A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM

Zhenhua Zhu1,2, Hanbo Sun1,2, Yujun Lin3, Guohao Dai1,2, Lixue Xia1,4
Song Han3, Yu Wang1,2, Huazhong Yang1,2

1Department of Electronic Engineering, Tsinghua University, Beijing, China
2Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
3HAN Lab, Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology (MIT), USA
4Alibaba Group

Email: yu-wang@tsinghua.edu.cn
• Introduction and motivation
• Proposed Framework
 – **Software Level**: RRAM Computing Overhead Aware Quantization and Compression Algorithm
 – **Hardware Level**: A Configurable Multi-precision CNN Computing Architecture based on Single-bit RRAM
 – Optimal Hardware Configuration Search
• Simulations Results
• Conclusion
Convoluotional Neural Network

- CNNs are powerful.

Image Classification [A. Krizhevsky, et al. NIPS’12]

Object Detection [DeePhi Tech]

Automatic Driving [Bounini, et al. VPPC’15]
CNNs need more powerful computing platforms

• The computation of CNN **consumes high energy**
 – The inference of VGG-16 for one image needs **4.3J** energy consumption on GPU [Qiu J, et al. FPGA’16]

• **Large data movements** between PE and MEM cause high energy consumption
 – The data transfer in GPU consumes **2 orders of magnitude** more energy than a floating-point operation [Han S, et al. ISCA’16]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy [pJ]</th>
<th>Relative Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bit int ADD</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>32 bit float ADD</td>
<td>0.9</td>
<td>9</td>
</tr>
<tr>
<td>32 bit Register File</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>32 bit int MULT</td>
<td>3.1</td>
<td>31</td>
</tr>
<tr>
<td>32 bit float MULT</td>
<td>3.7</td>
<td>37</td>
</tr>
<tr>
<td>32 bit SRAM Cache</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>32 bit DRAM Memory</td>
<td>640</td>
<td>6400</td>
</tr>
</tbody>
</table>

Von Neumann Architecture

High Memory Access Energy Consumption
RRAM & PIM provide efficient solutions

- **RRAM and Processing-In-Memory** provide alternative solutions to realize better implementation of CNN.
Existing RRAM-based accelerator

<table>
<thead>
<tr>
<th></th>
<th>RRAM Precision</th>
<th>Function</th>
<th>Performance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISAAC</td>
<td>2 bits</td>
<td>CNN Inference</td>
<td>14.8x Throughput and 4.4x Energy Efficiency (Compared with DaDianNao)</td>
<td>Shafiee A, et al. ISCA’16</td>
</tr>
<tr>
<td>PRIME</td>
<td>4 bits</td>
<td>CNN Inference</td>
<td>2360x Speedup and 895x Energy Efficiency (Compared with DianNao)</td>
<td>Chi P, et al. ISCA’16</td>
</tr>
<tr>
<td>PipeLayer</td>
<td>5~6 bits</td>
<td>CNN Inference and Training</td>
<td>42.45x Speedup and 7.17x Energy Efficiency (Compared with GPU)</td>
<td>Song L, et al. HPCA’17</td>
</tr>
<tr>
<td>TIME</td>
<td>4 bits</td>
<td>CNN/DRL Inference and Training</td>
<td>CNN: 1.3x Speedup and 19.6x Energy Efficiency (Compared with DaDianNao) DRL: 126x Energy Efficiency (Compared with GPU)</td>
<td>Cheng M, et al. TDAC’18</td>
</tr>
<tr>
<td>NTHU Chip-1</td>
<td>1 bit</td>
<td>Binary DNN/CNN</td>
<td>CNN: 14.8ns FCM: 15.6ns</td>
<td>Chen W, et al. ISSCC’18</td>
</tr>
<tr>
<td>—</td>
<td>1 bit</td>
<td>BCNN</td>
<td>58.2% area energy consumption</td>
<td>Tang T, et al. ASPDAC’17</td>
</tr>
</tbody>
</table>
Design Challenges in RRAM Computing System

- Higher storage/computing density
- Hard to implement and tape out
- Affected by non-ideal factors severely
- Larger quantization errors at interfaces

Multi-bit RRAM

RRAM Accelerators

- [Cheng M, et al. TDAC’18]
- [Song L, et al. HPCA’17]
- [Shafiee A, et al. ISCA’16]
- [Chi P, et al. ISCA’16]
- [Cheng M, et al. TDAC’18]
- [Chen W, et al. ISSCC’18]
- [Xue C, et al. ISSCC’19]

Neural Network Algorithm

Cat
Panda
Elephant
Dog
Design Challenges in RRAM Computing System

Neural Network Algorithm

RRAM Accelerators

- More reliable and accurate
- Limited precision causes accuracy loss in BCNN
- Huge parameter number needs more devices in CNN

Single-bit RRAM

- [Shafiee A, et al. ISCA’16]
- [Chi P, et al. ISCA’16]
- [Cheng M, et al. TDAC’18]
- [Song L, et al. HPCA’17]
- [Chen W, et al. ISSCC’18]
- [Xue C, et al. ISSCC’19]
- [Liu R, et al. TNS’15]
Design Challenges in RRAM Computing System

Our Target

Design an efficient CNN computing framework based on single bit RRAM

- Higher storage/computing density
- Hard to implement and tape out
- Non-ideal factors severely affect performance
- Larger quantization errors at interfaces
- Multibit RRAM
 - [Zhao L, et al. Nanoscale’14]
 - [Liu R, et al. TNS’15]
- More reliable and accurate
- Limited precision causes accuracy loss in BCNN
- Huge parameter number needs more devices in CNN

Neural Network Algorithm
- Panda
- Elephant
- Dog

RRAM Accelerators
- [Chen W, et al. ISSCC’18]
- [Xue C, et al. ISSCC’19]

Single-bit RRAM
- [Liu R, et al. TNS’15]
Proposed Framework Overview

RRAM-Aware Quantization
- Analysis of the RRAM computing deviation
- Optimization model of RRAM-aware quantization
- Multi-precision CNN quantization scheme

Configurable Multi-Precision Architecture
- Multi-bit data splitting implementation
- Configurable architecture design
- Algorithm mapping strategy
I. RRAM-Aware Quantization

• Source of RRAM computing deviation:
 – Device-level and circuit-level non-ideal factors (e.g., resistance variations)
 – Quantization error of the analog/digital interfaces

\[Q \text{ v.s. } Q_{\text{ideal}} = m + \log_2(N) + 1 \]

Input data: \(m - \text{bit}, \) crossbar size: \(N, \) precision of SA&ADC: \(Q - \text{bit} \)

• Directly mapping well-trained model on RRAM suffers from accuracy loss

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>GPU Quantization</th>
<th>GPU Quant. Model on RRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>92.02%</td>
<td>88.80%</td>
<td>83.80%</td>
</tr>
</tbody>
</table>
I. RRAM-Aware Quantization

• Motivation of multi-bit quantization
 – The precision requirements of each layer are different
 – Layer-wise quantization can achieve fewer storage devices without accuracy loss

The accuracy increment of VGG as the precision of (a) activations or (b) weights increases
I. RRAM-Aware Quantization

- **Optimization model** of RRAM-aware quantization:
 - Storage: the number of crossbars to store weights
 - L: layer number, W_i: weight precision, C_{in}&C_{out}: Input&Output channel, k: kernel size

\[
Num_c = \sum_{i=1}^{L} 2 \times W_i \times \left[\frac{K_i^2 C_{in_i}}{N} \right] \times \left[\frac{C_{out_i}}{N} \right]
\]
I. RRAM-Aware Quantization

- **Optimization model** of RRAM-aware quantization:
 - Latency: mainly consider the RRAM crossbar computation time
 - M: activation precision, m: DAC precision, S_t: sliding times
 - $\text{Latency} = \sum_{i=1}^{L} \frac{M_i}{m} \times S_{t_i}$

- RRAM-Aware Quantization

p. 14
I. RRAM-Aware Quantization

- **Optimization model** of RRAM-aware quantization:

 - **Storage:** the number of crossbars to store weights

 \[\text{Num}_c = \sum_{i=1}^{L} 2 \times W_i \times \left\lfloor \frac{K_i^2 C_{in_i}}{N} \right\rfloor \times \left\lfloor \frac{C_{out_i}}{N} \right\rfloor \]

 - **Latency:** mainly consider the RRAM crossbar computation time

 \[\text{Latency} = \sum_{i=1}^{L} \frac{M_i}{m} \times S_{ti} \]

 - **Optimization target:**

 \[\min_{\{W_i\}, \{M_i\}} (\alpha \text{Num}_c(\{W_i\}, \{M_i\}) + \beta \text{Latency}(\{W_i\}, \{M_i\})) \]

 \[\text{s.t. } \text{Loss}(\{W_i\}, \{M_i\}) \leq \text{Loss_Threshold} \]
I. RRAM-Aware Quantization

- RRAM computing deviation aware quantization and compression scheme
II. Configurable Multi-Precision Architecture

• Data splitting implementation:
 – Use multiple crossbars to store one multi-bit weights
 • Hardware friendly for multi-precision algorithms
II. Configurable Multi-Precision Architecture

- Data splitting implementation:
 - Use multiple crossbars to store one multi-bit weights
 - Hardware friendly for multi-precision algorithms
 - Rewrite the convolution equation:

\[
f_o(x, y, z) = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \sum_{k=1}^{C_{in}} f_i(x + i, y + j, k)k_z(i, j, k)
\]

\[
= \sum_{c=0}^{M/m-1} \left[2^{mc} \sum_{w=0}^{W-1} 2^w \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \sum_{k=1}^{C_{in}} f_{ic}(x + i, y + j, k)k_{zw}(i, j, k) \right]
\]
II. Configurable Multi-Precision Architecture

• Configurable architecture design:

Right: The overall architecture design;
Left: Details of the Process Element (PE), the PE Slice, and the Joint Model
II. Configurable Multi-Precision Architecture

• Mapping strategy:
 – Determine # of PE slices and RRAM bank for each layer
 \[N_{PES} = \left\lceil \frac{K^2 \times C_{in}}{N} \times \frac{W}{8} \right\rceil \quad ; \quad N_{Bank} = \left\lceil \frac{C_{out} \times N}{2^S / N_{PES}} \right\rceil \]
 – Use H-Tree structure to optimize the PE slice allocation:

The schematic diagram of the allocation strategy, the number represents the order of allocations
III. Optimal Hardware Configuration Search

• Tradeoff between **accuracy** and **hardware performance**:
 – DAC:
 • More cycles are needed for **loading data** @ lower DACs’ precision
 • The area and power of DACs grow exponentially with precision
 – Crossbar size:
 • Crossbar size influences **the quantization error**
 • Different sizes cause different area and energy overhead
 – SA and ADC:
 • **The quantization precision** affects the computing accuracy
 • Higher precision means larger area and higher power consumption
 • Larger area means lower parallelism -> slower
Simulation results

- **Tradeoff between accuracy and hardware overhead**

Table: Simulation results with different ADC precisions

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Area/mm²</th>
<th>Energy/mJ</th>
<th>Latency/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-bit</td>
<td>91.92%</td>
<td>319.16</td>
<td>0.465</td>
<td>5.76</td>
</tr>
<tr>
<td>2-bit</td>
<td>91.80%</td>
<td>319.21</td>
<td>0.239</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Table: Simulation results with different DAC precisions

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Area/mm²</th>
<th>Energy/mJ</th>
<th>Latency/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-bit</td>
<td>91.92%</td>
<td>319.16</td>
<td>0.465</td>
<td>5.76</td>
</tr>
<tr>
<td>2-bit</td>
<td>91.80%</td>
<td>319.21</td>
<td>0.239</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Table: Simulation results with different ADC precisions and crossbar sizes

- LeNet
 - Crossbar size = 128
 - Q=6: 76.00%
 - Q=8: 76.64%
 - Q=10: 76.44%
 - Crossbar size = 256
 - Q=6: 75.96%
 - Q=8: 76.52%
 - Q=10: 76.54%
 - Crossbar size = 512
 - Q=6: 75.36%
 - Q=8: 76.64%
 - Q=10: 76.26%

- VGG-16
 - Crossbar size = 128
 - Q=6: 91.86%
 - Q=8: 92.04%
 - Q=10: 92.36%
 - Crossbar size = 256
 - Q=6: 91.80%
 - Q=8: 92.20%
 - Q=10: 92.32%
 - Crossbar size = 512
 - Q=6: 92.12%
 - Q=8: 91.70%
 - Q=10: 92.20%

- ResNet-18
 - Crossbar size = 128
 - Q=6: 94.62%
 - Q=8: 94.90%
 - Q=10: 95.04%
 - Crossbar size = 256
 - Q=6: 94.78%
 - Q=8: 94.94%
 - Q=10: 95.06%
 - Crossbar size = 512
 - Q=6: 94.42%
 - Q=8: 94.94%
 - Q=10: 94.88%

Optimal Hardware Design:
- Crossbar Size: 256x256
- SA&ADC Precision: 6-bit
- DAC Precision: 2-bit
Simulation results

- Tradeoff between accuracy and hardware overhead

VGG16 Accuracy on Cifar10 dataset and Hardware Performance under Different Accuracy Loss Thresholds
• Performance analysis
 – Equivalent energy efficiency of RRAM computing units: 3.44TOps/W (8.6x @ ISAAC and 1.6x @ PRIME)
 – Energy and area breakdown:

The Energy (left) and Area (right) Breakdown
Conclusion

• **Challenges:**
 - For multi-bit RRAM architecture: it is hard to implement and fabricate a chip due to the immature process technology
 - For single-bit RRAM chip: existing work only focuses on BCNN with accuracy loss

• **Solutions:**
 - A configurable multi-precision CNN computing framework based on single bit RRAM
 - Software: an RRAM computing over- head aware network quantization algorithm
 - Hardware: a configurable multi-precision CNN computing architecture based on single bit RRAM

• **Future Work:**
 - Improve and optimize the mapping strategy
 - Design the buffer structure
References

Thanks for your attention