client selec-
tion makes it obscure to analyse the convergence, we will
show that we can construct a simpler proxy algorithm who
can approximate the selection strategy of FedCor and there
for share similar convergence characteristic. We will prove
the convergence of this proxy algorithm.

B.1. Definitions

We first introduce some important definitions. In the fol-
lowing analysis, We denote the client selection sampled from
FedCor as Kt ∼ π and client selection sampled uniformly
as Kt ∼ U .

In the j-th iteration of FedCor, we select a client kj to
minimize the posterior mean of the loss change. Since the
prior mean in each iteration is fixed, we can say that we are
maximizing the decrease from prior mean µt,j to posterior
mean µ̃t,j . We define the posterior gain of this iteration as
the decrease from prior mean to posterior mean, namely,

gt,j(kj) =
∑
i

pi(µ
t,j
i − µ̃t,j

i (∆l̂tkj
)) (51)

= αt
kj

∑
i

piσ
t,j
i rt,jikj

. (52)

We define µt,1 = µt and Σt,1 = Σt. And for j > 1 we
have

µt,j = µ̃t,j−1(∆l̂tkj−1
), Σt,j = Σ̃t,j−1(∆l̂tkj−1

).

(53)

With Lemma 2, we get

gt,j(kj) =
gt,j−1(kj)−

αt
kj

αt
kj−1

rt,j−1
kj−1kj

gt,j−1(kj−1)√
1− rt,j−1

kj−1kj

2
.

(54)

With this notation, we can simplify our selection strategy as
follows.

k∗j = argmax
kj

gt,j(kj). (55)

We further define the one-round advantage of FedCor
compared with uniform sampling as follows.

At =EKt∼U [L(w
t+1)− L(wt)]−

EKt∼π[L(w
t+1)− L(wt)] (56)

=

C∑
j=1

gt,j(k∗j ). (57)

The second equation directly arises from the definition of
our prior distribution where EKt∼U [L(w

t+1) − L(wt)] =∑
i µ

t
i.

Unfortunately, because of the iterative selection, the selec-
tion criterion of kj depends on the previous selected clients,
which makes a quantitatively analysis complicated. To by-
pass this difficulty, we will first point out that At has a lower
bound that is tight in some special cases. We find that a
proxy client selection strategy that maximizes this lower
bound has a similar but simpler behaviour compared with
FedCor, and we will also give a convergence guarantee of
the proxy algorithm.

B.2. Approximation of FedCor

An important property of FedCor is that it prefers clients
who have lower correlations with those selected in the previ-
ous iteration, since

∀rt,j−1
kj−1kj

∈ (−1, 1), ∂g
t,j(kj)

∂rt,j−1
kj−1kj

< 0. (58)

We further predict that FedCor tends to select clients that
with rt,j−1

kj−1kj
close to 0 instead of rt,j−1

kj−1kj
< 0 because if

rt,j−1
kj−1kj

< 0, kj should be far away from kj−1 who is closed
to other clients in the embedding space, which makes kj has
low correlation with the other clients and not be selected.
Therefore, we can infer that FedCor will select a group of
clients who have nearly zero correlations with each other,
which simplifies the expression of gt,j(kj) to gt,1(kj).

Based on the analysis above, we define a proxy algorithm
π̃ who maximize the following objective.

Ãt =

C∑
kj∈Kt

gt,1(kj) ≈
∑
k∈Kt

∑
i

piΣ
t
i,k, (59)

where we further omit the difference of αt
k and σt

k for dif-
ferent client k. We can use the client selection generated by
this proxy algorithm to approximate the client selection of
FedCor, and thus they share similar convergence characteris-
tic.

In the following section, we will show that this proxy
algorithm has a good property that enable it to converge to
the optimal solution of the global loss L without gap, even it
is a biased selection strategy.



B.3. Convergence Analysis of the Proxy Algorithm

In the following section, we denote the client selection
sampled from the proxy client selection strategy as Kt ∼
π̃. We use E[·] as the expectation over the mini-batch and
EKt

[·] as the expectation over the client selection strategy.
We first give the common assumptions used in Federated
Learning [4, 19].

Assumption 3. l1, l2, · · · , lN are all M -smooth: for all v
and w, lk(v) ≤ lk(w) + (v−w)T∇lk(w) + M

2 ∥v−w∥22.

Assumption 4. l1, l2, · · · , lN are all m-strongly convex: for
all v and w, lk(v) ≥ lk(w) + (v−w)T∇lk(w) + m

2 ∥v−
w∥22.

Assumption 5. For the mini-batch ξk ∈ Dk sampled uni-
formly on each client k ∈ U, the variance of stochastic
gradients is bounded: E∥∇lk(wk, ξk)−∇lk(wk)∥2 ≤ s2k.

Assumption 6. For each client k ∈ U and any commu-
nication round t, the expected squared norm of stochastic
gradients is uniformly bounded: E∥∇lk(wk, ξk)∥2 ≤ G2.

For concision, we omit E in the following content and
apply an expectation over the mini-batch by default.

Now we give an important property of the proxy algo-
rithm that will be used for proving the convergence.

Lemma 3. In any communication round t, with Assump-
tion 1 and Assumption 2 holds, we have

Kt ∼ π̃ = argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt).

(60)

Proof. In the proxy algorithm, we have

Kt =argmax
K

∑
k∈Kt

∑
i

piΣ
t
i,k (61)

=argmax
K

η2t
C

∑
k∈K

∑
i

pi∇li(wt)BBT∇lk(wt) (62)

=argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt). (63)

Eq. 62 comes from the expression of Σt in Corollary 1, and
Eq. (63) arises from L(wt) =

∑
i pili(w

t).

To connect this property with the convergence of the
algorithm, we first define a sequence and show that the con-
vergence of this sequence is equivalent to the convergence
of the algorithm with this property. We define Sequence ∆t

as follows.

∆t = EKt∼π̃∥wt −w∗
Kt
∥2, (64)

where

w∗
Kt

= argmin
w

∑
k∈Kt

lk(w). (65)

We now show that if ∆t → 0, we have w → w∗.

Corollary 3. (Optimal Solution Consistency) If ∆t con-
verges to 0, there must be wt converges to w∗.

lim
t→∞

∆t = 0⇒ lim
t→∞

wt = w∗ (66)

Proof. With Kt ∼ π̃, we have

lim
t→∞

∆t = 0 (67)

⇒ lim
t→∞

wt = w∗
Kt

(68)

⇒ lim
t→∞

∑
k∈Kt

∇lk(wt) = 0 (69)

⇒ lim
t→∞

(BT∇L(wt))T
∑
k∈Kt

BT∇lk(wt) = 0. (70)

Since

Kt = argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt), (71)

If limt→∞ BT∇L(wt) ̸= 0 or does not converge, we can
say that

∀ϵ > 0,∃τ,∀t > τ, ∀K, (72)

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt) ≤ ϵ, (73)

which cannot be true since

EK∼U
∑
k∈K
∇lk(wt) = C∇L(wt). (74)

Thus we conclude that

lim
t→∞

BT∇L(wt) = 0. (75)

If the Gaussian Distribution in Assumption 1 is non-
degenerate, we have

lim
t→∞

∇L(wt) = 0⇒ lim
t→∞

wt = w∗ (76)

We now only need to prove the convergence of ∆t, which
will imply the convergence of the proxy algorithm according
to Corollary 3. We first introduce one extra assumption as
well as two lemmas that will be used in the proof.

For convenient, we define LKt(w) = 1
C

∑
k∈Kt

lk(w),
and thus w∗

Kt
= argminw LKt(w). Notice that Kt ∼ π̃

only depends on Σt, thus we can say that w∗
Kt

is given by a
function of Σt, i.e., w∗

Kt
= Ω(Σt). We further assume the

smoothness of Ω:

Assumption 7. For any t, E∥w∗
Kt+1

− w∗
Kt
∥2 =

E∥Ω(Σt+1) − Ω(Σt)∥2 ≤ δE∥Σt+1 −Σt∥1, where ∥ · ∥1
is the ℓ1 norm of a vector.



Now we introduce a lemma that bounds E∥Σt+1 −Σt∥1.

Lemma 4. Assume Assumption 1, Assumption 3 and As-
sumption 6, if E∥wt −wt+1∥2 ≤ q2t , we have

E∥Σt+1 −Σt∥1 ≤
bN2

C
[η2t (G+Mqt)

2 − η2t+1G
2],

(77)

where b is the largest eigenvalue of BBT .

Proof. According to Assumption 1, we have

Σi,j =
η2t
C
∇lti

T
BBT∇ltj . (78)

And we can calculate∣∣Σt+1
i,j − Σt

i,j

∣∣ (79)

=
∣∣∣η2t
C

(∇lt+1
i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj)+

η2t+1 − η2t
C

∇lt+1
i

T
BBT∇lt+1

j

∣∣∣ (80)

≤η2t
C

∣∣∣∇lt+1
i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj

∣∣∣+
η2t − η2t+1

C

∣∣∣∇lt+1
i

T
BBT∇lt+1

j

∣∣∣ . (81)

We now bound each term in Eq. (81) separately. For the first
term, ∣∣∣∇lt+1

i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj

∣∣∣ (82)

=
∣∣∣(∇lt+1

i −∇lti)TBBT∇ltj+

∇lti
T
BBT (∇lt+1

j −∇ltj)+

(∇lt+1
i −∇lti)TBBT (∇lt+1

j −∇ltj)
∣∣∣ (83)

≤b
(
∥∇lt+1

i −∇lti∥∥∇ltj∥+

∥∇lt+1
j −∇ltj∥∥∇lti∥+

∥∇lt+1
i −∇lti∥∥∇lt+1

j −∇ltj∥
)

(84)

≤b
[
M∥wt+1 −wt∥(∥∇ltj∥+ ∥∇lti∥)+

M2∥wt+1 −wt∥2
]
, (85)

where b is the largest eigenvalue of BBT . For the second
term,∣∣∣∇lt+1

i

T
BBT∇lt+1

j

∣∣∣ ≤ b∥∇lt+1
i ∥∥∇lt+1

j ∥. (86)

We take the expectation over both sides and with Cauchy-
Schwarz inequality, we get

E
∣∣Σt+1

i,j − Σt
i,j

∣∣ (87)

≤η2t
C

b
[
M

√
E∥wt+1 −wt∥2E∥∇ltj∥2+

M
√

E∥wt+1 −wt∥2E∥∇lti∥2+

M2E∥wt+1 −wt∥2
]
+

η2t − η2t+1

C
b
√

E∥∇lt+1
i ∥2E∥∇lt+1

j ∥2 (88)

≤η2t b

C
(G2 + 2MqtG+M2q2t )−

η2t+1

C
bG2 (89)

And we have

E∥Σt+1 −Σt∥1 (90)

=

N∑
i,j

E
∣∣Σt+1

i,j − Σt
i,j

∣∣ (91)

≤bN2

C
[η2t (G+Mqt)

2 − η2t+1G
2] (92)

We will also use the following lemma that is proved by
[19].

Lemma 5. Assume Assumption 3 to 6. If ηt ≤ 1
4M , with full

and balanced participation in FedAvg, in any communication
round t and its i-th iteration, we have

E∥w̄t,i+1 −w∗∥2 ≤ (1− ηtm)E∥w̄t,i −w∗∥2 + η2tF,
(93)

where

F =
1

N

N∑
k=1

s2k + 6MΓ + 8(E − 1)2G2, (94)

Γ = L∗ − 1

N

N∑
k=1

l∗k. (95)

Here, w̄t,i = 1
N

∑N
k=1 w

t,i
k , and wt,i

k is the local weight
at the i-th iteration of communication round t. E is the
total number of local training iterations. L∗ = L(ω∗) and
l∗k = lk(ω

∗
k) are the optimal value of L and lk, respectively.

Now we give the theorem of the convergence of ∆t and
prove it.

Theorem 1. With Assumption 1 to 7 holds, with learning
rate ηt = β

t+γ for some β > 1
m and γ > 0 such that

η1 ≤ min{ 1
m , 1

4M } =
1

4M , we have

∆t ≤
ν

γ + t
, (96)



where

ν = max{β
2(F̃ + D̃)

βm− 1
, (γ + 1)∆1}, (97)

F̃ = 2Emax
t

Ft, (98)

Ft =
1

C

∑
k∈Kt

s2k + 6MΓt + 8(E − 1)2G2, (99)

Γt = L∗
Kt
− 1

C

∑
k∈Kt

l∗k, (100)

D̃ = (
1

m
+

1

4M
)δD, (101)

D =
bN2

C
(2mG2 + 2MEG+

1

4
ME2G2). (102)

Proof. For Kt ∼ π̃(wt) and Kt+1 ∼ π̃(wt+1), we have

∆t+1 =∥wt+1 −w∗
Kt+1
∥2 (103)

=∥wt+1 −w∗
Kt
∥2 + ∥w∗

Kt
−w∗

Kt+1
∥2+

2⟨wt+1 −w∗
Kt
,w∗

Kt
−w∗

Kt+1
⟩ (104)

≤∥wt+1 −w∗
Kt
∥2 + ∥w∗

Kt
−w∗

Kt+1
∥2+

ηtm∥wt+1 −w∗
Kt
∥2+

1

ηtm
∥w∗

Kt
−w∗

Kt+1
∥2 (105)

≤(1 + ηtm)∥wt+1 −w∗
Kt
∥2+

(1 +
1

ηtm
)δ∥Σt+1 −Σt∥1, (106)

where Eq. 105 arises from AM-GM inequality and Eq. 106
arises from Assumption 7.

For the first term in Eq. 106, we can bound it by Lemma 5
as follows. The key point here is that when training in one
communication round t, we can view this round a small FL
process with clients in Kt fully participating. In this view,
the global loss and the optimal global weight becomes LKt

and w∗
Kt

instead. Thus we can apply Lemma 5 directly to
bound ∥wt+1 − w∗

Kt
∥2. With ηt ≤ 1

4M ≤ 1
m , we have

ηtm ≤ 1 and 1 + ηtm ≤ 1
1−ηtm

, and we can get

(1 + ηtm)∥wt+1 −w∗
Kt
∥2 (107)

=(1 + ηtm)[∥w̄t,E −w∗
Kt
∥2] (108)

≤(1 + ηtm)[(1− ηtm)∥w̄t,E−1 −w∗
Kt
∥2 + η2tFt] (109)

≤(1 + ηtm){(1− ηtm)2∥w̄t,E−2 −w∗
Kt
∥2+

[1 + (1− ηtm)]η2tFt} (110)
· · ·

≤(1 + ηtm)
{
(1− ηtm)E∥w̄t,0 −w∗

Kt
∥2+

[1 + (1− ηtm) + · · ·+ (1− ηtm)E−1]η2tFt

}
(111)

≤(1− ηtm)E−1∥wt −w∗
Kt
∥2+

(1 + ηtm)
1− (1− ηtm)E

m
ηtFt (112)

≤(1− ηtm)∥wt −w∗
Kt
∥2 + (1 + ηtm)Eη2tFt (113)

≤(1− ηtm)∥wt −w∗
Kt
∥2 + 2Eη2tFt, (114)

where

Ft =
1

C

∑
k∈Kt

s2k + 6MΓt + 8(E − 1)2G2, (115)

Γt = L∗
Kt
− 1

C

∑
k∈Kt

l∗k. (116)

Eq. 114 arises from the inequality 1−Ex ≤ (1−x)E ≤ 1−x
for x ∈ [0, 1].

We now turn to bound the second term in Eq. 106. We
first find the qt in Lemma 4.

∥wt+1 −wt∥2 =∥ 1
C

∑
k∈Kt

wt,E
k −wt∥2 (117)

≤ 1

C

∑
k∈Kt

∥wt,E
k −wt∥2 (118)

=
η2t
C

∑
k∈Kt

∥
E−1∑
i=0

∇lk(wt,i
k )∥2 (119)

≤η2tE

C

∑
k∈Kt

E−1∑
i=0

∥∇lk(wt,i
k )∥2 (120)

≤η2tE

C

∑
k∈Kt

E−1∑
i=0

G2 (121)

≤η2tE

C

∑
k∈Kt

EG2 (122)

=η2tE
2G2 = q2t , (123)

where Eq. 118 and Eq. 120 comes from Jensen inequal-
ity, and Eq. 121 comes from Assumption 6. With Lemma



Lemma 4, we get

∥Σt+1 −Σt∥1 ≤
bN2

C
[G2(η2t − η2t+1)+ (124)

2MEGη3t +M2E2G2η4t )]. (125)

Further with a diminishing ηt =
β

t+γ , we have

η2t − η2t+1 =β2(
1

(t+ γ)2
− 1

(t+ 1 + γ)2
) (126)

=β2 2(t+ γ) + 1

(t+ γ)2(t+ 1 + γ)2
(127)

≤ 2β2

(t+ γ)3
(128)

=
2η3t
β

, (129)

and with β > 1
m , ηt ≤ η1 ≤ 1

4M , we get

∥Σt+1 −Σt∥1 (130)

≤bN2η3t
C

(
2G2

β
+ 2MEG+M2E2G2ηt) (131)

≤bN2η3t
C

(2mG2 + 2MEG+
1

4
ME2G2) (132)

=η3tD, (133)

where

D =
bN2

C
(2mG2 + 2MEG+

1

4
ME2G2). (134)

With Eq. 114 and Eq. 133, we have

∆t+1 ≤(1− ηtm)∆t + 2Eη2tFt + (1 +
1

ηtm
)η3t δD

(135)

≤(1− ηtm)∆t + η2t (2EFt +
δ

m
D) + η3t δD

(136)

≤(1− ηtm)∆t + η2t (F̃ + D̃), (137)

where

F̃ = 2Emax
t

Ft, (138)

D̃ = (
1

m
+

1

4M
)δD. (139)

Now we can use the same trick in [19] to finish the proof
of convergence. With a diminishing learning rate, ηt = β

t+γ

for some β > 1
m and γ > 0 such that η1 ≤ min{ 1

m , 1
4M } =

1
4M , we will prove by induction that ∆t ≤ ν

γ+t , where

ν = max{β
2(F̃+D̃)
βm−1 , (γ + 1)∆1}.

With the definition of ν, we ensure that ∆1 ≤ ν
γ+1 . Now

we assume that ∆t ≤ ν
γ+t holds for some t, we have

∆t+1 ≤(1− ηtm)∆t + η2t (F̃ + D̃) (140)

≤(1− βm

t+ γ
)

ν

t+ γ
+

β2(F̃ + D̃)

(t+ γ)2
(141)

=
t+ γ − 1

(t+ γ)2
ν +

[β2(F̃ + D̃)

(t+ γ)2
− βm− 1

(t+ γ)2
ν
]

(142)

≤ t+ γ − 1

(t+ γ − 1)2 + 2(t+ γ)− 1
ν (143)

≤ t+ γ − 1

(t+ γ − 1)2 + 2(t+ γ − 1)
ν (144)

≤ ν

t+ γ + 1
. (145)

Eq. 143 also arises from the definition of ν that β2(F̃+D̃) ≤
(βm − 1)ν. Accordingly, for all t, we have ∆t ≤ ν

γ+t
holds.

With this result, we prove that ∆t converges to 0 with
convergence rate O( 1

T ), and thus we can say that the proxy
algorithm of FedCor converges to the global optimal with
convergence rate O( 1

T ) with Corollary 3.

C. Experiment Details
We simulate the training process of federated learning

on one machine. All experiments in this paper are run on
one NVIDIA 2080-Ti GPU and two Intel Xeon E5-2630 v4
CPUs. The experiments on FMNIST require around 3 hours
for each seed, and the experiments on CIFAR-10 require
around 10 hours for each seed.

C.1. Model Parameters

Hyperparameters in FMNIST We follow [4] to construct
the neural model on FMNIST: An MLP model with two
hidden layers with 64 and 30 units, respectively. Under
all three heterogeneous settings, we set the local batch size
B = 64 and the number of local iterations E = 20. The
learning rate η0 is set to 0.005 initially, and halved at the
150-th and 300-th rounds. An SGD optimizer with a weight
decay of 0.0001 and no momentum is used. We allocate
data to N = 100 clients, and set the participation fraction
C = 10 for the 1SPC setting, and C = 5 for the 2SPC and
Dir settings.

Hyperparameters in CIFAR-10 We use a CNN with three
convolutional layers [29] with 32, 64 and 64 kernels, re-
spectively. And all convolution kernels are of size 3 × 3.
Finally, the outputs of convolutional layers are fed into a
fully-connected layer with 64 units. Under all three hetero-
geneous settings, we set the local batch size B = 50 and the



number of local iterations E = 40. We use a learning rate
η = 0.01 without learning rate decay, and a weight decay of
0.0003 for the SGD optimizer. The total number of clients
and the client participation fraction are the same as those in
FMNIST.

Hyperparameters for FedCor We set the dimension of
client embedding d = 15 for all experiments. In Eq. (16),
we set M = 10, S = 1 for the warm-up phase, and M =
1, S = 1 for the normal phase. And we set the discount
factor γ = θ∆t where θ = 0.9 for experiments on FMNIST
and θ = 0.99 for experiments on CIFAR-10. In each GP
update round t, we use Xt−1 as the initialization and use an
Adam optimizer [11] with learning rate 0.01 to optimize for
Xt. Notice that although Eq. (16) has a closed form optimal
solution for Xt, we still learn Xt with the gradient decent
method with the initialization Xt−1 in order to utilize the
covariance stationarity and reduce the evaluation bias with
small number of samples.

Hyperparameters for other baselines We use the same
parameters α1 = 0.75, α2 = 0.01 and α3 = 0.1 as those
in the paper [6] for Active Federated Learning. And we set
d = 2NC for Power-of-choice Selection Strategy, which
is empirically shown to be the best value of d in a highly
heterogeneous setting in the paper [4].

Note that we implement the random selection strategy as
uniformly sampling clients from U without replacement [23],
while Cho et al. [4] implement the random selection strat-
egy as sampling clients with replacement. Thus, our im-
plemented random selection strategy achieves better perfor-
mances than their implementation.

C.2. Dirichlet Distribution for Data Partition

We follow the idea in [7] to construct the Dir heteroge-
neous setting, while we make some modifications to get an
unbalanced non-identical data distribution.

For each client k, we sample the data distribution qk ∈
R10 from a dirichlet distribution independently, which could
be formulated as

qk ∼ Dir(αp), (146)

where p is the prior label distribution and α ∈ R+ is the
concentration parameter of the dirichlet distribution. We
group qk of all the clients together and get a fraction matrix
Q = [q1, · · · , qn]. We denote the size of dataset on each
client as x = [x1, · · · , xN ]T and we get it from a solution
of a quadratic programming:

min
x

xTx (147)

subject to Qx = d (148)

x ∈ RN
++, (149)

where d is the number of data with each label. We min-
imize ∥x∥2 to avoid the cases where data distribution is
over-concentrated on a small fraction of clients. In that case,
the client selection problem might become trivial, since we
can always ignore those clients with a small dataset and
select those with a large dataset.

D. Extra Experimental Results
D.1. Ablation Study: Annealing Coefficient

We conduct experiments on FMNIST and CIFAR-10 with
different annealing coefficient β. We setup our experiments
under three heterogeneous settings as in Section 5, with
different annealing coefficient β (β = 0.95, 0.75, 0.5 for
FMNIST and β = 0.97, 0.95, 0.9 for CIFAR-10). We fix
the GP training interval ∆t to 10 for FMNIST and 50 for
CIFAR-10. The test accuracy curves are shown in Figure 8.
We can see that within a large range, the value of annealing
coefficient only slightly influence the convergence rate as
well as the final accuracy. Recalling the results of different
GP training intervals ∆t in Section 5.3, we can say that our
method is not sensitive to the hyperparameters ∆t and β.

We present the selected frequency of each client in Fig-
ure 10 and Figure 11 for FMNIST and CIFAR-10 respec-
tively. We can see that with a smaller β, the selected fre-
quency tends to be more “uniform”. However, this does not
mean that our selection strategy is equivalent to the uniformly
random selection. Our sequential selection strategy intro-
duces dependencies between selected clients as discussed
in the multi-iteration insights in Section 4.3, which makes
our selection strategy prefer some combinations of selected
clients to others, while the uniformly random selection treats
all the combinations equally. The advantage shown in Fig-
ure 8 compared to the uniformly random strategy demon-
strates that selecting a good combination of clients, not only
a good individual, is important.

D.2. Normality Verification

We setup experiments to show that Gaussian Distribution
can model the loss changes w.r.t. uniformly sampled client
selection. To verify this, in the last round of the warm-up
phase, we perform the following procedure to examine the
normality.

1. We uniformly sample 1000 different client selections
{St,i : i = 1, · · · , 1000} and collect the corresponding
loss changes ∆lt(St,i) = [∆lt1(St,i), · · · ,∆ltN (St,i)]
for each of them.

2. We perform PCA on {∆lt(St,i) : i = 1, · · · , 1000} to
extract the principle components.

3. We plot the histogram of each principle component and
compare its distribution with the Gaussian Distribution.



Figure 8. Test accuracy with different annealing coefficient β on FMNIST (top) and CIFAR-10 (bottom) under three heterogeneous settings
(left: 2SPC; median: 1SPC; right: Dir).

Figure 9. Verification of covariance stationarity on FMNIST and CIFAR-10.

We do not use Multivariate Normality Test directly because
we find that Σt is always nearly singular, which makes
the Multivariate Normality Test unstable. Thus, we turn
to perform PCA and visualize each principle component to
verify the normality.

The results of FMNIST and CIFAR-10 are shown in Fig-
ure 12 and Figure 13 respectively. The red line shows the
probability density of Gaussian Distribution with the mean
and variance of that principle component. We can see that in
all our experiments, Gaussian Distribution can fit the distri-
bution of the principle component well, which verifies that
Lemma 1 does hold in all the experiment settings.

D.3. Covariance Stationarity Verification

We examine that assumption in Section 4.5 that the covari-
ance keep approximately stationary during the FL training,
namely,

∀t,Σt ≈ Σt+∆t. (150)

To verify this, every ∆t rounds (∆t = 10 for FMNIST and
∆t = 50 for CIFAR-10), we randomly sample 1000 client
selections Ki and collect the corresponding loss changes
∆lt(Ki). We directly calculate the covariance matrix Σt

with these samples {∆lt(Ki) : i = 1, · · · , 1000}. Then for
each adjacent pair of covariance matrix, we calculate their
cosine similarity as follows.

similarity(Σt,Σt+∆t) =
tr(ΣtTΣt+∆t)

tr(ΣtTΣt)tr(Σt+∆tTΣt+∆t)
(151)

The similarity is in range [0, 1], and a larger one shows a
higher similarity.

The results are shown in Figure 9. We can see that in
most cases the similarity is larger than 0.9, which verifies
our claim of the covariance stationarity.



Figure 10. Selected Frequency of each client with different annealing coefficient β on FMNIST under three heterogeneous settings (top:
2SPC; median: 1SPC; bottom: Dir).

Figure 11. Selected Frequency of each client with different annealing coefficient β on CIFAR-10 under three heterogeneous settings (top:
2SPC; median: 1SPC; bottom: Dir).
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Figure 12. Normality Test on FMNIST.
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Figure 13. Normality Test on CIFAR-10.
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