
Microelectronics Reliability 130 (2022) 114498

Available online 18 February 2022
0026-2714/© 2022 Elsevier Ltd. All rights reserved.

Reliability evaluation of FPGA based pruned neural networks☆

Zhen Gao a,*, Yi Yao a, Xiaohui Wei a, Tong Yan a, Shulin Zeng b, Guangjun Ge b, Yu Wang b,
Anees Ullah c, Pedro Reviriego d

a Tianjin University, Tianjin 300072, China
b School of Electronic Engineering, Tsinghua University, Beijing 100084, China
c University of Engineering and Technology, Peshawar, Abbottabad 220101, Pakistan
d Universidad Carlos III de Madrid, 28911 Leganés, Spain

A R T I C L E I N F O

Keywords:
Convolutional Neural Networks (CNNs)
Pruning
Reliability
FPGAs
Fault injection

A B S T R A C T

Convolutional Neural Networks (CNNs) are widely used for image classification. To fit the implementation of
CNNs on resource-limited systems like FPGAs, pruning is a popular technique to reduce the complexity. In this
paper, the robustness of the pruned CNNs against errors on weights and configuration memory of the FPGA
accelerator is evaluated with VGG16 as a case study, and two popular pruning methods (magnitude-based and
filter pruning) are considered. In particular, the accuracy loss of the original VGG16 and the ones with different
pruning rates is tested based on fault injection experiments, and the results show that the effect of errors on
weights and configuration memories are different for the two pruning methods. For errors on weights, the
networks pruned using both methods demonstrate higher reliability with higher pruning rates, but the ones using
filter pruning are relatively less reliable. For errors on configuration memory, errors on about 30% of the
configuration bits will affect the CNN operation, and only 14% of them will introduce significant accuracy loss.
However, the effect of the same critical bits is different for the two pruning methods. The pruned networks using
magnitude-based method are less reliable than the original VGG16, but the ones using filter pruning are more
reliable than the original VGG16. The different effects are explained based on the structure of the CNN accel-
erator and the properties of the two pruning methods. The impact of quantization on the CNN reliability is also
evaluated for the magnitude-based pruning method.

1. Introduction

Modern Convolutional Neural Networks (CNNs) have achieved
outstanding performance for image classification tasks, but the amount
of parameters in the model is huge, which requires considerable storage
and computational resources [1,2] and limits their use on embedded
systems. To solve this problem, pruning methods are proposed to
compress the network [3–6] which not only reduces the number of
network parameters but also decreases the computational complexity.
However, such compression might impact the reliability of the network
[7].

To speed CNN systems, many researchers proposed to implement

CNN based on Field Programmable Gate Arrays (FPGAs) because FPGA
based accelerator exhibits unique advantages compared to the ASIC-
based implementations such as intensive application-specific custom-
ization or convenient integration and rapid deployment [8–10]. Espe-
cially for applications that require changes in the functionality, SRAM
based FPGA is preferred due to its re-configurability. However, SRAM-
FPGAs are sensitive to soft errors on both user memory and configura-
tion memory [11,12]. As reported in [14], robots were used to investi-
gate and clean up the Fukushima Nuclear Power Plant in Japan, but the
strong radiation caused the failure of the AI-based autonomous opera-
tion. A similar situation exists in the application of NNs in space envi-
ronments [15,16]. Another scenario is the self-driving car. As reported

☆ This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 62171313, in part by the NSFC Joint Foundation
under Grant No. 20200509, in part by the ACHILLES project PID 2019-104207RB-I00 and the Go2Edge network RED2018-102585-T funded by the Spanish Ministry
of Science and Innovation and in part by the Department of Research and Innovation of Madrid Regional Authority with the EMPATIA-CM Research Project
(Reference Y2018/TCS-5046).

* Corresponding author.
E-mail addresses: zgao@tju.edu.cn (Z. Gao), yiyao@tju.edu.cn (Y. Yao), weixh2019@tju.edu.cn (X. Wei), Tyan@tju.edu.cn (T. Yan), zengsl18@mails.tinghua.edu.

cn (S. Zeng), yu-wang@mail.tinghua.edu.cn (Y. Wang), aneesullah@uetpeshawar.edu.pk (A. Ullah), revirieg@it.uc3m.es (P. Reviriego).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2022.114498
Received 2 August 2021; Received in revised form 4 December 2021; Accepted 9 February 2022

mailto:zgao@tju.edu.cn
mailto:yiyao@tju.edu.cn
mailto:weixh2019@tju.edu.cn
mailto:Tyan@tju.edu.cn
mailto:zengsl18@mails.tinghua.edu.cn
mailto:zengsl18@mails.tinghua.edu.cn
mailto:yu-wang@mail.tinghua.edu.cn
mailto:aneesullah@uetpeshawar.edu.pk
mailto:revirieg@it.uc3m.es
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2022.114498
https://doi.org/10.1016/j.microrel.2022.114498
https://doi.org/10.1016/j.microrel.2022.114498
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2022.114498&domain=pdf

Microelectronics Reliability 130 (2022) 114498

2

in [17], the complex electromagnetic interferences may cause the failure
of the CNN based traffic sign recognition. Furthermore, in addition to
degradation of the CNN performance, faults on the configuration
memory of the SRAM-FPGA could also cause system exceptions, such as
system stall and early termination [18]. In summary, errors on both
parameters and configuration memories for FPGA based CNN acceler-
ators pose severe reliability problems for the application of CNN in
critical environments.

This paper aims to evaluate the reliability of pruned CNNs to errors
on weights and configuration memory. Compared with related works
about the reliability of pruned CNNs (discussed in Section 2.1), the
contributions of this work include:

(1) A typical CNN and the pruned ones with two pruning methods are
implemented on an advanced FPGA accelerator, and a hardware
fault injection tool is implemented on the accelerator for reli-
ability evaluation.

(2) The reliability of CNNs with different pruning rates to faults on
weights is compared under different error rates for two popular
pruning methods.

(3) The reliability of CNNs with different pruning rates to faults on
weights of different layers is compared for two popular pruning
methods.

(4) The effect of quantization on the reliability of the pruned network
is evaluated.

(5) The reliability of CNNs with different pruning rates to faults on
configuration memory is compared for two popular pruning
methods.

(6) Fault injection experiments for the DSP array and adder tree in
the accelerator are performed separately to explain the different
effect of errors on the configuration bits for two pruning methods.

The rest of the paper is organized as follows. Section 2 introduces the
preliminaries of this work, including the related work, the basics for
FPGA based CNN accelerators, VGG 16, and two popular pruning
methods. Section 3 discusses the implementation of the pruned networks
on FPGA accelerators and evaluates the network performance. Section 4
evaluates the reliability of pruned networks to errors on weights and
configuration memories based on the fault injection platform. Finally,
the paper is concluded in Section 5.

2. Preliminaries

2.1. Faults on FPGA based CNN accelerators

Soft errors can corrupt both the configuration memory and the user
memories (including flip-flops and Block RAMs) of SRAM-FPGAs [12],
and the Single Event Upset (SEU) effect is typically the most frequent
one in space environments [11,19]. While errors on user memory only
corrupt the data stored, errors on the configuration memory can change
the circuit implemented by the FPGA and can only be corrected by
reconfiguration. For FPGA based CNN accelerators, the user memories
are used to store the parameters (e.g. weights, bias, and so on) and
feature maps, and all the processing modules are determined by the
configuration memory.

Many works have studied the effect of errors on parameters and
feature maps. In [20], the reliability of CNNs with 2 or 4 convolutional
layers was evaluated when some weights are corrupted by SEUs. The
results show that CNNs with large kernels are more robust. In [21], the
reliability of LeNet-5 was evaluated when Gaussian noise is added to the
weights, and found that the layers closer to the output layer are more
vulnerable to errors. The study in [22] reveals that faults on weights and
bias with an error rate lower than 10− 4 would not degrade the classifi-
cation accuracy, which is consistent with the results in [23] for AlexNet.
Ref. [24] performed a similar study for VGG16 and ResNet50, and
showed that faults on weights with an error rate lower than 10− 7 will not

degrade the accuracy, and the memories for feature maps are up to 50
times more tolerant to faults than those for the weights. In [25], the
reliability of VGG 16, ResNet50, and InceptionV3 was evaluated by
flipping some bits of the main parameters, including weights, biases, and
the batch normalization (BN) parameters. The results show that
ResNet50 and InceptionV3 are more robust to parameter errors than
VGG16. The authors in [26] investigated the effects of faults on the data
path and buffers in DNN accelerators for different data types, bit posi-
tions and layers, and found that high-order bits are vulnerable to faults
and normalization layers are effective to reduce the impact of such
faults. The authors of [27] also studied the reliability to faults on the
weight memory and showed that the nonlinear activation operation is
effective for fault tolerance by clipping the values of feature maps. Au-
thors in [28] studied the effect of errors on weights for different layers in
floating-point implemented LeNet-5 and Yolo networks based on fault
injection experiments. Results show that the convolution layers in
LeNet-5 are more reliable than the full connection layers, but such
feature is not obvious for layers in Yolo. There are also several works
discussing the impact of network compression on the resiliency of CNNs
to faults on weights. Reference [29] evaluated the reliability of LeNet-5
and VGG16 with different data types and pruning methods. The testing
results showed that there is no big difference in performance for irreg-
ular and structured pruning schemes, and quantization can effectively
increase the fault resilience of DNNs. Since only a fixed pruning rate was
evaluated, the impact of the pruning rate on the network reliability was
not investigated. Similarly, reference [7] evaluated the impact of soft
errors on AlexNet, RestNet 18 and ResNet50 with different data types
and pruning rates, and concluded that quantization can bring a 27.4×
reliability increase relative to the 32-bit floating-point baseline, and
another 4× improvement could be achieved when combined with
pruning. However, this work only considered pruning rates around
70%–80%. In our initial work [30], we investigated the impact of the
pruning rates on the reliability of VGG16 to errors on different param-
eters and showed that the networks with higher pruning rates are more
reliable. But this conclusion was obtained for 32-bit floating-point
weights. As we will introduce in Section 2.5, pruning methods can be
categorized into magnitude-based pruning and filter pruning. All above
works are based on the magnitude-based pruning, and few works
considered the more advanced filter pruning on the reliability of the
CNN.

Several recent works studied the reliability of FPGA based CNN to
SEUs on the configuration memories based on fault injection experi-
ments. For example, [31] implemented a simple NN with 3 layers based
on SRAM-FPGA with separate resources for each layer, and the fault
injection experiment results showed that most SEUs will not degrade
classification performance, and faults on the last layer have larger
impact on the result. Authors in [32] implemented a CNN for traffic sign
recognition based on SRAM-FPGAs, and the experiment results showed
that SEUs on about 20% of the configuration memories will cause wrong
classifications. Similarly, reference [33] studied the reliability of FPGA-
based CNN accelerators based on radiation experiments, and found that
most errors are tolerable, and some layers are more reliable than others.
Research in [34] proves that the sensitivity of the convolutional layers to
radiation can be reduced by 39% by binary quantization, but the per-
centage of critical errors increases by 12%. Reference [17] performed a
systematic evaluation of the FPGA-based CNN accelerator to permanent
faults based on fault injection experiments. Results showed that the
system exceptions caused by faults on memory access logic and control
unit dominates the reliability of the system. As far as the authors know,
there is no research studying the impact of pruning on the CNN reli-
ability to SEUs on configuration memory, especially with modern
accelerator architectures.

2.2. FPGA accelerators for CNNs

FPGA-based CNN accelerators can be divided into two types [35]:

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

3

Streaming Architectures (SAs) and Single Computation Engines (SCEs).
SAs directly map layers to different resources of an FPGA to perform
computations easily and efficiently. The reliability evaluations in
[29,32] are based on such kind of accelerator. However, with the rapid
development of CNN algorithms, SCEs have become more popular
[8,10]. Different from SAs, SCEs apply instruction-set architectures
(ISAs) to reuse the same modules for processing of different layers. The
CNN operations are transformed into instructions that can be deployed
on the hardware accelerator by the software compiler [35]. In this way,
SCEs can easily handle different neural network architectures and pa-
rameters without reconfiguring the FPGA. The work of [17] is based on
such accelerator. We will also use an ISA-based FPGA CNN accelerator to
implement the VGG16 and the pruned networks in this paper.

As shown in Fig. 1, the basic structure for the ISA-based FPGA CNN
accelerator is composed of the instruction dispatch module, data mover,
compute module, and on-chip memory pool. The instruction dispatch
module is responsible for instruction parsing, scheduling, and dis-
patching. The LOAD and SAVE modules inside the data mover are
responsible for data transfer between DDR and on-chip memory pool.
Among these modules, the CONV module is the key component that
performs most of the computations and consumes most the of FPGA
resources. As shown in Fig. 2, the CONV module utilizes an array of
processing elements (PEs) to realize high parallelism for the convolution
operation. In this work, the Xilinx Zynq SoC (XC7Z020) is used for the
CNN implementation. On this platform, the DSP48E2 block and adder
tree based on Look Up Tables (LUTs) are used for the multiplications and
accumulations, respectively.

2.3. Structure of VGG16

VGG is a deep CNN for image recognition proposed by the visual
geometry group of Oxford University [36]. This network achieved a
significant improvement by pushing the depth to 16–19 layers; and won
the 1st and 2nd places in the localization and classification tracks in
ILSVRC2014, respectively. Since then, VGG16 has been used as the
baseline for many works about performance improvement or network
simplification.

As shown in Fig. 3, the VGG16 network is composed of 13 convo-
lution layers, 5 pooling layers, and 3 full connection layers. The size of

the kernel is fixed to 3 × 3 for all the convolution layers, and the
Rectified Linear Unit (ReLU) is used as the non-linear activation function
after each convolution layer. The maximum pooling is used with a

Fig. 1. Structure of the ISA-based FPGA CNN accelerator.

Fig. 2. Structure of the CONV module.

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

4

window size of 2 × 2 and stride of 2 to reduce the size of the feature
maps by half in both the vertical and horizontal dimensions. The original
VGG16 network is designed for the classification of images in the
ImageNet dataset. There are 1000 categories in ImageNet and the size of
each image is 224 × 224 × 3, so the size of the input layer is 224 × 224
× 3, and there are 1000 nodes in the last full connection layer. In this
paper, VGG16 is used for image classification on CIFAR-10, which in-
cludes pictures with a size of 32 × 32 × 3 from 10 categories, so the size
of the input layer is changed to 32 × 32 × 3. Then the width and height
for the following layers are adjusted accordingly, and the final fully
connected layer only contains 10 nodes. The outputs of the 10 nodes (ei,
i = 1, 2, …, 10) are transformed by softmax to a score between [0,1].
Finally, the label corresponding to the maximum score is output as the
classification result.

2.4. Parameters in VGG16

A pixel value of one output feature map in a convolution layer or full
connection layer could be calculated as

fo(xi) = Woxi + bo =
∑N

n=1
Wo

n xi
n + bo (1)

where i and o are the indices for the input feature maps (or channels) and
the output feature maps (or kernels), respectively, Wo =

[
Wo

1,Wo
2,…

,Wo
N
]

and xi =
[
xi

1, xi
2,…, xi

N
]

are the weights of the o-th convolution
kernel and a data block of the i-th input feature map, respectively, and bo

is the corresponding bias. Wo and bo are trainable parameters. For the
convolution layers, N = 3 × 3 × I where I is the number of input feature
maps. For the three fully connected layers, the values of N are 4096,
4096 and 10, respectively.

To accelerate the network training, the Batch Normalization (BN)
technique is usually applied between the convolution and ReLU in each
convolution layer [37]. In this case, Eq. (1) for convolution layer is
changed to

Fo(Xo) = γo
Xo − uo
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

o + ε
√ + βo (2)

where Xo is the result of Eq. (1), uo and σo
2 are the mean value and

variance of Xo, γo and βo are a scaler and an offset, and ε is a small
number preventing the divisor from being 0. In the implementation, uo
and σo

2 are obtained statistically during the training process for each
kernel and are stored for use in the inference period. γo and βo are
trainable parameters. Since the subtraction of the mean value uo would
remove the effect of the bias for convolutional layers, bo is only used in
the fully connected layers in the implementation.

In summary, the parameters of VGG16 include the weights (W), bias
for fully connected layers (b), and BN factors for convolution layers (u,
σ2, γ and β). The number of each type of parameters in VGG16 for
CIFAR10 is listed in Table 1. As we can see, the weights account for
99.9% of all the parameters, so pruning is only performed over weights.

2.5. Pruning of neural networks

As introduced above, CNNs are both computationally intensive and
memory intensive. But according to the analysis in [3], there exists
redundancy in neural networks, so it is possible to remove part of the
nodes and connections with negligible performance degradation. The
pruning technique is proposed for this purpose. In this paper, two pop-
ular pruning methods are considered for evaluation.

2.5.1. Magnitude-based pruning
The magnitude-based method is popular for CNNs for image classi-

fication tasks, in which the connections with small weights would be
removed since they are prone to have less contribution to the final result
[3]. Such methods usually perform three steps: 1) train a network to
learn which connections are important; 2) prune the unimportant con-
nections; 3) retrain the network to finetune the weights of remaining
connections. On this basis, two methods are compared in [4]. One is to
remove the same portion of connections in each layer (‘Class-uniform
pruning’), and the other is to sort the weights from all layers according
to their magnitude and remove the part of the connections with the
smallest weights regardless of which layer the weights belong to (‘Class-
blind pruning’). Performance comparisons show that Class-blind prun-
ing outperforms Class-uniform pruning. In this paper, the Class-blind
scheme is applied.

2.5.2. Filter pruning (structured pruning)
Although the magnitude-based pruning reduces a significant number

of weights, it may not adequately reduce the computation costs due to
irregular sparsity in the networks. To solve this problem, several works
proposed filter pruning or structured pruning, where the whole filters
are removed together with their connecting feature maps [5,6]. This
approach can significantly reduce the computation costs, especially for
the FPGA or GPU based accelerators using parallel computing structures.
In this paper, the popular scheme proposed in [5] is used for evaluation
based on an open source implementation [38], and the basic operation
includes six steps: 1) determine the target layers by evaluating the
sensitivity of each layer; 2) calculate the sum of magnitude of all weights
in each filter belongs to the target layers; 3) sort all filters by the
magnitude sum; 4) remove part of the filters with the smallest magni-
tude sum; 5) remove the filters that correspond to the feature maps
generated by the removed filters in the previous layer; 6) retrain the
network to finetune the weights of remaining connections. Since the
removed filters in step 4) will cause additional filter to be removed in
step 5), the pruning rate cannot be exactly controlled as in the
magnitude-based pruning.

3. Implementation and performance evaluation of pruned
VGG16 networks

3.1. Implementation of VGG16 and pruned networks

The original VGG16 and the pruned networks were implemented on

Fig. 3. Structure of VGG16 for CIFAR-10.

Table 1
Number of parameters in VGG16 network.

Parameters Weights Bias BN

γ + β u + σ2

Numbers 15,239,872 1034 4224 + 4224 4224 + 4224

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

5

Pynq-Z2 board with Xilinx Zynq SoC (XC7Z020) based on the ISA-based
accelerator structure. Parallelism of 512 was applied, where 4 PEs run in
parallel and 32 DSPs are used in each PE to produce results for 8 output
channels simultaneously based on 8 input channels. The resource usage
of the accelerator is shown in Table 2. About half of the main resources
in the FPGA are used, and all DSPs are used in the CONV module. It
should be noted that the original VGG16 and the pruned networks are
implemented using the same PEs and BRAMs, and the only difference is
that fewer weights will be loaded in each cycle for the network with
higher pruning rate. For fixed fault rate on unit memory, fewer weights
loaded means fewer errors on the weights.

Figs. 4 and 5 show the distribution of the weights over the different
layers for the original VGG16 and the networks with different pruning
rates with magnitude-based pruning and the filter pruning, respectively.
As we can see, most of the weights are located on convolution layers
9–13, and the pruned weights are also from these layers. For the filter
pruning method, the 1st and the 8th–13th convolutional layers are
identified as non-sensitive layers based on the sensitivity evaluation
algorithm in [5], so only filters from these layers are removed based on
the procedures introduced in Section 2.5. The pruning rates in Fig. 4 for
the magnitude-based pruning are accurate, but those for filter pruning
are actually 19.43% (for VGG-20%), 50.79% (for VGG-50%) and
79.83% (for VGG-80%). In this study, the original VGG16 and the
pruned ones are implemented using the same accelerator shown in
Fig. 2. For the pruned network with magnitude-based method, the only
difference with the original VGG16 is that some weights are fixed to be
0. While for the pruned network with filter pruning, the only difference
with the original VGG16 is that the CONV module is less used due to
fewer number of kernels.

3.2. Performance evaluation of pruned networks

The classification accuracy of the original VGG16 and the networks
with different pruning rates was evaluated on CIFAR-10. The data set
includes 60,000 pictures from 10 categories, among which 50,000 pic-
tures are used for training (training set) and the other 10,000 are used
for testing (test set). In the implementation, the weight decay and mo-
mentum are set to be 0.0001 and 0.9, respectively. The learning rate
starts from 0.1 and is divided by 10 at 30, 60 and 90 iterations and the
training ends at 100 iterations. The input image data and the interme-
diate feature maps are quantified to 8-bit integers.

For the magnitude-based pruning method, the weights are quantified
with different word lengths for the evaluation of the effect of quanti-
zation on the network reliability, including 6-bit, 8-bit, 12-bit and 16-
bit. The performance of pruned networks under different quantization
sizes is listed in Table 3, in which ‘VGG-x%’ means x% of the weights
(connections) are pruned. As we can see from the table, the accuracy for
weights with 8-bit, 12-bit and 16-bit quantization schemes are very
close, and that for 6-bit quantified weights is about 2.5% lower. In
addition, the accuracy is almost the same for pruning rates between 0%
(original) and 70%, and drops dramatically for a pruning rate of 80%.
Based on these results, the reliability of the pruned networks in the
following sections is only evaluated for pruning rates of 10%, 30%, 50%
and 70%.

For the filter pruning method, the implementation with 8-bit quan-
tized weights is used for evaluation, and the accuracy for pruning rates
of 20%, 50% and 80% are shown in Table 4. As we can see, the accuracy
for VGG-80% (92.61%) is much higher than that using the magnitude-

based pruning method (85.58%). This is because the magnitude-based
pruning removes weights only based on the amplitude regardless of
the layer. But based on the analysis in [5], the weights with the same
amplitude may have different importance for the network. By
comparing Figs. 4 and 5 for pruning rate of 50%, we can see that the
filter pruning method removes more weights from the 9th – 13th layers
(non-sensitive) than the magnitude-based method, so that the weights in
the sensitive layers are kept to maintain the performance of the network.

4. Reliability evaluation of pruned networks

4.1. Fault injection platform

To evaluate the reliability of the pruned networks, faults have been
injected using an adapted version of the fault injection tool in [39] and
implemented on a Xilinx Zynq 7000 SoC (XC7Z020). The experimental
setup of the fault injection platform is shown in Fig. 6. The injection

Table 2
Resource consumption of the CNN accelerator.

LUT DSP Register BRAM

Resources for CNN 26,605 128 26,901 88
Resources in XC7Z020 53,200 220 106,400 140
Resource Utilization 50% 58% 25% 63%

Fig. 4. Distribution of weights for different pruning rates (magnitude-
based pruning).

Fig. 5. Distribution of weights for different pruning rates (filter pruning).

Table 3
Accuracy of VGG16 and pruned networks (magnitude-based).

0% 10% 30% 50% 70% 80%

16 bits 92.85% 92.85% 92.83% 92.82% 92.73% 85.88%
12 bits 92.84% 92.82% 92.84% 92.81% 92.72% 85.90%
8 bits 92.67% 92.67% 92.66% 92.75% 92.56% 85.58%
6 bits 90.11% 90.10% 90.10% 90.17% 89.94% 84.36%

Table 4
Accuracy of VGG16 and pruned networks (filter pruning).

0% 20% 50% 80%

8 bits 92.67% 92.67% 92.74% 92.61%

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

6

platform consists of the Processing System (PS) and the Programmable
Logic (PL). The PS consists of the ARM Cortex-A9 processor and dedi-
cated controllers for different peripherals e.g. DDR memory controller,
SD controller, UART controller etc. The DDR controller is responsible for
storing the weights file and the fault lists, including a list of bits in the
user memory and a list of essential bits in the configuration memory.
These lists are generated during the compile time in Vivado and it is used
by the injection algorithm for reliability evaluation of the Design Under
Test (DUT), which is the CNN system in our case. The SD controller is
responsible for reading configuration files and images from the SD card,
and the UART module is used to log the evaluation results to the PC. The
PL part consists of the DUT and a synchronizer block. The latter is
responsible for controlling the clock to the DUT. Furthermore, the DUT
receives inputs (image data in our case) from the ARM processor in the
PS part, and returns the processing results to the ARM. Another
important module housed by the PL part is the Internal Configuration
Access Port (ICAP) module, which allows the ARM processor to access
the user memory (weights in our case) and the configuration memory
related to the DUT (mainly the PE array), and modify it in runtime for
error injection or removal. The modules in the PL region are connected
to the PS region through AXI buses.

The ARM processor runs the software that controls the fault injection
process. The fault injection starts by freezing the clock to the DUT in the
PL part through the synchronizer module. This is followed by reading
back the target bit from a frame of the configuration memory through
the ICAP port. The address of the configuration memory bits and the user
memory bits (weights) for fault injection is extracted from the fault list
stored in the DDR memory. The read back values are corrupted by
inserting a bit flip for SEU emulation and written back. This is followed
by resuming the design clock. After each fault injection, the network will
process 10,000 images in the data set; and reports the softmax outputs
for each image to PC through UART interface. The PC will compare the
received softmax outputs with those from a fault-free accelerator. With
errors on weights, the PC will calculate the accuracy of the network by
comparing the labels corresponding to the maximum score with the
expected ones. For configuration memory, since fault on some bits may
not affect the network processing, the PC will first identify the critical
bits on which faults will change the softmax outputs, and further
calculate the accuracy of the network for each critical bit.

As we will see later, the most time-consuming task is to identify
critical bits from the hundreds of thousands configuration memory bits
and to test the classification accuracy of each network with faults on
each critical bit. This process may take more than three years to finish
the experiments with a single Pynq-Z2 board. To speed up the experi-
ments, a large-scale fault injection platform with 56 boards was built.

The same bitstream runs on all the boards for a CNN, and each board is
responsible for the fault injection experiments for part of the fault bits in
the list. Then the total testing time is decreased to one month. The whole
fault injection system is shown in Fig. 7, where 56 Pynq-Z2 boards are
connected to the PC through three 20-port UART hubs.

4.2. Reliability evaluation for faults on weights

The user memory in the CNN accelerator is used for feature maps and
parameters, including weights, bias, and BN factors. Based on [24],
feature maps would be 50× more tolerant to faults than the weights. In
addition, our initial work [30] showed that the effect of faults on bias
and normalization parameters does not change for different pruning
rates. Therefore, we mainly considered faults on weights in the user
memory in this work.

In harsh environments like space, the bit error rate (BER) for unit
memory size is usually fixed, so more bits would be corrupted for a
larger number of weights. Following the same approach in [28], the
total number of faulty bits on weights (Nwb) is calculated as the product
of the number of weights (Nw) and the quantization size (Nb), and the
number of bit upsets for each injection is calculated as Nfi = Nwb * BER.
To make a fair comparison, the reliability of VGGs with different
pruning rates is evaluated under the same BER. Since the effect of
quantization schemes is independent of the pruning method, it is only
evaluated for the magnitude based pruning method. Then reliability
comparison of networks with different pruning rates under the same
BER and the effect of faults on weights for different layers is evaluated
for both pruning methods.

4.2.1. Reliability of pruned VGGs with different quantization schemes
(magnitude-based pruning)

Considering the BERs used in [22–24,29], we choose BERs between
10− 7 and 10− 4 for the evaluation in this part. In the test, faults are
randomly injected on weights from all layers. For each BER, 500 random
fault injections are performed, and the accuracy of each injection is
averaged as the final accuracy measure. The results for weight quanti-
zation of 6-bit, 8-bit, 12-bit and 16-bit are shown in Figs. 8–11,
respectively. As we can see, the networks with higher pruning rates
achieve higher accuracy for all quantization sizes, which is consistent
with the results for floating-point implementation [30]. In addition, the
reliability is generally improved for larger quantization sizes. In
particular, the reliability of all networks is obviously improved when the
quantization size is increased from 6 to 8, and the improvement for 12-
bit and 16-bit quantization is different for networks with different
pruning rates. The reliability improvement for the original VGG16 and
VGG-70% is very limited when the quantization bit number is larger

Fig. 6. Fault injection platform for CNN reliability evaluation on one Pynq-
Z2 board.

Fig. 7. Fault injection platform with 56 Pynq-Z2 boards.

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

7

than 8, but that for less pruned network is still obvious. This phenom-
enon can be explained based on the conclusion from [26,28] that the
performance degradation of the network is mainly caused by the faults
on the significant bits of weights. Although the total number of bits for

quantization size of 16 is twice of that for quantization size of 8, the
number of significant bits is not increased so much. In other words,
although more errors are injected for larger quantization sizes than for
smaller quantization sizes, the portion of corrupted significant bits
actually decreases. The testing results imply that the reliability
improvement caused by a smaller portion of significant bits is slightly
larger than the reliability degradation by a larger number of faults.

4.2.2. Reliability of VGGs with different pruning rates for filter pruning
methods

For the filter pruning method, the accuracy of the network with
pruning rates of 20%, 50% and 80% are compared with BER between
10− 6 and 10− 4, and the results are shown in Fig. 12. Same to that for the
magnitude-based pruning, the network with higher pruning rate ach-
ieves higher accuracy. In addition, by comparing the performance of the
8-bit implementations for two pruning methods (Figs. 9 and 12), we find
that the networks using filter pruning method are less reliable than that
using magnitude-based pruning. This is because the removed filters are
all from the non-sensitive layers for the filter pruning method. In other
words, more weights from sensitive layers are kept by the filter pruning,
which are also sensitive to SEUs.

4.2.3. Effect of errors on weights for different layers
For this test, the 8-bit implementations for two pruning methods are

evaluated under BER of 3 * 10− 4. We inject the same portion of errors to

Fig. 8. Average accuracy with errors on weights (6-bit).

Fig. 9. Average accuracy with errors on weights (8-bit).

Fig. 10. Average accuracy with errors on weights (12-bit).

Fig. 11. Average accuracy with errors on weights (16-bit).

Fig. 12. Average accuracy with errors on weights (filter pruning).

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

8

different layers of each network and compare the average classification
accuracy over 500 injections. The results for the two pruning methods
are shown in Figs. 13 and 14, respectively. Two common conclusions
could be obtained from the results. One is that the network with higher
pruning rates is more reliable. The other is that the 8th–13th convolu-
tion layers are more vulnerable in general. For the magnitude-based
pruning method, VGG-70% and VGG-50% do not degrade by the
weights errors. But when the pruning rate decreases to 10%, the same
portion of errors would cause more severe performance degradation if
they occur on the 8th–13th convolution layers. This trend also holds for
the filter pruning method, but it is obvious that the performance
degradation by errors on the 8th–13th convolution layers is more severe
than that for the magnitude-based pruning method. This is because only
important weights are kept in these non-sensitive layers for the filter
pruning method, so errors on them are more likely to change the clas-
sification results. This is consistent with the results in the previous
subsection.

4.3. Reliability evaluation for faults on configuration memories

4.3.1. Percentage of critical bits
Based on the investigation of [20], faults on the configuration

memory of CNN accelerators can cause both accuracy loss and system
exceptions. The former is mainly caused by faults on PE array and latter
is mainly caused by faults on control and instructions logic. In our case,
since the original VGG16 and pruned ones are implemented using the
same accelerator with the same instructions, system exceptions should
be the same for all the networks, so we focus on the accuracy loss due to
fault on the configuration memories of the PE array that account for the
majority of the bits. We applied the same approach used in [35–37] that
only a single bit of the configuration memory is corrupted for each in-
jection (SEU). Quantization of weights is 8-bit for the testing in this
subsection.

Based on the essential bit file (.ebd) generated during the compila-
tion in Vivado, the number of essential bits for each PE is 365,349. Based
on the fault injection experiments, SEUs on about 30% of the essential
bits will affect the CNN processing (critical bits), and there are slight
differences among the number of critical bits for different pruning rates
and methods (115,438 ±0.1%). This is expected because all the net-
works are implemented based on the same hardware shown in Fig. 1.
However, the effect of SEUs on the critical bits is different for different
pruning rates and different pruning methods.

4.3.2. Effect of SEU on critical bits for magnitude-based pruning
For the magnitude-based pruning method, the Probability Density

Function (PDF) curves for the accuracy with SEUs on each of the critical
bits for different pruning rates is shown in Fig. 15, based on which three
conclusions can be obtained. First, over 70% of the critical bits will not
degrade the network accuracy much (accuracy > 90%, robust bits), and
only less than 14% of the critical bits would cause poor results (accuracy
< 15%, vulnerable bits). Second, the percentage of vulnerable bits does
not change for different pruning rates. This expected because the
vulnerable bits are those related to the configuration logic or the com-
mon data access logic for the DSP arrays and adder tree, which has
nothing to do with pruning. Third, the percentage of robust bits of the
pruned networks is smaller than that of the original VGG16, and de-
creases for higher pruning rates, which means the network with more
weights pruned is less reliable.

To further reveal the reason for the third conclusion, we evaluate the
network accuracy with SEUs on the critical bits for the DSP array and
adder trees separately, and the PDF curves of the accuracy for pruning
rates of 30% and 70% are compared in Fig. 16. As expected, the portion
of vulnerable bits for the adder tree and DSPs for VGG-30% are about
16.1% and 9%, respectively, and these portions do not change for VGG-

Fig. 13. Average accuracy with errors on weights for different layers (magni-
tude-based pruning).

Fig. 14. Average accuracy with errors on weights for different layers (fil-
ter pruning).

Fig. 15. PDF of accuracy for pruned networks with faults on critical bits
(magnitude-based pruning).

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

9

70%. However, compared with VGG-30%, the portion of robust bits for
adder tree and DSPs in VGG-70% decrease by 3.4% and 6%, respec-
tively. This can be explained as follows. Since the values of the pruned
weights are set to be 0, more inputs of the adder tree would be 0 for
higher pruning rates. Then a change on the 0 input by SEUs in the adder
would have larger influence on the accumulation results when less non-
zero inputs exists (more 0 inputs for higher pruning rates). This effect
would be amplified by the multiplication of a faulty DSP, so the portion
of robust bits decreases more by SEUs on DSP for higher pruning rates.

4.3.3. Effect of SEU on critical bits for filter pruning
For the filter pruning method, the PDF curves for the accuracy with

SEUs on each of the critical bits for different pruning rates is shown in
Fig. 17. Similar to the case for magnitude-based method, robust bits
dominate the critical bits, and the portion of vulnerable bits does not
change for different pruning rates. But a key difference is that the
portion of robust bits is even higher than that for the original VGG16,
and almost does not change for higher pruning rates (slight decreasing
for VGG-80%). In other words, the pruned networks using filter pruning are
more reliable than the original VGG16 and the reliability does not decrease
when more weights are pruned. To reveal the reason, the accuracy with
SEUs on the critical bits for the DSP array and adder trees are evaluated

separately, and the PDF curves of the accuracy for pruning rate of 20%
and 80% are compared in Fig. 18. As expected, the portion of vulnerable
bits does not change for different pruning rates. However, two key dif-
ferences can be obtained by comparing with the results in Fig. 16. One is
that both the portion of robust bits for the adder tree and DSP array are
obviously higher than those for the case of magnitude-base pruning. The
other is that, when the pruning rates increases from 20% to 80%, the
portion of robust bits for DSP array almost keeps unchanged, and that for
adder tree only drops 1%. These phenomena can be explained as follows.
Compared with the original VGG16, the key difference for pruned net-
works is that less kernels are used for convolution in each layer, so the
same hardware is less used, and fewer output feature maps are produced
for each layer. This means that the same configuration error caused by
SEU will have less impact on the final result, which explains the reli-
ability improvement over the original VGG16. Based on the work
schedule of the accelerator, the portion of convolution workload for
single DSP is the same for different number kernels in a layer, so an SEU
on it will introduce errors to the same portion of output feature maps
pixel regardless of the number of output feature maps. That's why the
reliability of DSP array does not change for different pruning rates.
Finally, the adder tree is implemented based on LUTs, and an SEU on it
will introduce errors to one value in the LUT, which will change the
output feature map pixel if the corrupted value is hit. For higher pruning
rates, the hit probability decreases due to fewer use times, but the effect
would be more obvious once hit because the output changes is relatively
more important due to the fewer number of output feature maps. This
explains why the reliability of adder tree increases first when the
pruning rates increases from 0% (the original VGG16) to 50%, and de-
creases slightly for VGG-80%.

5. Conclusions

In this paper, we implemented the original VGG16 and pruned ver-
sions with different pruning rates using two pruning methods on an ISA-
based FPGA accelerator and studied the impact of pruning rate on the
network reliability to errors on weights and configuration memories for
the processing element array based on hardware fault injection experi-
ments. Some conclusions are obtained based on the experimental re-
sults. First, networks with higher pruning rates are more robust to errors
on weights, but the reliability improvement for pruned networks using
filter pruning is relatively smaller because the weights kept are more
vulnerable to errors. Second, errors on about 30% of the configuration
bits will affect the CNN operation, and only 14% of them will introduce
significant accuracy loss. These percentages are the same for the original

Fig. 16. PDF of accuracy for VGG-30%/70% with faults on critical bits for
Adder Tree and DSP Array (magnitude-based pruning).

13.8%
76.5%

13.7%

13.9%

76.7%

76.0%

Fig. 17. PDF of accuracy for pruned networks with faults on critical bits (fil-
ter pruning).

16.0% 75.4%

9.0% 79.4%

16.0%

9.0%

74.4%

79.1%

Fig. 18. PDF of accuracy for VGG-20%/80% with faults on critical bits for
Adder Tree and DSP Array (filter pruning).

Z. Gao et al.

Microelectronics Reliability 130 (2022) 114498

10

VGG16 and the pruned ones using two pruning methods. Third, for the
magnitude-based pruning, higher pruning rates decrease the reliability
of the network to errors on configuration bits because errors on the
operation with 0 inputs has larger impact to the result. Fourth, for the
filter pruning, pruned network is more reliable to errors on configura-
tion bits than the original VGG16 because the same hardware is less used
due to the fewer number of kernels so that the same error has less impact
on the final results. In addition, the evaluation on the pruned networks
using magnitude-based pruning also shows that larger quantization size
improves the network reliability, but the improvement for networks
with large pruning rates is limited for quantization sizes larger than 8.

CRediT authorship contribution statement

Zhen Gao: Methodology, analysis, draft
Yi Yao: Fault injection experiments for errors on configuration
memory
Xiaohui Wei: Fault injection experiments for errors on weight
Tong Yan: Setup of FPGA based fault injection platform
Shulin Zeng: Support for FPGA accelerators
Guangjun Ge: Support for FPGA accelerators
Yu Wang: Support for FPGA accelerators, approach
Anees Ullah: Support for FPGA based fault injection platform
Pedro Reviriego: Writing and analysis.

Declaration of competing interest

The authors declared that they have no conflicts of interest to this
work.

References

[1] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep
convolutional neural networks, in: International Conference on Neural Information
Processing Systems (NIPS), 2012, pp. 1097–1105.

[2] Y. Taigman, M. Yang, M. Ranzato, Web-scale training for face identification, in:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 2746–2754.

[3] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks
with pruning, trained quantization and huffman coding, in: International
Conference on Learning Representations, 2016.

[4] A. See, M.T. Luong, C.D. Manning, Compression of neural machine translation
models via pruning, in: SIGNLL Conference on Computational Natural Language
Learning (CoNLL), 2016.

[5] H. Li, A. Kadav, I. Durdanovic, Pruning Filters for Efficient ConvNets, ICLR, 2017.
[6] Y. He, X. Dong, G. Kang, et al., Asymptotic soft filter pruning for deep

convolutional neural networks, IEEE Trans. Cybern. 50 (8) (Aug. 2020)
3594–3604.

[7] B. F. Goldstein S. Srinivasan D. Das , et al., "Reliability evaluation of compressed
deep learning models," 2020 IEEE 11th Latin American Symposium on Circuits &
Systems (LASCAS).

[8] K. Guo, L. Sui, J. Qiu, et al., Angel-eye: a complete design flow for mapping CNN
onto embedded FPGA, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 (1)
(January 2018).

[9] X. Lian, Z. Liu, Z. Song, et al., High-performance FPGA-based CNN accelerator with
block-floating-point arithmetic, IEEE Trans. Very Large Scale Integr. Syst. 27 (8)
(August 2019).

[10] Y. Yu, C. Wu, T. Zhao, OPU: an FPGA-based overlay processor for convolutional
neural networks, IEEE Trans. Very Large Scale Integr. Syst. 28 (1) (Oct. 2019).

[11] F.L. Kastensmidt, L. Carro, R. Reis, Fault-tolerance Techniques for SRAM-based
FPGAs, Springer, New Haven, 2006.

[12] P.S. Ostler, M.P. Caffrey, D.S. Gibelyou, SRAM FPGA reliability analysis for harsh
radiation environments, IEEE Trans. Nucl. Sci. 56 (6) (Dec. 2009) 3519–3526.

[14] L. Kolodny, Japanese Authorities Decry Ongoing Robot Failures at Fukushima,
Mar. 2017.

[15] D. Binder, E.C. Smith, A.B. Holman, Satellite anomalies from galactic cosmic rays,
IEEE Trans. Nucl. Sci. 22 (6) (Dec. 1975) 2675–2680.

[16] P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, et al., Current and future challenges in
radiation effects on CMOS electronics, IEEE Trans. Nucl. Sci. 57 (4) (2010)
1747–1763.

[17] I. C. Lopes F. Benevenuti F. L. Kastensmidt , et al., "Reliability analysis on case-
study traffic sign convolutional neural network on APSoC," IEEE LATS 2018, Sao
Paulo.

[18] D. Xu, Z. Zhu, C. Liu, Persistent fault analysis of neural networks on FPGA-based
acceleration system, in: IEEE 31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2020.

[19] N. Kanekawa, E.H. Ibe, Y.T. Suga, Dependability in Electronic Systems: Mitigation
of Hardware Failures, Soft Errors, and Electro-magnetic Disturbances, Springer
Verlag, New York, USA, 2010.

[20] A.P. Arechiga, J.A. Michaels, The effect of weight errors on neural networks, in: 8th
IEEE Annual Computing and Communication Workshop and Conference, 2018.

[21] S. Kwon, K. Lee, Y. Kim, Measuring error-tolerance in SRAM architecture on
hardware accelerated neural network, in: IEEE International Conference on
Consumer Electronics Asia, 2016.

[22] B. Reagen, P. Whatmough, R. Adolf, Minerva: enabling low-power, highly-accurate
deep neural network accelerators, in: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), June 2016, pp. 267–278.

[23] E. Ozen, A. Orailoglu, Sanity-check: boosting the reliability of safety-critical deep
neural network applications, in: 2019 IEEE 28th Asian Test Symposium (ATS),
2019, pp. 7–75.

[24] B. Reagen, U. Gupta, L. Pentecost, Ares: a framework for quantifying the resilience
of deep neural networks, in: 55th ACM/ ESDA/IEEE Design Automation
Conference (DAC), 2018, pp. 1–6.

[25] G. Li, H. Siva, S. Michael, Understanding error propagation in deep learning neural
network (DNN) accelerators and applications, in: International Conference for
High-Performance Computing, Networking, Storage and Analysis (SC), Denver.
Colorado, 2017.

[26] A.P. Arechiga, J.A. Michaels, The robustness of modern deep learning architectures
against single event upset errors, in: IEEE High Performance Extreme Computing
Conference, 2018.

[27] L. Hoang, M.A. Hanif, M. Shafique, FT-ClipAct: resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation, in: Design,
Automation and Test in Europe, 2020, pp. 1241–1246.

[28] A. Bosio, P. Bernardi, A. Ruospo, A reliability analysis of a deep neural network, in:
2019 IEEE Latin American Test Symposium (LATS), Santiago, Chile, March 2019.

[29] M. Sabbagh, C. Gongye, Y. Fei, Evaluating fault resiliency of compressed deep
neural networks, in: IEEE International Conference on Embedded Software and
Systems, 2019.

[30] Z. Gao, X. Wei, H. Zhang, Reliability evaluation of pruned neural networks against
errors on parameters, in: 33rd IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, Oct. 2020.

[31] I.C. Lopes, F.L. Kastensmidt, A.A. Susin, SEU susceptibility analysis of a feed
forward neural network implemented in a SRAM-based FPGA, in: 2017 18th IEEE
Latin American Test Symposium (LATS), 2017.

[32] C. Israel, B. Fabio, L.K. Fernanda, Reliability analysis on case-study traffic sign
convolutional neural network on APSoC, in: 2018 IEEE 19th Latin-American Test
Symposium (LATS), 2018, pp. 1–6.

[33] F. Libano, B. Wilson, J. Anderson, et al., Selective hardening for neural networks in
FPGAs, IEEE Trans. Nucl. Sci. 66 (1) (2019) 216–222.

[34] F. Libano, B. Wilson, M. Wirthlin, et al., Understanding the impact of quantization,
accuracy, and radiation on the reliability of convolutional neural networks on
FPGAs, IEEE Trans. Nucl. Sci. 67 (7) (July 2020) 1478–1484.

[35] Y. Xing, S. Liang, L. Sui, et al., DNNVM: end-to-end compiler leveraging
heterogeneous optimizations on FPGA-based CNN accelerators, IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 39 (10) (Oct. 2020) 2668–2681.

[36] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: The Computing Research Repository, 2014 abs/1409.1556.

[37] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, International on Machine Learning. JMLR.org,
2015.

[38] https://github.com/AlumLuther/PruningFilters.
[39] A. Ullah, P. Reviriego, J.A. Maestro, An efficient methodology for on-Chip SEU

injection in Flip-flops for xilinx FPGAs, IEEE Trans. Nucl. Sci. 65 (4) (April 2018)
989–996.

Zhen Gao (M'11), received the BS, MS and PhD degree in
Electrical and Information Engineering from Tianjin University,
China, in 2005, 2007 and 2011, respectively. During
2008.10–2010.11, he was a visiting scholar in GeorgiaTech,
working on the design and implementation for OFDM based
cooperative communications. During 2011.7–2014.12, he was
a Postdoc researcher in the Wireless and Mobile Communica-
tion Research Center in Tsinghua University, China, working on
mobile satellite communication and fault tolerant design for
DSPs. Since 2014.12, he is an Associate Professor in Tianjin
University. His focus now includes fault-tolerant DSPs design
and Blockchain technologies.

Z. Gao et al.

http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228303261
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228487095
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234449975
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150235009274
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229258004
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150229578690
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230095716
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230357823
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150236278765
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150236278765
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230477211
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150230477211
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150244375959
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150244375959
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150248111159
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150248111159
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223261525
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223261525
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150223279540
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231235244
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224185119
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224324906
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224324906
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150231411277
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232013819
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150224525225
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232216331
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225107043
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232364223
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150225276306
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226066923
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226066923
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150232528008
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233089893
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226200859
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226397139
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226438517
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226438517
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150226504340
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228077090
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233281171
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150233281171
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150234243065
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205
http://refhub.elsevier.com/S0026-2714(22)00022-1/rf202202150228092205

Microelectronics Reliability 130 (2022) 114498

11

Yi Yao received a BS from Tianjin University and a BEng from
University of Edinburgh in Jul. 2020, is now a MS student in
Tianjin University since Sep. 2020. His research involves
SRAM-FPGA fault tolerance system design and analysis.

Xiaohui Wei received the BS degree from Northeast Agricul-
ture University in July 2019, and is a Master student in Elec-
trical and Information Engineering from Tianjin University
since Sep. 2019. Her research focus now is reliability evaluation
of neural networks on radiation effects.

Tong Yan received the BS degree from Changchun University
of Science and Technology in July 2018, and is a Master student
in Tianjin University since Sep. 2018. His research focus now is
design and implementation of SRAM-FPGA based fault injec-
tion platform and radiation effects study for digital signal
processing.

Shulin Zeng received his B.S. degree in electronic engineering
department of Tsinghua University, Beijing, China, in 2014. He
is currently pursuing his PhD degree in electronic engineering
department of Tsinghua University. His research mainly focuses
on software-hardware co-design for deep learning and virtual-
ization in the cloud.

Guangjun Ge is currently working as a post doctor in the
Department of Electronic Engineering, Tsinghua University,
Beijing, China. He received his BS and PHD degrees from Bei-
hang University (BUAA) in 2012 and Tsinghua University in
2018, respectively. His research interests include information
theory, fault tolerance coding and NN FPGA accelerator.

Yu Wang (Senior Member, IEEE), received the BS degree and
PhD degree (with honor) from Tsinghua University, Beijing,
China, in 2002 and 2007, respectively. He is currently a tenured
professor and chair with the Department of Electronic Engi-
neering, Tsinghua University, China. His research interests
include application specific hardware computing, parallel cir-
cuit analysis, and power/reliability aware system design
methodology. He has authored and coauthored more than 250
papers in refereed journals and conferences. He has received
Best Paper Award in ASPDAC 2019, FPGA 2017, NVMSA17,
ISVLSI 2012, and Best Poster Award in HEART 2012 with nine
Best Paper Nominations. He is a recipient of DAC Under-40
Innovator Award, in 2018. He served as TPC chair for ICFPT

2019, ISVLSI 2018, ICFPT 2011 and finance chair of ISLPED 2012–2016, and served as the
program commit- tee member for leading conferences in EDA/FPGA area.

Anees Ullah received BSc and MSc Degrees in Electrical En-
gineering for University of Engineering and Technology,
Peshawar in 2009 and 2011, respectively. He received a PhD
degree in Computer Engineering from Politecnico di Torino,
Italy in 2015. During 2016–2017, he worked as a Post-doc
researcher in Universidad Antonio de Nebrija, Spain.
Currently, he is working as Assistant Professor in department of
Electronics Engineering, University of Engineering and Tech-
nology, Peshawar. His research interests include fault-tolerant
digital systems design, fault injection in FPGAs, FPGA-based
Ternary Content Addressable Memories (TCAMs) and Approx-
imate Computing.

Pedro Reviriego (SM'15), received the MSc and PhD degrees in
telecommunications engineering from the Technical University
of Madrid, Madrid, Spain, in 1994 and 1997, respectively. From
1997 to 2000, he was an R&D Engineer with Teldat, Madrid,
working on router implementation. In 2000, he joined Massana
to work on the development of 1000BaseT transceivers. From
2004 to 2007, he was a Distinguished Member of Technical
Staff with the LSI Corpo-ration, working on the development of
Ethernet transceivers. From 2007 to 2018 he was with Uni-
versidad Antonio de Nebrija. He is currently with the Depar-
tamento de Ingeniería Telemática, Universidad Carlos III de
Madrid.

Z. Gao et al.

	Reliability evaluation of FPGA based pruned neural networks
	1 Introduction
	2 Preliminaries
	2.1 Faults on FPGA based CNN accelerators
	2.2 FPGA accelerators for CNNs
	2.3 Structure of VGG16
	2.4 Parameters in VGG16
	2.5 Pruning of neural networks
	2.5.1 Magnitude-based pruning
	2.5.2 Filter pruning (structured pruning)

	3 Implementation and performance evaluation of pruned VGG16 networks
	3.1 Implementation of VGG16 and pruned networks
	3.2 Performance evaluation of pruned networks

	4 Reliability evaluation of pruned networks
	4.1 Fault injection platform
	4.2 Reliability evaluation for faults on weights
	4.2.1 Reliability of pruned VGGs with different quantization schemes (magnitude-based pruning)
	4.2.2 Reliability of VGGs with different pruning rates for filter pruning methods
	4.2.3 Effect of errors on weights for different layers

	4.3 Reliability evaluation for faults on configuration memories
	4.3.1 Percentage of critical bits
	4.3.2 Effect of SEU on critical bits for magnitude-based pruning
	4.3.3 Effect of SEU on critical bits for filter pruning

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

