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Abstract— Collaborative perception in unknown environments
is crucial for multi-robot systems. With the emergence of
foundation models, robots can now not only perceive geo-
metric information but also achieve open-vocabulary scene
understanding. However, existing map representations that
support open-vocabulary queries often involve large data
volumes, which becomes a bottleneck for multi-robot trans-
mission in communication-limited environments. To address
this challenge, we develop a method to construct a graph-
structured 3D representation called COGraph, where nodes
represent objects with semantic features and edges capture
their spatial relationships. Before transmission, a data-driven
feature encoder is applied to compress the feature dimensions
of the COGraph. Upon receiving COGraphs from other robots,
the semantic features of each node are recovered using a
decoder. We also propose a feature-based approach for place
recognition and translation estimation, enabling the merging
of local COGraphs into a unified global map. We validate our
framework using simulation environments built on Isaac Sim
and real-world datasets. The results demonstrate that, compared
to transmitting semantic point clouds and 512-dimensional
COGraphs, our framework can reduce the data volume by
two orders of magnitude, without compromising mapping and
query performance. For more details, please visit our website
at https://github.com/efc-robot/MR-COGraphs.

I. INTRODUCTION

Multi-robot systems have emerged as powerful solutions
for perception in large unknown environments [1]. The
primary advantage of such systems lies in their ability
to leverage distributed sensing and computing, enabling
robots to share information and shorten task completion
time. As the scale of these systems grows, the need to share
environmental information to maintain system operations
increases, necessitating data-efficient map representations for
transmission.

Recent advances in visual foundation models (e.g., SAM
[2]) and vision-language models (e.g., CLIP [3]) have enabled
the development of open-vocabulary 3D map representations.
Traditional semantic maps [4] [5] rely on predefined labels
to describe the semantic information of the environment.
They are closed-vocabulary since their labels are confined
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Fig. 1. Overview of the MR-COGraphs Framework.

to the classes of objects annotated in the training datasets
[6]. In contrast, open-vocabulary maps are not constrained by
predefined classes and can understand new categories or words
without retraining. This is achieved by extracting semantic
feature vectors from images and projecting them into the 3D
space [7]. Due to their strong semantic understanding ability
and adaptability, open-vocabulary representations unlock new
possibilities for various language-guided tasks such as object
retrieval [8], language-based navigation [9] and manipulation
[10].

However, current open-vocabulary 3D map representations
demand significant data storage, which becomes a com-
munication bottleneck for multi-robot mapping systems.
Since each point in the map is associated with a high-
dimensional feature vector, the map size grows rapidly as the
robot continuously senses the environment [9]. For example,
constructing only a small tabletop scene requires 1.3GB of
data [11]. This data explosion makes it difficult for multiple
robots to share and update maps in real time.

3D scene graphs (3DSGs) are favorable for semantic
mapping in communication-constrained environments due
to their compact and flexible representation of the scene [9].
They model the environment as graph structures, with nodes
representing every object’s attributes and edges encoding
the relationships between these objects. Many studies have
utilized 3DGSs for large-scale semantic mapping [12] [13],
hierarchical 3D scene construction [14] [15], and robot task
planning [9] [16]. However, these approaches are largely
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focused on single-robot systems. Although a few multi-robot
mapping works [13] [17] have explored the collaborative
construction of 3D scene graphs, they do not consider
open-vocabulary capabilities and have yet to address
the critical challenge of reducing data size for efficient
communication.

To fulfill the requirements above, we propose a
Communication-efficient Multi-Robot Open-vocabulary 3D
Scene Graphs-based Mapping (MR-COGraphs) System with
the following contributions:

• A data-efficient open-vocabulary 3D scene graph con-
struction method, in which a data-driven feature encoder
compresses the dimension of features in COGraphs
without losing semantic information.

• A communication-efficient distributed multi-robot map-
ping system, leveraging the semantic features of local
COGraphs shared among robots to achieve place recog-
nition and translation estimation.

• We build and open source both simulated and real-world
datasets to evaluate the performance of our system. Our
framework can reduce 99.25%-99.98% of data volume
during COGraph transmission.

As illustrated in Fig. 1, we propose a graph-structured
open-vocabulary representation called COGraph (detailed
in Section III-A). Firstly, each robot generates the nodes
and edges of its local COGraph utilizing the output of the
SLAM and the segmentation model (detailed in Section III-
B). Then a data-driven lightweight feature encoder (detailed
in Section III-C) is employed to resize the 512-dimensional
semantic features of nodes into 3 dimensions. When receiving
local COGraphs from other robots, the robot performs
place recognition and translation estimation to merge local
COGraphs into a global COGraph (detailed in Section III-D).
Afterward, experimental results are presented in Section IV.
Section V concludes this work and suggests future research
directions.

II. RELATED WORK

A. 3D Scene Graphs

The concept of 3D scene graphs is first introduced in
Armeni et al. [14], where the authors propose a semi-manual
method to extract buildings, rooms, objects, and cameras
from the environment, creating a multi-layer graph structure.
This approach abstracts the environment into nodes and edges,
where each node can encompass multiple attributes, and edges
represent spatial relationships and hierarchies. Therefore, this
representation is highly flexible, allowing for adjustments in
its complexity and data volume.

There has been much progress in constructing 3DSGs with
closed vocabulary [12] [15] [18]. Hydra [12] leverages HRNet
[19] as a pre-trained model to obtain semantic labels. It adds
a mesh layer to enable the online generation of room and
building nodes. In StructNav [15], a robot employs visual
SLAM along with MaskRCNN [6] to develop a structured rep-
resentation, and semantics are then integrated into geometry-
based frontiers to facilitate object-goal navigation.

For open-vocabulary 3D scene graphs, OVSG [20] presents
an offline method to build nodes and edges based on OVIR-
3D [11]. In this framework, three types of nodes are feature-
encoded to support free-form text-based queries. Clio [21]
utilizes the information bottleneck principle to evaluate task
relevance and proposes an online framework to construct
task-driven scene graphs with embedded open-set semantics.
ConceptGraphs [9] are created by fusing the 2D outputs of
foundation models into 3D space and various language-guided
planning tasks are presented to demonstrate their utility. In
this work, we adopt an approach similar to [21] and [9]
for building scene graphs, with an added focus on further
reducing the size of the scene graphs. The aforementioned
approaches are single-robot frameworks and methods for
multi-robot 3DSGs construction are introduced in Section II-
B.

B. Multi-robot Mapping System

In communication-limited environments, it is crucial to
minimize the data transmission between multiple robots while
ensuring cooperative mapping and relative pose estimation.
To achieve this, SMMR-Explore [22] only transmits submaps
in the form of 2D occupancy grids and reconstructs place
descriptors and point clouds locally for place recognition
and map registration. Building on this, MR-TopoMap [23]
and MR-GMMExplore [24] further reduce data volume by
transmitting topological maps and Gaussian Mixture Model
(GMM) maps. However, these approaches [22] [23] [24] only
focus on constructing geometric maps of unknown environ-
ments and utilizing geometric features for map merging.

Existing multi-robot semantic mapping systems are
closed vocabulary. Kimera-Multi [25] implements a dis-
tributed semantic-metric SLAM system, enabling robots to
construct 3D mesh models of the environment in real-time
collaboratively. In the work by Yue et al. [26], semantic-
labeled point clouds are exchanged between robots during
outdoor exploration, and an expectation-maximization method
is introduced to merge local maps. Hydra-multi [13] extends
Hydra [12] into a centralized multi-robot system. In this
framework, each robot continuously publishes its entire local
scene graph, including a 3D mesh layer, while a control
station handles relative transform estimation. D-Lite [17]
is the only work addressing communication constraints in
multi-robot coordination. It employs graph theory to compress
3D scene graphs by greedily preserving the shortest paths
between locations of interest.

C. Open-vocabulary Scene Understanding

With the emergence of foundation models, many works
have begun to study language-guided object retrieval, which
aims to locate objects based on text queries using open-
vocabulary scene representations. Given that explicit represen-
tations can update maps incrementally, they are more suitable
for multi-robot systems and therefore we focus on explicit
representations. Explicit open-vocabulary representations are
typically achieved by projecting 2D semantic features onto
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3D points and then encoding features into points [7] [8],
instances [11] [27], and Gaussians [28] [29].

In OVIR-3D [11] and OpenMask3D [27], the masks of
instances are generated using foundation models and prior
point clouds, and then the 3D features of each instance
are computed offline. ConceptFusion [7] integrates pixel-
aligned open-vocabulary features into 3D point cloud maps
by combining traditional SLAM with multi-view images.
Similarly, OpenScene [8] relies on prior point clouds and
stores semantic features for each pixel, resulting in a large
data volume.

3D Gaussian Splatting provides another way to realize
open-vocabulary scene understanding using 3D Gaussian
point cloud techniques. Recent studies [28] [29] integrate
pre-trained 2D semantic features into 3D Gaussians to train a
semantic 3DGS model, enabling object retrieval on rendered
images. Notably, LangSplat [28] introduces an MLP encoder
to reduce the dimensionality of CLIP features, thereby
accelerating the training process. Our work proposes an
encoder-decoder strategy to compress semantic features for
efficient data transmission.

III. METHOD

A. COGraphs Representation

In our distributed multi-robot system, the robots construct
and share local COGraphs of the explored area, aiming to
perform semantic mapping cooperatively. Each robot utilizes
an RGB-D camera to capture semantic and depth information
and then the semantic features are projected into 3D space.
To ensure localization accuracy and robustness, in this work,
we employ a LiDAR-based SLAM algorithm (Cartographer
[30]) to estimate robot poses and generate occupancy grid
maps, which assist the construction of the COGraphs.

The proposed COGraph consists of the robot name, nodes,
and edges. Each node contains the information presented
in Tab. I while each edge only contains the information to
identify the adjacency between nodes, including the robot

name and IDs of the two nodes. To reduce data transmission,
the 512-dimensional features of each node are stored locally
while only the 3-dimensional features along with other
information in the COGraphs are transmitted. Upon receiving
COGraphs from other robots, the 512-dimensional features
are reconstructed from the 3-dimensional features using a
feature decoder. Additionally, only newly generated nodes
and edges are shared during communication.

TABLE I
THE INFORMATION ONE NODE CONTAINS IN COGRAPHS

Symbol Description Size Transmit
N robot name 8 bits yes
i node ID 8 bits yes
posi 3D center position 96 bits yes
li feature label 32 bits yes
bi bounding box 24 bits yes
f3D
i,512 512-dimensional feature 4096 bits no

f3D
i,3 3-dimensional feature 24 bits yes

B. Feature-object (FO) Nodes and Edges Generation

As illustrated in Fig. 2, given a sequence of RGB-D images,
we run an open-vocabulary segmentation model to obtain
the 2D mask mk and 2D feature f2D

k,512 for each object k in
each frame. Since instance-aware segmentation provides a
label list to project features into label IDs, we utilize it for
subsequent clustering to generate nodes. Consequently, each
object is associated with a unique 512-dimensional feature
while multiple objects may share the same feature label. To
facilitate accurate feature matching during node generation,
we design a feature-object encoding strategy to generate FO
images to differentiate between objects with identical labels.
Each pixel of the FO images has 24 bits, in which 16 bits
represent the feature label lk and the other 8 bits represent
the object index k. These FO images can be transmitted in
the same way as existing image formats, and various lossless
image compression methods can also be employed.
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3D back projection is conducted using FO images, depth
images, and poses derived from SLAM. This module gener-
ates the 3D FO point clouds pck and the corresponding 2D
feature f2D

k,512 for each object k in every frame. We integrate
semantic point clouds from adjacent frames according to
the first 16 bits of information of each point in pck. Then
clustering is performed using an approach similar to Hydra
[12]. The output is a set of nodes, each characterized by a
node ID i, a center position posi, and a bounding box bi.

A separate thread is performed to compute the 3D semantic
features for each object. We determine whether the semantic
point clouds pck in a sequence of frames belong to the same
object by analyzing the information encoded in FO images. If
they do, and the overlap between these point clouds exceeds
a predefined threshold, the 2D features f2D

k,512 associated with
these point clouds are averaged to produce 3D features f3D

k,512.
The corresponding point clouds are then merged. Given each
512-dimensional 3D feature f3D

k,512 and its corresponding point
clouds, we assign it to the nearest node by selecting the one
closest to the center of the merged semantic point cloud,
resulting in the node feature f3D

i,512.
Edges are generated based on two criteria: 1) the distance

between nodes is below a predefined threshold, and 2) there
is no occlusion between them. While the constructed nodes
include center positions and bounding boxes to describe
spatial relationships, background elements such as walls are
often undetected by the segmentation model due to their
large size and minimal texture. To address this, we utilize 2D
occupancy grid maps generated by 2D-LiDAR SLAM, which
provide background information. Candidate edges are initially
created based on the relative positions of nodes. These edges
are then refined using the occupancy grid map to eliminate
connections between nodes that belong to different rooms.

C. Data-driven Feature Compression

Compared to existing open-vocabulary 3D map represen-
tations, transmitting semantic nodes and edges generated in
Section III-B significantly reduces the data volume. However,
the 512-dimensional features of each node still pose a com-
munication overhead in environments with limited bandwidth.
To address this, we propose a data-driven, lightweight feature
compression strategy to further reduce the feature dimension.

The feature encoder is implemented as a multi-layer percep-
tron (MLP), where fully connected layers sequentially reduce
the dimension from 512 to 3. Specifically, the dimensions
of the linear layers are as follows: 512, 256, 256, 128, 64,
32, 16, and finally 3. Each linear layer, except for the first
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one, is followed by BatchNorm1d and ReLU layers, which
normalize and activate the features respectively.

In contrast, the feature decoder is structured as an inverse
MLP, expanding the dimension from 3 back to 512 through
fully connected layers. The layer dimensions are arranged in
increasing order: 3, 8, 16, 32, 64, 128, 256, 256, and finally
512. Similar to the encoder, each linear layer, except for the
first one, is followed by a ReLU activation, ensuring the
non-linear transformation of the encoded features.

As shown in Fig. 3, we train the feature encoder and
decoder using selected images from the ImageNet dataset
[31]. The dataset provides a list of 1000 categories, and we
extract category labels relevant to our environment via a
Large Language Model (LLM) [32]. Corresponding images
and their associated bounding boxes are chosen based on these
labels. The 512-dimensional image features, extracted using
the CLIP image encoder, are fed into the encoder and decoder
for training. The network is optimized to effectively compress
and reconstruct high-dimensional features. The encoder
compresses the original 512-dimensional features, while the
decoder reconstructs them, yielding a new 512-dimensional
feature representation. The loss function combines L2 loss
and cosine similarity loss between the original and the
reconstructed 512-dimensional features, guiding the training
process.

D. COGraphs Merging

When a robot receives COGraphs from other robots, it first
determines whether they have passed the same area and then
estimates their relative positions to merge the COGraphs. An
illustration of the merging process is shown in Fig. 4.

1) Place Recognition: Since the original 512-dimensional
feature vectors are compressed to 3 dimensions before
transmission, the feature decoder trained in Section III-C
is used to recover each node’s semantic feature f3D

i′,512 in
received COGraphs. Place recognition is then performed by
iteratively calculating the feature similarity between each



Algorithm 1: COGraphs Merging
Input: G: local COGraph , G′: received COGraph,
R: rotation matrix
Output: Gm: merged COGraph

pairs = []
Gm = G
for node index i in G do

for node index i′ in G′ do
sim = cos similarity(f3D

i,512, f3D
i′,512)

if sim > thred sim then
pairs.append([i, i′])

if num(pairs) > thred num then
for [i, i′] in pairs do

ti,i′ = calculate translation(posi, posi′ )
mi,i′ = merged node num(ti,i′ , G, G′)

t = argmax(mi,i′ )
Gm = merge(G,G′,t,R)

return Gm

received node and nodes in the local COGraph. The cosine
similarity is computed as:

Similarity =
f3D
i′,512 · f3D

i,512

|f3D
i′,512| · |f3D

i,512|
(1)

where i′ represents node IDs in the received COGraph, and i
represents node IDs in the local COGraph. When the similarity
exceeds a predefined threshold, node i′ and node i are marked
as a matching pair. If the number of matching pairs between
the received and the local COGraph exceeds a threshold, it
strongly indicates that the two robots have passed through
the same area, prompting the translation estimation step.

2) Translation Estimation: Each robot takes its starting
position as the origin, and its orientation as the X-axis to
establish a local coordinate system. When merging maps
from multiple robots, the rotation R and translation t between
coordinate systems need to be estimated. As the rotation of
the robots can be directly obtained using a compass following
the method in [23], only the translation vector t is estimated.
Two nodes generated from different robots can be merged into
one if their feature similarity and distance after the coordinate
transformation both fall below their respective thresholds. We
go through all the candidate translations ti,i′ corresponding
to the matching pairs and choose the candidate translation
t that leads to the largest number of merged nodes. Using
the chosen translation vector t and the rotation matrix R,
the merged COGraph is generated. The merging process is
detailed in Algorithm 1.

IV. EXPERIMENTS

A. Experiment Setup

1) Replica Dataset: The Replica dataset [33] has been
widely used in 3D scene construction and object retrieval
studies. It provides 18 indoor environments and we select
the Apartment2 environment shown in Fig. 5(c) as it features

(a) Isaac Small Env (b) Isaac Large Env

(c) Replica Apartment2 Env (d) Real-world Env

Fig. 5. Experiment Environments.

multiple rooms and is sufficiently large to support multi-
robot mapping. To facilitate mapping and query evaluation,
we develop a ROS wrapper 1 to extract RGB-D sequences and
ground-truth poses from the dataset, transforming them into
ROS bag files for seamless integration with our framework.

2) Simulation environment: We construct simulation ex-
periments on the NVIDIA Isaac Sim platform [34], which
offers high-fidelity environment rendering, physical modeling,
and the ROS bridge interface. As shown in Fig. 5(a) and
Fig. 5(b), we create a small and a large IKEA environment,
including living rooms, bedrooms, kitchens, and so on. We
also utilize the NVIDIA Carter robot [35], which is equipped
with an RGB-D camera, a 2D-LiDAR, and an IMU.

3) Metrics: We use the object finding rate Robj to evaluate
the accuracy of the 3D Scene Graphs [12]. The query success
rate R@n measures the object retrieval performance by
considering the top-n most likely objects in the COGraph [9],
with the retrieval counted successful if the correct object is
among them. The root mean square error of the translation
vector Ptrans is used to evaluate the accuracy of map merging
[22]. Importantly, the amount of data transmitted between
robots is analyzed to assess communication efficiency.

4) Baselines: According to ablation studies in StructNav
[15], the semantic segmentation module is the bottleneck in
scene graph performance. Therefore, we compare different
segmentation models (SAM [2], Detic [36], MaskRCNN [6])
in combination with the vision-language model (CLIP [3]) to
construct open-vocabulary 3D scene graphs. Since existing
multi-robot semantic mapping systems are closed vocabulary
and mainly rely on point clouds, we evaluate our feature
compression strategy by comparing 3-dimensional COGraphs
with the direct transmission of 512-dimensional COGraphs
and semantic point clouds.

1https://github.com/efc-robot/replica-ros-wrapper

https://github.com/efc-robot/replica-ros-wrapper


Fig. 6. Object Finding Rate.

5) Real-world Dataset: As shown in Fig. 5(d), our real-
world environment is 9m × 9m in size with 3 rooms. Two
robots equipped with iPads are deployed to collect data. We
control them remotely to collect RGB-D images and pose
information using an APP called Record3D [37]. A custom
script converts the recorded data into ROS bag files. This
accurate and efficient data collection method can be adapted
to various scenarios with minimal effort.

B. Object Finding Rate in COGraphs

We evaluate the performance of our scene graph con-
struction on a Desktop PC (CPU: Intel I7-13700, GPU:
Nvidia RTX 4080). For the two Isaac IKEA environments,
Cartographer [30] is used for localization (shown as purple
bars), while in the Replica environment, ground-truth (GT)
poses are used. In the real-world dataset, poses are derived
using the built-in localization algorithm in Record3D and they
are labeled as ”GT” for simplicity in Fig. 6. Each experiment
is repeated three times, and the results are averaged.

As shown in Fig. 6, among the different segmentation
methods, Detic achieves the highest object finding rate,
with an average Robj of 87.54%. It shows that Detic has
excellent segmentation capability and real-time performance.
In contrast, MaskRCNN, a closed-vocabulary model, can
recognize fewer objects, leading to lower mapping accuracy.
While the combination of YOLO [38], SAM, and the CLIP
visual encoder offers superior segmentation performance, its
high computational demands limit the segmentation frame
rate to 4 frames per second (fps). This slower rate prevents
it from keeping pace with the 10fps mapping rate, resulting
in a lower mapping accuracy. Unlike MaskRCNN and SAM,
Detic is able to output both masks and CLIP features for each
detected object with an average frame rate of 8fps. Therefore,
Detic is selected as the open-vocabulary segmentation model
in our framework.

C. Data Transmission Evaluation

As shown in Fig. 7, we run multi-robot mapping experi-
ments to analyze the data transmission between robots and
take the logarithm base 10 of the amount of data. The point
cloud map with semantics (point cloud), the COGraph with
512-dimensional semantic features (COGraphs-512), and the
COGraph with 3-dimensional semantic features (COGraphs-3)
are compared. In the Issac small environment, their average
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TABLE II
OBJECT RETRIEVAL BASED ON TEXT QUERIES

Environment Query Type R@1 R@2 R@3 # Queries

Isaac Small
Appeared 0.9 1.0 1.0 10
Similar 0.4 0.5 0.5 10

Descriptive 0.3 0.3 0.3 10

Isaac Large
Appeared 0.8 1.0 1.0 10
Similar 0.6 0.7 0.7 10

Descriptive 0.3 0.3 0.3 10

Replica AP2
Appeared 0.9 1.0 1.0 10
Similar 0.7 0.7 0.7 10

Descriptive 0.3 0.3 0.3 10

Real-world
Appeared 0.8 0.9 0.9 10
Similar 0.4 0.6 0.7 10

Descriptive 0.3 0.4 0.4 10

data volumes over time are 3058166, 274877, 411 bytes
respectively, while they are 169691, 10342, 61 in the real-
world environment. Our proposed method can significantly
lower the data volume because we cluster semantic point
clouds of the same object into multiple nodes and use 3-
dimensional vectors to encode their semantic information.
As a result, only a few bytes are required. This method can
reduce the data volume by 99.98% compared with transmitting
semantic point clouds, and 99.25% compared with 512-
dimensional COGraphs.

D. Object Retrieval Evaluation

The CLIP model is a multimodal neural network designed
to align image and text representations. It can independently
extract image features from visual inputs and generate text
features from textual descriptions. Object retrieval is then
conducted by calculating the cosine similarity between the
image features and the text feature corresponding to the query.

We categorize the queried texts into three types and
generate 10 queries for each type [9]. The object retrieval
results are presented in Tab. II. The “appeared” queries are
selected from feature labels, and our constructed COGraph
achieves average retrieval success rates of 85%, 97.5%, and
97.5% for the R@1, R@2, and R@3 metrics across four
environments. “Similar” queries are synonyms of feature
labels, and approximately 65% of them in the R@3 metric
can be successfully retrieved. For “descriptive” object phrases,
only around 30% of the queries yield successful retrievals.
These results indicate that CLIP-based queries perform well
when the queried text has appeared in the feature label
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Fig. 8. Cosine Similarity between Text Features and Image Features (before feature encoding and after feature decoding).

TABLE III
MAP MERGING EVALUATION

Environment Dim Pose Ptrans(m) Robj

Isaac Small
512 GT 0.923 all

Carto 1.063 all

3 GT 0.084 all
Carto 1.333 all

Isaac Large
512 GT 0.286 0.95

Carto 0.559 0.875

3 GT 0.138 0.95
Carto 0.559 0.875

Replica AP2 512 GT 0.084 0.85
3 GT 0.084 0.85

Real-world 512 GT 0.213 0.833
3 GT 0.213 0.833

list. With the advance of visual-language models, the object
retrieval performance of our framework can be improved,
especially when the object query is a vague description
statement.

Then, we analyze whether utilizing our feature encoding
and decoding strategy will affect the query performance. In
this work, we give the LLM [32] the category list of the
ImageNet dataset, and input “Please find the categories that
may appear in the indoor household scene” to get the training
dataset of the encoder and decoder. In Fig. 8, we evaluate the
object retrieval performance by performing auto-correlation
and cross-correlation matching on features from 15 distinct
objects. Fig. 8(a) shows the matching results between the
original CLIP image features and text features. The deep
color along the diagonal and the lighter colors in other areas
indicate that the similarity between text and image features
is low for different objects, while the similarity is high when
comparing the same object’s text and image features. Fig. 8(c)
illustrates the matching results between the image features and
text features after applying our feature compression strategy.
The image features have been resized to 3 dimensions and
then recovered to 512 dimensions. Similar to the original
features, deep colors appear along the diagonal, and lighter
colors are seen in other regions, showing that, after the data-
driven compression process, the image features can still be
effectively matched with the text features.

E. Map Merging Evaluation

The map merging results are presented in Tab. III. Com-
pared to a merging approach without feature compression,
the increase in translation estimation error is minimal. By
appropriately setting the merging thresholds, the accuracy
of the scene graph remains unaffected. In addition, we can
see that localization errors emerge as the primary factor
contributing to translation vector estimation inaccuracies.
Interestingly, the object finding rate in the Isaac small
environment is 100% when two robots perceive cooperatively,
which is higher than Fig. 6. This is probably because objects
missed by one robot are captured by another. Visualizations of
the multi-robot merging process across the four environments
are provided in the attached video.

Fig. 8(b) illustrates the matching results of the image fea-
tures before and after applying the encoder and decoder. The
deep color along the diagonal indicates that features processed
through the encoder-decoder pipeline retain a high similarity
to the original features while maintaining distinctiveness from
other features. In summary, reducing feature dimensions
during transmission has little impact on the precision of
multi-robot scene graphs merging. This demonstrates that
our method effectively reduces communication data volume
without compromising mapping performance.

V. CONCLUSION AND FUTURE WORK

This paper presents a communication-efficient multi-robot
mapping framework that allows for open-vocabulary object
retrieval. We propose a method for constructing COGraphs,
introducing a data-driven feature encoder to compress feature
dimensions. To facilitate multi-robot collaboration, we de-
velop place recognition and translation estimation strategies
based on semantic features for efficient COGraph merging.
Our framework is validated on both simulated environments
and real-world datasets, demonstrating two orders of magni-
tude of reduction in data transmission while maintaining state-
of-the-art 3DGS mapping accuracy and query success rates.
In future work, we will leverage advanced vision-language
models to further enhance open-vocabulary query capabilities
and develop exploration strategies for autonomous semantic
mapping in communication-constrained environments.
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