Switched by Input:
Power Efficient Structure for RRAM-
based Convolutional Neural Network

Lixue Xia, Tiangi Tang, Wenqin Huangfu, Ming Cheng, Xiling
Yin, Boxun Li, Yu Wang, Huazhong Yang

Dept. of E.E., Tsinghua National Laboratory for Information
Science and Technology (TNList),

Tsinghua University, Beljing, China
e-mail: yu-wang@mail.tsinghua.edu.cn

NS

Outline

A Background and Motivation
I The large overhead of interface circuits

A 1-bit Quantization to Eliminate DACs
A SEI Structure to Eliminate ADCs
A Experimental Results

CNN: Application and Performance

A CNN: State-of-the-art in visual recognition applications

B & 38 2® .,

S 10 10
A false posifives perimage

Pedestrian Detection [arxiv2015]

Precision plots of SRE

—_

e
<2

— [0,800] Qurs [
s [0,730] MEEM o
— (0.640] KCF ™
— 0.626] TGPR

[0.614] Struck
e [0,556] TLD |
— [0.520] SCM
— (0.499] DLT
= [0.480] CSK
w— [0,461] LSHT |-
e [0,439] MIL
— (0.386] STC
= w [0.328] CT

40 50

o
@

Precision rate
<
e

e
o

0 10 20 30
Location error threshold (pixels)

Vehicle and Lane Detection -
Tracking [UIUC2015
[Stanford2015] gl]

Google Translate App 2015.7

NN: Complexity

The computation complexity and energy consumption increase rapidly to obtain better
and better recognition accuracy

A AlexNet (a.k.a.

2

o

22@ Stride

“of 4

224 EI‘

7

CaffeN

et)

pooling

A GoogLeNet (2015)

(2012)

i~

192

1000

Energy Efficient Circuits and Systems

Energy Efficiency = 0 %ogn%e%(i%/
Energy

= Operations/J
= (OP/s€ /W

===

Aerospace

RRAM-based Matrix-Vector Multiplication

Merge Mem. & Comp.
>100X Efficiency Gains

1
w
{ Vo
A B
& P
a1 1l

1 m-bit Multiplier + 1 m-bit Adder + 1 m-bit Reg. (SRAM)

it

1 D sssensssanias M REG
- 1 Vi X - X
|
I — - |
LAA- : Ve X[X[
Vi , —Er = +
i Vol X| F7| =X T
| n il = S =21 1 e e
RS :E E: s s e e e :E
< < Vin] X [~{X |
: Vos .y . Vo2 \;om
RRAM Matrix-Vector Multiplication

Crossbar ASIC

RRAM-based Convolution

A The function of a convolution kernel is also vector-
vector multiplication

c—-1C—-1 1

Iya YYYJC:U‘FZ y+37) Cz(ivjnk):f°é}z

=0 j=0 k=1

A Multiple Conv kernels share the same input data

I Convolution kernels can be regarded as Matrix-Vector
multiplication

———————— — ———— ——

Vig =

Kerne' 1 Drasrarassaans M
-

Pt

Kernel M

XE""X X FX

N

Conv Kernels

Large Overhead of Interface

A The intermediate data between convolutional layers need to

be buffered . —— .
| Input 20 Intermediatg 1o
| Image Kemels Data ernels
128x28x1 26x26xR0 13x13x20 12x12Kx20 6x6x20
yan g

3x3 elU & x2x20
CONV i ooling ONV

A Digital data introduce large amount of ADCs and DACSs

Power
100%
80%
60%
40%
20%
0%
Conv 1 Conv 2 Total

mDAC ©ADC IRRAM m Other

More than 98% of power is consumed by interface!

Can we use 1-bit?

A 1-bit digital signal can be used as analog signal without
high-cost interface
i Binary ANN (full-connected NN) has been verified [Kim ICML 2015]

A Can we use 1-bit intermediate data in CNN?

A Can 1-bit CNN really reduce the interface cost?

1-bit
Digital s ?é =27
Input = 777,
=7 = /2 =/ =/
= s

Outline

A Background and Motivation

A 1-bit Quantization to Eliminate DACs
A SEI Structure to Eliminate ADCs

A Experimental Results

10

Intermediate Data Quantization

A Data analysis shows that the ReLU function used in CNN

makes most of the layer output data around zero

Range of

Normalized Data O0~1/16 | 1/16~1/8 1/8~1/4 1/4~1
Layer 1 95.18% 3.71% 1.00% 0.11%
Layer 2 98.65% 1.20% 0.14% 0.01%
Layer 3 96.63% 2.90% 0.45% 0.02%
Layer 4 93.51% 5.10% 1.31% 0.08%
Layer 5 98.38% 1.25% 0.34% 0.03%

All Layers 98.63% 1.20% 0.16% 0.01%

RelLU Function

A We can modify the non-linear function into a threshold

processing to obtain 1-bit output data

6x26x20 13x13xR0!

i

RelU &
Pooling

: Input 20
| Image Kemels

128x28x1

Intermedite 1g
Data] Kemels

2x2x20

CONV

11

Threshold Optimization

A Three-step greedy algorithmE

A Weight Re-scaling
I Re-scale the data distribution into [0,1]

A Layer-by-Layer Greedy Strategy
I Search different threshold for each layer to reduce the accuracy loss
I Use a greedy algorithm to optimize the threshold layer by layer

A ThreShOId SearChlng Algorithm 1: Threshold Searching Algorithm

Input: CNN, TrainingSet, Thres,,in.SearchStep, Thresmax

I The threshold of a specific layer output: 7hreshotd

. 1 Initial T'hreshold as Empty Array;
IS searched by a brute-force 2 for L =1 CNN Louer Amg

3 Using the quantization results of front layers to obtain outputs of
methOd Layer L:Output(L) =

. WAITACC NN T TaTnzing S e, Liresnotd),
I Use the 60,000 Samp|eS N 4 CNN.Weight(L) = CNN.Weight(L) / max(Output(L)) :
11 . .. 5 Py = Qe
Tralnlng Set to aVOId Over-flttlng ° for Threstemp = Treshmin : SearchStep : Thresmaa do
7

vvvvv

Set, T’hreshold, T’ hrestemp):

8 if Accuracytemp > Accuracymqa. then
9 | Threshold(L) = Threstemp:

10 end

11 end

12 ena

13 return 7 hreshold 12

Quantization Result

A Test the quantization method on three CNNs on MNIST
A The accuracy loss is less than 1%

ERROR RATE RESULTS OF QUANTIZATION METHOD ON MNIST
Network 1 2 3

Before Quantization 0.93% 2.88% 1.53%
After Quantization 1.63% 3.42% 2.07%

