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A B S T R A C T   

Convolutional Neural Networks (CNNs) are widely used for image classification. To fit the implementation of 
CNNs on resource-limited systems like FPGAs, pruning is a popular technique to reduce the complexity. In this 
paper, the robustness of the pruned CNNs against errors on weights and configuration memory of the FPGA 
accelerator is evaluated with VGG16 as a case study, and two popular pruning methods (magnitude-based and 
filter pruning) are considered. In particular, the accuracy loss of the original VGG16 and the ones with different 
pruning rates is tested based on fault injection experiments, and the results show that the effect of errors on 
weights and configuration memories are different for the two pruning methods. For errors on weights, the 
networks pruned using both methods demonstrate higher reliability with higher pruning rates, but the ones using 
filter pruning are relatively less reliable. For errors on configuration memory, errors on about 30% of the 
configuration bits will affect the CNN operation, and only 14% of them will introduce significant accuracy loss. 
However, the effect of the same critical bits is different for the two pruning methods. The pruned networks using 
magnitude-based method are less reliable than the original VGG16, but the ones using filter pruning are more 
reliable than the original VGG16. The different effects are explained based on the structure of the CNN accel
erator and the properties of the two pruning methods. The impact of quantization on the CNN reliability is also 
evaluated for the magnitude-based pruning method.   

1. Introduction 

Modern Convolutional Neural Networks (CNNs) have achieved 
outstanding performance for image classification tasks, but the amount 
of parameters in the model is huge, which requires considerable storage 
and computational resources [1,2] and limits their use on embedded 
systems. To solve this problem, pruning methods are proposed to 
compress the network [3–6] which not only reduces the number of 
network parameters but also decreases the computational complexity. 
However, such compression might impact the reliability of the network 
[7]. 

To speed CNN systems, many researchers proposed to implement 

CNN based on Field Programmable Gate Arrays (FPGAs) because FPGA 
based accelerator exhibits unique advantages compared to the ASIC- 
based implementations such as intensive application-specific custom
ization or convenient integration and rapid deployment [8–10]. Espe
cially for applications that require changes in the functionality, SRAM 
based FPGA is preferred due to its re-configurability. However, SRAM- 
FPGAs are sensitive to soft errors on both user memory and configura
tion memory [11,12]. As reported in [14], robots were used to investi
gate and clean up the Fukushima Nuclear Power Plant in Japan, but the 
strong radiation caused the failure of the AI-based autonomous opera
tion. A similar situation exists in the application of NNs in space envi
ronments [15,16]. Another scenario is the self-driving car. As reported 

☆ This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 62171313, in part by the NSFC Joint Foundation 
under Grant No. 20200509, in part by the ACHILLES project PID 2019-104207RB-I00 and the Go2Edge network RED2018-102585-T funded by the Spanish Ministry 
of Science and Innovation and in part by the Department of Research and Innovation of Madrid Regional Authority with the EMPATIA-CM Research Project 
(Reference Y2018/TCS-5046). 

* Corresponding author. 
E-mail addresses: zgao@tju.edu.cn (Z. Gao), yiyao@tju.edu.cn (Y. Yao), weixh2019@tju.edu.cn (X. Wei), Tyan@tju.edu.cn (T. Yan), zengsl18@mails.tinghua.edu. 

cn (S. Zeng), yu-wang@mail.tinghua.edu.cn (Y. Wang), aneesullah@uetpeshawar.edu.pk (A. Ullah), revirieg@it.uc3m.es (P. Reviriego).  

Contents lists available at ScienceDirect 

Microelectronics Reliability 

journal homepage: www.elsevier.com/locate/microrel 

https://doi.org/10.1016/j.microrel.2022.114498 
Received 2 August 2021; Received in revised form 4 December 2021; Accepted 9 February 2022   

mailto:zgao@tju.edu.cn
mailto:yiyao@tju.edu.cn
mailto:weixh2019@tju.edu.cn
mailto:Tyan@tju.edu.cn
mailto:zengsl18@mails.tinghua.edu.cn
mailto:zengsl18@mails.tinghua.edu.cn
mailto:yu-wang@mail.tinghua.edu.cn
mailto:aneesullah@uetpeshawar.edu.pk
mailto:revirieg@it.uc3m.es
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2022.114498
https://doi.org/10.1016/j.microrel.2022.114498
https://doi.org/10.1016/j.microrel.2022.114498
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2022.114498&domain=pdf


Microelectronics Reliability 130 (2022) 114498

2

in [17], the complex electromagnetic interferences may cause the failure 
of the CNN based traffic sign recognition. Furthermore, in addition to 
degradation of the CNN performance, faults on the configuration 
memory of the SRAM-FPGA could also cause system exceptions, such as 
system stall and early termination [18]. In summary, errors on both 
parameters and configuration memories for FPGA based CNN acceler
ators pose severe reliability problems for the application of CNN in 
critical environments. 

This paper aims to evaluate the reliability of pruned CNNs to errors 
on weights and configuration memory. Compared with related works 
about the reliability of pruned CNNs (discussed in Section 2.1), the 
contributions of this work include:  

(1) A typical CNN and the pruned ones with two pruning methods are 
implemented on an advanced FPGA accelerator, and a hardware 
fault injection tool is implemented on the accelerator for reli
ability evaluation.  

(2) The reliability of CNNs with different pruning rates to faults on 
weights is compared under different error rates for two popular 
pruning methods.  

(3) The reliability of CNNs with different pruning rates to faults on 
weights of different layers is compared for two popular pruning 
methods.  

(4) The effect of quantization on the reliability of the pruned network 
is evaluated.  

(5) The reliability of CNNs with different pruning rates to faults on 
configuration memory is compared for two popular pruning 
methods.  

(6) Fault injection experiments for the DSP array and adder tree in 
the accelerator are performed separately to explain the different 
effect of errors on the configuration bits for two pruning methods. 

The rest of the paper is organized as follows. Section 2 introduces the 
preliminaries of this work, including the related work, the basics for 
FPGA based CNN accelerators, VGG 16, and two popular pruning 
methods. Section 3 discusses the implementation of the pruned networks 
on FPGA accelerators and evaluates the network performance. Section 4 
evaluates the reliability of pruned networks to errors on weights and 
configuration memories based on the fault injection platform. Finally, 
the paper is concluded in Section 5. 

2. Preliminaries 

2.1. Faults on FPGA based CNN accelerators 

Soft errors can corrupt both the configuration memory and the user 
memories (including flip-flops and Block RAMs) of SRAM-FPGAs [12], 
and the Single Event Upset (SEU) effect is typically the most frequent 
one in space environments [11,19]. While errors on user memory only 
corrupt the data stored, errors on the configuration memory can change 
the circuit implemented by the FPGA and can only be corrected by 
reconfiguration. For FPGA based CNN accelerators, the user memories 
are used to store the parameters (e.g. weights, bias, and so on) and 
feature maps, and all the processing modules are determined by the 
configuration memory. 

Many works have studied the effect of errors on parameters and 
feature maps. In [20], the reliability of CNNs with 2 or 4 convolutional 
layers was evaluated when some weights are corrupted by SEUs. The 
results show that CNNs with large kernels are more robust. In [21], the 
reliability of LeNet-5 was evaluated when Gaussian noise is added to the 
weights, and found that the layers closer to the output layer are more 
vulnerable to errors. The study in [22] reveals that faults on weights and 
bias with an error rate lower than 10− 4 would not degrade the classifi
cation accuracy, which is consistent with the results in [23] for AlexNet. 
Ref. [24] performed a similar study for VGG16 and ResNet50, and 
showed that faults on weights with an error rate lower than 10− 7 will not 

degrade the accuracy, and the memories for feature maps are up to 50 
times more tolerant to faults than those for the weights. In [25], the 
reliability of VGG 16, ResNet50, and InceptionV3 was evaluated by 
flipping some bits of the main parameters, including weights, biases, and 
the batch normalization (BN) parameters. The results show that 
ResNet50 and InceptionV3 are more robust to parameter errors than 
VGG16. The authors in [26] investigated the effects of faults on the data 
path and buffers in DNN accelerators for different data types, bit posi
tions and layers, and found that high-order bits are vulnerable to faults 
and normalization layers are effective to reduce the impact of such 
faults. The authors of [27] also studied the reliability to faults on the 
weight memory and showed that the nonlinear activation operation is 
effective for fault tolerance by clipping the values of feature maps. Au
thors in [28] studied the effect of errors on weights for different layers in 
floating-point implemented LeNet-5 and Yolo networks based on fault 
injection experiments. Results show that the convolution layers in 
LeNet-5 are more reliable than the full connection layers, but such 
feature is not obvious for layers in Yolo. There are also several works 
discussing the impact of network compression on the resiliency of CNNs 
to faults on weights. Reference [29] evaluated the reliability of LeNet-5 
and VGG16 with different data types and pruning methods. The testing 
results showed that there is no big difference in performance for irreg
ular and structured pruning schemes, and quantization can effectively 
increase the fault resilience of DNNs. Since only a fixed pruning rate was 
evaluated, the impact of the pruning rate on the network reliability was 
not investigated. Similarly, reference [7] evaluated the impact of soft 
errors on AlexNet, RestNet 18 and ResNet50 with different data types 
and pruning rates, and concluded that quantization can bring a 27.4×
reliability increase relative to the 32-bit floating-point baseline, and 
another 4× improvement could be achieved when combined with 
pruning. However, this work only considered pruning rates around 
70%–80%. In our initial work [30], we investigated the impact of the 
pruning rates on the reliability of VGG16 to errors on different param
eters and showed that the networks with higher pruning rates are more 
reliable. But this conclusion was obtained for 32-bit floating-point 
weights. As we will introduce in Section 2.5, pruning methods can be 
categorized into magnitude-based pruning and filter pruning. All above 
works are based on the magnitude-based pruning, and few works 
considered the more advanced filter pruning on the reliability of the 
CNN. 

Several recent works studied the reliability of FPGA based CNN to 
SEUs on the configuration memories based on fault injection experi
ments. For example, [31] implemented a simple NN with 3 layers based 
on SRAM-FPGA with separate resources for each layer, and the fault 
injection experiment results showed that most SEUs will not degrade 
classification performance, and faults on the last layer have larger 
impact on the result. Authors in [32] implemented a CNN for traffic sign 
recognition based on SRAM-FPGAs, and the experiment results showed 
that SEUs on about 20% of the configuration memories will cause wrong 
classifications. Similarly, reference [33] studied the reliability of FPGA- 
based CNN accelerators based on radiation experiments, and found that 
most errors are tolerable, and some layers are more reliable than others. 
Research in [34] proves that the sensitivity of the convolutional layers to 
radiation can be reduced by 39% by binary quantization, but the per
centage of critical errors increases by 12%. Reference [17] performed a 
systematic evaluation of the FPGA-based CNN accelerator to permanent 
faults based on fault injection experiments. Results showed that the 
system exceptions caused by faults on memory access logic and control 
unit dominates the reliability of the system. As far as the authors know, 
there is no research studying the impact of pruning on the CNN reli
ability to SEUs on configuration memory, especially with modern 
accelerator architectures. 

2.2. FPGA accelerators for CNNs 

FPGA-based CNN accelerators can be divided into two types [35]: 
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Streaming Architectures (SAs) and Single Computation Engines (SCEs). 
SAs directly map layers to different resources of an FPGA to perform 
computations easily and efficiently. The reliability evaluations in 
[29,32] are based on such kind of accelerator. However, with the rapid 
development of CNN algorithms, SCEs have become more popular 
[8,10]. Different from SAs, SCEs apply instruction-set architectures 
(ISAs) to reuse the same modules for processing of different layers. The 
CNN operations are transformed into instructions that can be deployed 
on the hardware accelerator by the software compiler [35]. In this way, 
SCEs can easily handle different neural network architectures and pa
rameters without reconfiguring the FPGA. The work of [17] is based on 
such accelerator. We will also use an ISA-based FPGA CNN accelerator to 
implement the VGG16 and the pruned networks in this paper. 

As shown in Fig. 1, the basic structure for the ISA-based FPGA CNN 
accelerator is composed of the instruction dispatch module, data mover, 
compute module, and on-chip memory pool. The instruction dispatch 
module is responsible for instruction parsing, scheduling, and dis
patching. The LOAD and SAVE modules inside the data mover are 
responsible for data transfer between DDR and on-chip memory pool. 
Among these modules, the CONV module is the key component that 
performs most of the computations and consumes most the of FPGA 
resources. As shown in Fig. 2, the CONV module utilizes an array of 
processing elements (PEs) to realize high parallelism for the convolution 
operation. In this work, the Xilinx Zynq SoC (XC7Z020) is used for the 
CNN implementation. On this platform, the DSP48E2 block and adder 
tree based on Look Up Tables (LUTs) are used for the multiplications and 
accumulations, respectively. 

2.3. Structure of VGG16 

VGG is a deep CNN for image recognition proposed by the visual 
geometry group of Oxford University [36]. This network achieved a 
significant improvement by pushing the depth to 16–19 layers; and won 
the 1st and 2nd places in the localization and classification tracks in 
ILSVRC2014, respectively. Since then, VGG16 has been used as the 
baseline for many works about performance improvement or network 
simplification. 

As shown in Fig. 3, the VGG16 network is composed of 13 convo
lution layers, 5 pooling layers, and 3 full connection layers. The size of 

the kernel is fixed to 3 × 3 for all the convolution layers, and the 
Rectified Linear Unit (ReLU) is used as the non-linear activation function 
after each convolution layer. The maximum pooling is used with a 

Fig. 1. Structure of the ISA-based FPGA CNN accelerator.  

Fig. 2. Structure of the CONV module.  
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window size of 2 × 2 and stride of 2 to reduce the size of the feature 
maps by half in both the vertical and horizontal dimensions. The original 
VGG16 network is designed for the classification of images in the 
ImageNet dataset. There are 1000 categories in ImageNet and the size of 
each image is 224 × 224 × 3, so the size of the input layer is 224 × 224 
× 3, and there are 1000 nodes in the last full connection layer. In this 
paper, VGG16 is used for image classification on CIFAR-10, which in
cludes pictures with a size of 32 × 32 × 3 from 10 categories, so the size 
of the input layer is changed to 32 × 32 × 3. Then the width and height 
for the following layers are adjusted accordingly, and the final fully 
connected layer only contains 10 nodes. The outputs of the 10 nodes (ei, 
i = 1, 2, …, 10) are transformed by softmax to a score between [0,1]. 
Finally, the label corresponding to the maximum score is output as the 
classification result. 

2.4. Parameters in VGG16 

A pixel value of one output feature map in a convolution layer or full 
connection layer could be calculated as 

fo(xi) = Woxi + bo =
∑N

n=1
Wo

n xi
n + bo (1)  

where i and o are the indices for the input feature maps (or channels) and 
the output feature maps (or kernels), respectively, Wo =

[
Wo

1,Wo
2,… 

,Wo
N
]

and xi =
[
xi

1, xi
2,…, xi

N
]

are the weights of the o-th convolution 
kernel and a data block of the i-th input feature map, respectively, and bo 

is the corresponding bias. Wo and bo are trainable parameters. For the 
convolution layers, N = 3 × 3 × I where I is the number of input feature 
maps. For the three fully connected layers, the values of N are 4096, 
4096 and 10, respectively. 

To accelerate the network training, the Batch Normalization (BN) 
technique is usually applied between the convolution and ReLU in each 
convolution layer [37]. In this case, Eq. (1) for convolution layer is 
changed to 

Fo(Xo) = γo
Xo − uo
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

o + ε
√ + βo (2)  

where Xo is the result of Eq. (1), uo and σo
2 are the mean value and 

variance of Xo, γo and βo are a scaler and an offset, and ε is a small 
number preventing the divisor from being 0. In the implementation, uo 
and σo

2 are obtained statistically during the training process for each 
kernel and are stored for use in the inference period. γo and βo are 
trainable parameters. Since the subtraction of the mean value uo would 
remove the effect of the bias for convolutional layers, bo is only used in 
the fully connected layers in the implementation. 

In summary, the parameters of VGG16 include the weights (W), bias 
for fully connected layers (b), and BN factors for convolution layers (u, 
σ2, γ and β). The number of each type of parameters in VGG16 for 
CIFAR10 is listed in Table 1. As we can see, the weights account for 
99.9% of all the parameters, so pruning is only performed over weights. 

2.5. Pruning of neural networks 

As introduced above, CNNs are both computationally intensive and 
memory intensive. But according to the analysis in [3], there exists 
redundancy in neural networks, so it is possible to remove part of the 
nodes and connections with negligible performance degradation. The 
pruning technique is proposed for this purpose. In this paper, two pop
ular pruning methods are considered for evaluation. 

2.5.1. Magnitude-based pruning 
The magnitude-based method is popular for CNNs for image classi

fication tasks, in which the connections with small weights would be 
removed since they are prone to have less contribution to the final result 
[3]. Such methods usually perform three steps: 1) train a network to 
learn which connections are important; 2) prune the unimportant con
nections; 3) retrain the network to finetune the weights of remaining 
connections. On this basis, two methods are compared in [4]. One is to 
remove the same portion of connections in each layer (‘Class-uniform 
pruning’), and the other is to sort the weights from all layers according 
to their magnitude and remove the part of the connections with the 
smallest weights regardless of which layer the weights belong to (‘Class- 
blind pruning’). Performance comparisons show that Class-blind prun
ing outperforms Class-uniform pruning. In this paper, the Class-blind 
scheme is applied. 

2.5.2. Filter pruning (structured pruning) 
Although the magnitude-based pruning reduces a significant number 

of weights, it may not adequately reduce the computation costs due to 
irregular sparsity in the networks. To solve this problem, several works 
proposed filter pruning or structured pruning, where the whole filters 
are removed together with their connecting feature maps [5,6]. This 
approach can significantly reduce the computation costs, especially for 
the FPGA or GPU based accelerators using parallel computing structures. 
In this paper, the popular scheme proposed in [5] is used for evaluation 
based on an open source implementation [38], and the basic operation 
includes six steps: 1) determine the target layers by evaluating the 
sensitivity of each layer; 2) calculate the sum of magnitude of all weights 
in each filter belongs to the target layers; 3) sort all filters by the 
magnitude sum; 4) remove part of the filters with the smallest magni
tude sum; 5) remove the filters that correspond to the feature maps 
generated by the removed filters in the previous layer; 6) retrain the 
network to finetune the weights of remaining connections. Since the 
removed filters in step 4) will cause additional filter to be removed in 
step 5), the pruning rate cannot be exactly controlled as in the 
magnitude-based pruning. 

3. Implementation and performance evaluation of pruned 
VGG16 networks 

3.1. Implementation of VGG16 and pruned networks 

The original VGG16 and the pruned networks were implemented on 

Fig. 3. Structure of VGG16 for CIFAR-10.  

Table 1 
Number of parameters in VGG16 network.  

Parameters Weights Bias BN 

γ + β u + σ2 

Numbers 15,239,872 1034 4224 + 4224 4224 + 4224  
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Pynq-Z2 board with Xilinx Zynq SoC (XC7Z020) based on the ISA-based 
accelerator structure. Parallelism of 512 was applied, where 4 PEs run in 
parallel and 32 DSPs are used in each PE to produce results for 8 output 
channels simultaneously based on 8 input channels. The resource usage 
of the accelerator is shown in Table 2. About half of the main resources 
in the FPGA are used, and all DSPs are used in the CONV module. It 
should be noted that the original VGG16 and the pruned networks are 
implemented using the same PEs and BRAMs, and the only difference is 
that fewer weights will be loaded in each cycle for the network with 
higher pruning rate. For fixed fault rate on unit memory, fewer weights 
loaded means fewer errors on the weights. 

Figs. 4 and 5 show the distribution of the weights over the different 
layers for the original VGG16 and the networks with different pruning 
rates with magnitude-based pruning and the filter pruning, respectively. 
As we can see, most of the weights are located on convolution layers 
9–13, and the pruned weights are also from these layers. For the filter 
pruning method, the 1st and the 8th–13th convolutional layers are 
identified as non-sensitive layers based on the sensitivity evaluation 
algorithm in [5], so only filters from these layers are removed based on 
the procedures introduced in Section 2.5. The pruning rates in Fig. 4 for 
the magnitude-based pruning are accurate, but those for filter pruning 
are actually 19.43% (for VGG-20%), 50.79% (for VGG-50%) and 
79.83% (for VGG-80%). In this study, the original VGG16 and the 
pruned ones are implemented using the same accelerator shown in 
Fig. 2. For the pruned network with magnitude-based method, the only 
difference with the original VGG16 is that some weights are fixed to be 
0. While for the pruned network with filter pruning, the only difference 
with the original VGG16 is that the CONV module is less used due to 
fewer number of kernels. 

3.2. Performance evaluation of pruned networks 

The classification accuracy of the original VGG16 and the networks 
with different pruning rates was evaluated on CIFAR-10. The data set 
includes 60,000 pictures from 10 categories, among which 50,000 pic
tures are used for training (training set) and the other 10,000 are used 
for testing (test set). In the implementation, the weight decay and mo
mentum are set to be 0.0001 and 0.9, respectively. The learning rate 
starts from 0.1 and is divided by 10 at 30, 60 and 90 iterations and the 
training ends at 100 iterations. The input image data and the interme
diate feature maps are quantified to 8-bit integers. 

For the magnitude-based pruning method, the weights are quantified 
with different word lengths for the evaluation of the effect of quanti
zation on the network reliability, including 6-bit, 8-bit, 12-bit and 16- 
bit. The performance of pruned networks under different quantization 
sizes is listed in Table 3, in which ‘VGG-x%’ means x% of the weights 
(connections) are pruned. As we can see from the table, the accuracy for 
weights with 8-bit, 12-bit and 16-bit quantization schemes are very 
close, and that for 6-bit quantified weights is about 2.5% lower. In 
addition, the accuracy is almost the same for pruning rates between 0% 
(original) and 70%, and drops dramatically for a pruning rate of 80%. 
Based on these results, the reliability of the pruned networks in the 
following sections is only evaluated for pruning rates of 10%, 30%, 50% 
and 70%. 

For the filter pruning method, the implementation with 8-bit quan
tized weights is used for evaluation, and the accuracy for pruning rates 
of 20%, 50% and 80% are shown in Table 4. As we can see, the accuracy 
for VGG-80% (92.61%) is much higher than that using the magnitude- 

based pruning method (85.58%). This is because the magnitude-based 
pruning removes weights only based on the amplitude regardless of 
the layer. But based on the analysis in [5], the weights with the same 
amplitude may have different importance for the network. By 
comparing Figs. 4 and 5 for pruning rate of 50%, we can see that the 
filter pruning method removes more weights from the 9th – 13th layers 
(non-sensitive) than the magnitude-based method, so that the weights in 
the sensitive layers are kept to maintain the performance of the network. 

4. Reliability evaluation of pruned networks 

4.1. Fault injection platform 

To evaluate the reliability of the pruned networks, faults have been 
injected using an adapted version of the fault injection tool in [39] and 
implemented on a Xilinx Zynq 7000 SoC (XC7Z020). The experimental 
setup of the fault injection platform is shown in Fig. 6. The injection 

Table 2 
Resource consumption of the CNN accelerator.   

LUT DSP Register BRAM 

Resources for CNN  26,605  128  26,901  88 
Resources in XC7Z020  53,200  220  106,400  140 
Resource Utilization  50%  58%  25%  63%  

Fig. 4. Distribution of weights for different pruning rates (magnitude- 
based pruning). 

Fig. 5. Distribution of weights for different pruning rates (filter pruning).  

Table 3 
Accuracy of VGG16 and pruned networks (magnitude-based).   

0% 10% 30% 50% 70% 80% 

16 bits  92.85%  92.85%  92.83%  92.82%  92.73%  85.88% 
12 bits  92.84%  92.82%  92.84%  92.81%  92.72%  85.90% 
8 bits  92.67%  92.67%  92.66%  92.75%  92.56%  85.58% 
6 bits  90.11%  90.10%  90.10%  90.17%  89.94%  84.36%  

Table 4 
Accuracy of VGG16 and pruned networks (filter pruning).   

0% 20% 50% 80% 

8 bits 92.67% 92.67% 92.74% 92.61%  
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platform consists of the Processing System (PS) and the Programmable 
Logic (PL). The PS consists of the ARM Cortex-A9 processor and dedi
cated controllers for different peripherals e.g. DDR memory controller, 
SD controller, UART controller etc. The DDR controller is responsible for 
storing the weights file and the fault lists, including a list of bits in the 
user memory and a list of essential bits in the configuration memory. 
These lists are generated during the compile time in Vivado and it is used 
by the injection algorithm for reliability evaluation of the Design Under 
Test (DUT), which is the CNN system in our case. The SD controller is 
responsible for reading configuration files and images from the SD card, 
and the UART module is used to log the evaluation results to the PC. The 
PL part consists of the DUT and a synchronizer block. The latter is 
responsible for controlling the clock to the DUT. Furthermore, the DUT 
receives inputs (image data in our case) from the ARM processor in the 
PS part, and returns the processing results to the ARM. Another 
important module housed by the PL part is the Internal Configuration 
Access Port (ICAP) module, which allows the ARM processor to access 
the user memory (weights in our case) and the configuration memory 
related to the DUT (mainly the PE array), and modify it in runtime for 
error injection or removal. The modules in the PL region are connected 
to the PS region through AXI buses. 

The ARM processor runs the software that controls the fault injection 
process. The fault injection starts by freezing the clock to the DUT in the 
PL part through the synchronizer module. This is followed by reading 
back the target bit from a frame of the configuration memory through 
the ICAP port. The address of the configuration memory bits and the user 
memory bits (weights) for fault injection is extracted from the fault list 
stored in the DDR memory. The read back values are corrupted by 
inserting a bit flip for SEU emulation and written back. This is followed 
by resuming the design clock. After each fault injection, the network will 
process 10,000 images in the data set; and reports the softmax outputs 
for each image to PC through UART interface. The PC will compare the 
received softmax outputs with those from a fault-free accelerator. With 
errors on weights, the PC will calculate the accuracy of the network by 
comparing the labels corresponding to the maximum score with the 
expected ones. For configuration memory, since fault on some bits may 
not affect the network processing, the PC will first identify the critical 
bits on which faults will change the softmax outputs, and further 
calculate the accuracy of the network for each critical bit. 

As we will see later, the most time-consuming task is to identify 
critical bits from the hundreds of thousands configuration memory bits 
and to test the classification accuracy of each network with faults on 
each critical bit. This process may take more than three years to finish 
the experiments with a single Pynq-Z2 board. To speed up the experi
ments, a large-scale fault injection platform with 56 boards was built. 

The same bitstream runs on all the boards for a CNN, and each board is 
responsible for the fault injection experiments for part of the fault bits in 
the list. Then the total testing time is decreased to one month. The whole 
fault injection system is shown in Fig. 7, where 56 Pynq-Z2 boards are 
connected to the PC through three 20-port UART hubs. 

4.2. Reliability evaluation for faults on weights 

The user memory in the CNN accelerator is used for feature maps and 
parameters, including weights, bias, and BN factors. Based on [24], 
feature maps would be 50× more tolerant to faults than the weights. In 
addition, our initial work [30] showed that the effect of faults on bias 
and normalization parameters does not change for different pruning 
rates. Therefore, we mainly considered faults on weights in the user 
memory in this work. 

In harsh environments like space, the bit error rate (BER) for unit 
memory size is usually fixed, so more bits would be corrupted for a 
larger number of weights. Following the same approach in [28], the 
total number of faulty bits on weights (Nwb) is calculated as the product 
of the number of weights (Nw) and the quantization size (Nb), and the 
number of bit upsets for each injection is calculated as Nfi = Nwb * BER. 
To make a fair comparison, the reliability of VGGs with different 
pruning rates is evaluated under the same BER. Since the effect of 
quantization schemes is independent of the pruning method, it is only 
evaluated for the magnitude based pruning method. Then reliability 
comparison of networks with different pruning rates under the same 
BER and the effect of faults on weights for different layers is evaluated 
for both pruning methods. 

4.2.1. Reliability of pruned VGGs with different quantization schemes 
(magnitude-based pruning) 

Considering the BERs used in [22–24,29], we choose BERs between 
10− 7 and 10− 4 for the evaluation in this part. In the test, faults are 
randomly injected on weights from all layers. For each BER, 500 random 
fault injections are performed, and the accuracy of each injection is 
averaged as the final accuracy measure. The results for weight quanti
zation of 6-bit, 8-bit, 12-bit and 16-bit are shown in Figs. 8–11, 
respectively. As we can see, the networks with higher pruning rates 
achieve higher accuracy for all quantization sizes, which is consistent 
with the results for floating-point implementation [30]. In addition, the 
reliability is generally improved for larger quantization sizes. In 
particular, the reliability of all networks is obviously improved when the 
quantization size is increased from 6 to 8, and the improvement for 12- 
bit and 16-bit quantization is different for networks with different 
pruning rates. The reliability improvement for the original VGG16 and 
VGG-70% is very limited when the quantization bit number is larger 

Fig. 6. Fault injection platform for CNN reliability evaluation on one Pynq- 
Z2 board. 

Fig. 7. Fault injection platform with 56 Pynq-Z2 boards.  
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than 8, but that for less pruned network is still obvious. This phenom
enon can be explained based on the conclusion from [26,28] that the 
performance degradation of the network is mainly caused by the faults 
on the significant bits of weights. Although the total number of bits for 

quantization size of 16 is twice of that for quantization size of 8, the 
number of significant bits is not increased so much. In other words, 
although more errors are injected for larger quantization sizes than for 
smaller quantization sizes, the portion of corrupted significant bits 
actually decreases. The testing results imply that the reliability 
improvement caused by a smaller portion of significant bits is slightly 
larger than the reliability degradation by a larger number of faults. 

4.2.2. Reliability of VGGs with different pruning rates for filter pruning 
methods 

For the filter pruning method, the accuracy of the network with 
pruning rates of 20%, 50% and 80% are compared with BER between 
10− 6 and 10− 4, and the results are shown in Fig. 12. Same to that for the 
magnitude-based pruning, the network with higher pruning rate ach
ieves higher accuracy. In addition, by comparing the performance of the 
8-bit implementations for two pruning methods (Figs. 9 and 12), we find 
that the networks using filter pruning method are less reliable than that 
using magnitude-based pruning. This is because the removed filters are 
all from the non-sensitive layers for the filter pruning method. In other 
words, more weights from sensitive layers are kept by the filter pruning, 
which are also sensitive to SEUs. 

4.2.3. Effect of errors on weights for different layers 
For this test, the 8-bit implementations for two pruning methods are 

evaluated under BER of 3 * 10− 4. We inject the same portion of errors to 

Fig. 8. Average accuracy with errors on weights (6-bit).  

Fig. 9. Average accuracy with errors on weights (8-bit).  

Fig. 10. Average accuracy with errors on weights (12-bit).  

Fig. 11. Average accuracy with errors on weights (16-bit).  

Fig. 12. Average accuracy with errors on weights (filter pruning).  

Z. Gao et al.                                                                                                                                                                                                                                     



Microelectronics Reliability 130 (2022) 114498

8

different layers of each network and compare the average classification 
accuracy over 500 injections. The results for the two pruning methods 
are shown in Figs. 13 and 14, respectively. Two common conclusions 
could be obtained from the results. One is that the network with higher 
pruning rates is more reliable. The other is that the 8th–13th convolu
tion layers are more vulnerable in general. For the magnitude-based 
pruning method, VGG-70% and VGG-50% do not degrade by the 
weights errors. But when the pruning rate decreases to 10%, the same 
portion of errors would cause more severe performance degradation if 
they occur on the 8th–13th convolution layers. This trend also holds for 
the filter pruning method, but it is obvious that the performance 
degradation by errors on the 8th–13th convolution layers is more severe 
than that for the magnitude-based pruning method. This is because only 
important weights are kept in these non-sensitive layers for the filter 
pruning method, so errors on them are more likely to change the clas
sification results. This is consistent with the results in the previous 
subsection. 

4.3. Reliability evaluation for faults on configuration memories 

4.3.1. Percentage of critical bits 
Based on the investigation of [20], faults on the configuration 

memory of CNN accelerators can cause both accuracy loss and system 
exceptions. The former is mainly caused by faults on PE array and latter 
is mainly caused by faults on control and instructions logic. In our case, 
since the original VGG16 and pruned ones are implemented using the 
same accelerator with the same instructions, system exceptions should 
be the same for all the networks, so we focus on the accuracy loss due to 
fault on the configuration memories of the PE array that account for the 
majority of the bits. We applied the same approach used in [35–37] that 
only a single bit of the configuration memory is corrupted for each in
jection (SEU). Quantization of weights is 8-bit for the testing in this 
subsection. 

Based on the essential bit file (.ebd) generated during the compila
tion in Vivado, the number of essential bits for each PE is 365,349. Based 
on the fault injection experiments, SEUs on about 30% of the essential 
bits will affect the CNN processing (critical bits), and there are slight 
differences among the number of critical bits for different pruning rates 
and methods (115,438 ±0.1%). This is expected because all the net
works are implemented based on the same hardware shown in Fig. 1. 
However, the effect of SEUs on the critical bits is different for different 
pruning rates and different pruning methods. 

4.3.2. Effect of SEU on critical bits for magnitude-based pruning 
For the magnitude-based pruning method, the Probability Density 

Function (PDF) curves for the accuracy with SEUs on each of the critical 
bits for different pruning rates is shown in Fig. 15, based on which three 
conclusions can be obtained. First, over 70% of the critical bits will not 
degrade the network accuracy much (accuracy > 90%, robust bits), and 
only less than 14% of the critical bits would cause poor results (accuracy 
< 15%, vulnerable bits). Second, the percentage of vulnerable bits does 
not change for different pruning rates. This expected because the 
vulnerable bits are those related to the configuration logic or the com
mon data access logic for the DSP arrays and adder tree, which has 
nothing to do with pruning. Third, the percentage of robust bits of the 
pruned networks is smaller than that of the original VGG16, and de
creases for higher pruning rates, which means the network with more 
weights pruned is less reliable. 

To further reveal the reason for the third conclusion, we evaluate the 
network accuracy with SEUs on the critical bits for the DSP array and 
adder trees separately, and the PDF curves of the accuracy for pruning 
rates of 30% and 70% are compared in Fig. 16. As expected, the portion 
of vulnerable bits for the adder tree and DSPs for VGG-30% are about 
16.1% and 9%, respectively, and these portions do not change for VGG- 

Fig. 13. Average accuracy with errors on weights for different layers (magni
tude-based pruning). 

Fig. 14. Average accuracy with errors on weights for different layers (fil
ter pruning). 

Fig. 15. PDF of accuracy for pruned networks with faults on critical bits 
(magnitude-based pruning). 
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70%. However, compared with VGG-30%, the portion of robust bits for 
adder tree and DSPs in VGG-70% decrease by 3.4% and 6%, respec
tively. This can be explained as follows. Since the values of the pruned 
weights are set to be 0, more inputs of the adder tree would be 0 for 
higher pruning rates. Then a change on the 0 input by SEUs in the adder 
would have larger influence on the accumulation results when less non- 
zero inputs exists (more 0 inputs for higher pruning rates). This effect 
would be amplified by the multiplication of a faulty DSP, so the portion 
of robust bits decreases more by SEUs on DSP for higher pruning rates. 

4.3.3. Effect of SEU on critical bits for filter pruning 
For the filter pruning method, the PDF curves for the accuracy with 

SEUs on each of the critical bits for different pruning rates is shown in 
Fig. 17. Similar to the case for magnitude-based method, robust bits 
dominate the critical bits, and the portion of vulnerable bits does not 
change for different pruning rates. But a key difference is that the 
portion of robust bits is even higher than that for the original VGG16, 
and almost does not change for higher pruning rates (slight decreasing 
for VGG-80%). In other words, the pruned networks using filter pruning are 
more reliable than the original VGG16 and the reliability does not decrease 
when more weights are pruned. To reveal the reason, the accuracy with 
SEUs on the critical bits for the DSP array and adder trees are evaluated 

separately, and the PDF curves of the accuracy for pruning rate of 20% 
and 80% are compared in Fig. 18. As expected, the portion of vulnerable 
bits does not change for different pruning rates. However, two key dif
ferences can be obtained by comparing with the results in Fig. 16. One is 
that both the portion of robust bits for the adder tree and DSP array are 
obviously higher than those for the case of magnitude-base pruning. The 
other is that, when the pruning rates increases from 20% to 80%, the 
portion of robust bits for DSP array almost keeps unchanged, and that for 
adder tree only drops 1%. These phenomena can be explained as follows. 
Compared with the original VGG16, the key difference for pruned net
works is that less kernels are used for convolution in each layer, so the 
same hardware is less used, and fewer output feature maps are produced 
for each layer. This means that the same configuration error caused by 
SEU will have less impact on the final result, which explains the reli
ability improvement over the original VGG16. Based on the work 
schedule of the accelerator, the portion of convolution workload for 
single DSP is the same for different number kernels in a layer, so an SEU 
on it will introduce errors to the same portion of output feature maps 
pixel regardless of the number of output feature maps. That's why the 
reliability of DSP array does not change for different pruning rates. 
Finally, the adder tree is implemented based on LUTs, and an SEU on it 
will introduce errors to one value in the LUT, which will change the 
output feature map pixel if the corrupted value is hit. For higher pruning 
rates, the hit probability decreases due to fewer use times, but the effect 
would be more obvious once hit because the output changes is relatively 
more important due to the fewer number of output feature maps. This 
explains why the reliability of adder tree increases first when the 
pruning rates increases from 0% (the original VGG16) to 50%, and de
creases slightly for VGG-80%. 

5. Conclusions 

In this paper, we implemented the original VGG16 and pruned ver
sions with different pruning rates using two pruning methods on an ISA- 
based FPGA accelerator and studied the impact of pruning rate on the 
network reliability to errors on weights and configuration memories for 
the processing element array based on hardware fault injection experi
ments. Some conclusions are obtained based on the experimental re
sults. First, networks with higher pruning rates are more robust to errors 
on weights, but the reliability improvement for pruned networks using 
filter pruning is relatively smaller because the weights kept are more 
vulnerable to errors. Second, errors on about 30% of the configuration 
bits will affect the CNN operation, and only 14% of them will introduce 
significant accuracy loss. These percentages are the same for the original 

Fig. 16. PDF of accuracy for VGG-30%/70% with faults on critical bits for 
Adder Tree and DSP Array (magnitude-based pruning). 

13.8%
76.5%

13.7%

13.9%

76.7%

76.0%

Fig. 17. PDF of accuracy for pruned networks with faults on critical bits (fil
ter pruning). 

16.0% 75.4%

9.0% 79.4%

16.0%

9.0%

74.4%

79.1%

Fig. 18. PDF of accuracy for VGG-20%/80% with faults on critical bits for 
Adder Tree and DSP Array (filter pruning). 
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VGG16 and the pruned ones using two pruning methods. Third, for the 
magnitude-based pruning, higher pruning rates decrease the reliability 
of the network to errors on configuration bits because errors on the 
operation with 0 inputs has larger impact to the result. Fourth, for the 
filter pruning, pruned network is more reliable to errors on configura
tion bits than the original VGG16 because the same hardware is less used 
due to the fewer number of kernels so that the same error has less impact 
on the final results. In addition, the evaluation on the pruned networks 
using magnitude-based pruning also shows that larger quantization size 
improves the network reliability, but the improvement for networks 
with large pruning rates is limited for quantization sizes larger than 8. 

CRediT authorship contribution statement 

Zhen Gao: Methodology, analysis, draft 
Yi Yao: Fault injection experiments for errors on configuration 
memory 
Xiaohui Wei: Fault injection experiments for errors on weight 
Tong Yan: Setup of FPGA based fault injection platform 
Shulin Zeng: Support for FPGA accelerators 
Guangjun Ge: Support for FPGA accelerators 
Yu Wang: Support for FPGA accelerators, approach 
Anees Ullah: Support for FPGA based fault injection platform 
Pedro Reviriego: Writing and analysis. 

Declaration of competing interest 

The authors declared that they have no conflicts of interest to this 
work. 

References 

[1] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep 
convolutional neural networks, in: International Conference on Neural Information 
Processing Systems (NIPS), 2012, pp. 1097–1105. 

[2] Y. Taigman, M. Yang, M. Ranzato, Web-scale training for face identification, in: 
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 
pp. 2746–2754. 

[3] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks 
with pruning, trained quantization and huffman coding, in: International 
Conference on Learning Representations, 2016. 

[4] A. See, M.T. Luong, C.D. Manning, Compression of neural machine translation 
models via pruning, in: SIGNLL Conference on Computational Natural Language 
Learning (CoNLL), 2016. 

[5] H. Li, A. Kadav, I. Durdanovic, Pruning Filters for Efficient ConvNets, ICLR, 2017. 
[6] Y. He, X. Dong, G. Kang, et al., Asymptotic soft filter pruning for deep 

convolutional neural networks, IEEE Trans. Cybern. 50 (8) (Aug. 2020) 
3594–3604. 

[7] B. F. Goldstein S. Srinivasan D. Das , et al., "Reliability evaluation of compressed 
deep learning models," 2020 IEEE 11th Latin American Symposium on Circuits & 
Systems (LASCAS). 

[8] K. Guo, L. Sui, J. Qiu, et al., Angel-eye: a complete design flow for mapping CNN 
onto embedded FPGA, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 (1) 
(January 2018). 

[9] X. Lian, Z. Liu, Z. Song, et al., High-performance FPGA-based CNN accelerator with 
block-floating-point arithmetic, IEEE Trans. Very Large Scale Integr. Syst. 27 (8) 
(August 2019). 

[10] Y. Yu, C. Wu, T. Zhao, OPU: an FPGA-based overlay processor for convolutional 
neural networks, IEEE Trans. Very Large Scale Integr. Syst. 28 (1) (Oct. 2019). 

[11] F.L. Kastensmidt, L. Carro, R. Reis, Fault-tolerance Techniques for SRAM-based 
FPGAs, Springer, New Haven, 2006. 

[12] P.S. Ostler, M.P. Caffrey, D.S. Gibelyou, SRAM FPGA reliability analysis for harsh 
radiation environments, IEEE Trans. Nucl. Sci. 56 (6) (Dec. 2009) 3519–3526. 

[14] L. Kolodny, Japanese Authorities Decry Ongoing Robot Failures at Fukushima, 
Mar. 2017. 

[15] D. Binder, E.C. Smith, A.B. Holman, Satellite anomalies from galactic cosmic rays, 
IEEE Trans. Nucl. Sci. 22 (6) (Dec. 1975) 2675–2680. 

[16] P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, et al., Current and future challenges in 
radiation effects on CMOS electronics, IEEE Trans. Nucl. Sci. 57 (4) (2010) 
1747–1763. 

[17] I. C. Lopes F. Benevenuti F. L. Kastensmidt , et al., "Reliability analysis on case- 
study traffic sign convolutional neural network on APSoC," IEEE LATS 2018, Sao 
Paulo. 

[18] D. Xu, Z. Zhu, C. Liu, Persistent fault analysis of neural networks on FPGA-based 
acceleration system, in: IEEE 31st International Conference on Application-specific 
Systems, Architectures and Processors (ASAP), 2020. 

[19] N. Kanekawa, E.H. Ibe, Y.T. Suga, Dependability in Electronic Systems: Mitigation 
of Hardware Failures, Soft Errors, and Electro-magnetic Disturbances, Springer 
Verlag, New York, USA, 2010. 

[20] A.P. Arechiga, J.A. Michaels, The effect of weight errors on neural networks, in: 8th 
IEEE Annual Computing and Communication Workshop and Conference, 2018. 

[21] S. Kwon, K. Lee, Y. Kim, Measuring error-tolerance in SRAM architecture on 
hardware accelerated neural network, in: IEEE International Conference on 
Consumer Electronics Asia, 2016. 

[22] B. Reagen, P. Whatmough, R. Adolf, Minerva: enabling low-power, highly-accurate 
deep neural network accelerators, in: 2016 ACM/IEEE 43rd Annual International 
Symposium on Computer Architecture (ISCA), June 2016, pp. 267–278. 

[23] E. Ozen, A. Orailoglu, Sanity-check: boosting the reliability of safety-critical deep 
neural network applications, in: 2019 IEEE 28th Asian Test Symposium (ATS), 
2019, pp. 7–75. 

[24] B. Reagen, U. Gupta, L. Pentecost, Ares: a framework for quantifying the resilience 
of deep neural networks, in: 55th ACM/ ESDA/IEEE Design Automation 
Conference (DAC), 2018, pp. 1–6. 

[25] G. Li, H. Siva, S. Michael, Understanding error propagation in deep learning neural 
network (DNN) accelerators and applications, in: International Conference for 
High-Performance Computing, Networking, Storage and Analysis (SC), Denver. 
Colorado, 2017. 

[26] A.P. Arechiga, J.A. Michaels, The robustness of modern deep learning architectures 
against single event upset errors, in: IEEE High Performance Extreme Computing 
Conference, 2018. 

[27] L. Hoang, M.A. Hanif, M. Shafique, FT-ClipAct: resilience analysis of deep neural 
networks and improving their fault tolerance using clipped activation, in: Design, 
Automation and Test in Europe, 2020, pp. 1241–1246. 

[28] A. Bosio, P. Bernardi, A. Ruospo, A reliability analysis of a deep neural network, in: 
2019 IEEE Latin American Test Symposium (LATS), Santiago, Chile, March 2019. 

[29] M. Sabbagh, C. Gongye, Y. Fei, Evaluating fault resiliency of compressed deep 
neural networks, in: IEEE International Conference on Embedded Software and 
Systems, 2019. 

[30] Z. Gao, X. Wei, H. Zhang, Reliability evaluation of pruned neural networks against 
errors on parameters, in: 33rd IEEE International Symposium on Defect and Fault 
Tolerance in VLSI and Nanotechnology Systems, Oct. 2020. 

[31] I.C. Lopes, F.L. Kastensmidt, A.A. Susin, SEU susceptibility analysis of a feed 
forward neural network implemented in a SRAM-based FPGA, in: 2017 18th IEEE 
Latin American Test Symposium (LATS), 2017. 

[32] C. Israel, B. Fabio, L.K. Fernanda, Reliability analysis on case-study traffic sign 
convolutional neural network on APSoC, in: 2018 IEEE 19th Latin-American Test 
Symposium (LATS), 2018, pp. 1–6. 

[33] F. Libano, B. Wilson, J. Anderson, et al., Selective hardening for neural networks in 
FPGAs, IEEE Trans. Nucl. Sci. 66 (1) (2019) 216–222. 

[34] F. Libano, B. Wilson, M. Wirthlin, et al., Understanding the impact of quantization, 
accuracy, and radiation on the reliability of convolutional neural networks on 
FPGAs, IEEE Trans. Nucl. Sci. 67 (7) (July 2020) 1478–1484. 

[35] Y. Xing, S. Liang, L. Sui, et al., DNNVM: end-to-end compiler leveraging 
heterogeneous optimizations on FPGA-based CNN accelerators, IEEE Trans. 
Comput. Aided Des. Integr. Circuits Syst. 39 (10) (Oct. 2020) 2668–2681. 

[36] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale 
image recognition, in: The Computing Research Repository, 2014 abs/1409.1556. 

[37] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift, International on Machine Learning. JMLR.org, 
2015. 

[38] https://github.com/AlumLuther/PruningFilters. 
[39] A. Ullah, P. Reviriego, J.A. Maestro, An efficient methodology for on-Chip SEU 

injection in Flip-flops for xilinx FPGAs, IEEE Trans. Nucl. Sci. 65 (4) (April 2018) 
989–996.  

Zhen Gao (M'11), received the BS, MS and PhD degree in 
Electrical and Information Engineering from Tianjin University, 
China, in 2005, 2007 and 2011, respectively. During 
2008.10–2010.11, he was a visiting scholar in GeorgiaTech, 
working on the design and implementation for OFDM based 
cooperative communications. During 2011.7–2014.12, he was 
a Postdoc researcher in the Wireless and Mobile Communica
tion Research Center in Tsinghua University, China, working on 
mobile satellite communication and fault tolerant design for 
DSPs. Since 2014.12, he is an Associate Professor in Tianjin 
University. His focus now includes fault-tolerant DSPs design 
and Blockchain technologies.  

Z. Gao et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229258004
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150236278765
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150236278765
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230477211
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230477211
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150244375959
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150244375959
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150248111159
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150248111159
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223261525
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223261525
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224324906
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224324906
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226066923
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226066923
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226438517
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226438517
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233281171
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233281171
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205


Microelectronics Reliability 130 (2022) 114498

11

Yi Yao received a BS from Tianjin University and a BEng from 
University of Edinburgh in Jul. 2020, is now a MS student in 
Tianjin University since Sep. 2020. His research involves 
SRAM-FPGA fault tolerance system design and analysis.  

Xiaohui Wei received the BS degree from Northeast Agricul
ture University in July 2019, and is a Master student in Elec
trical and Information Engineering from Tianjin University 
since Sep. 2019. Her research focus now is reliability evaluation 
of neural networks on radiation effects.  

Tong Yan received the BS degree from Changchun University 
of Science and Technology in July 2018, and is a Master student 
in Tianjin University since Sep. 2018. His research focus now is 
design and implementation of SRAM-FPGA based fault injec
tion platform and radiation effects study for digital signal 
processing.  

Shulin Zeng received his B.S. degree in electronic engineering 
department of Tsinghua University, Beijing, China, in 2014. He 
is currently pursuing his PhD degree in electronic engineering 
department of Tsinghua University. His research mainly focuses 
on software-hardware co-design for deep learning and virtual
ization in the cloud.  

Guangjun Ge is currently working as a post doctor in the 
Department of Electronic Engineering, Tsinghua University, 
Beijing, China. He received his BS and PHD degrees from Bei
hang University (BUAA) in 2012 and Tsinghua University in 
2018, respectively. His research interests include information 
theory, fault tolerance coding and NN FPGA accelerator.  

Yu Wang (Senior Member, IEEE), received the BS degree and 
PhD degree (with honor) from Tsinghua University, Beijing, 
China, in 2002 and 2007, respectively. He is currently a tenured 
professor and chair with the Department of Electronic Engi
neering, Tsinghua University, China. His research interests 
include application specific hardware computing, parallel cir
cuit analysis, and power/reliability aware system design 
methodology. He has authored and coauthored more than 250 
papers in refereed journals and conferences. He has received 
Best Paper Award in ASPDAC 2019, FPGA 2017, NVMSA17, 
ISVLSI 2012, and Best Poster Award in HEART 2012 with nine 
Best Paper Nominations. He is a recipient of DAC Under-40 
Innovator Award, in 2018. He served as TPC chair for ICFPT 

2019, ISVLSI 2018, ICFPT 2011 and finance chair of ISLPED 2012–2016, and served as the 
program commit- tee member for leading conferences in EDA/FPGA area.  

Anees Ullah received BSc and MSc Degrees in Electrical En
gineering for University of Engineering and Technology, 
Peshawar in 2009 and 2011, respectively. He received a PhD 
degree in Computer Engineering from Politecnico di Torino, 
Italy in 2015. During 2016–2017, he worked as a Post-doc 
researcher in Universidad Antonio de Nebrija, Spain. 
Currently, he is working as Assistant Professor in department of 
Electronics Engineering, University of Engineering and Tech
nology, Peshawar. His research interests include fault-tolerant 
digital systems design, fault injection in FPGAs, FPGA-based 
Ternary Content Addressable Memories (TCAMs) and Approx
imate Computing.  

Pedro Reviriego (SM'15), received the MSc and PhD degrees in 
telecommunications engineering from the Technical University 
of Madrid, Madrid, Spain, in 1994 and 1997, respectively. From 
1997 to 2000, he was an R&D Engineer with Teldat, Madrid, 
working on router implementation. In 2000, he joined Massana 
to work on the development of 1000BaseT transceivers. From 
2004 to 2007, he was a Distinguished Member of Technical 
Staff with the LSI Corpo-ration, working on the development of 
Ethernet transceivers. From 2007 to 2018 he was with Uni
versidad Antonio de Nebrija. He is currently with the Depar
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