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CNN: Application and Performance

A CNN: State-of-the-art in visual recognition applications
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NN: Complexity

The computation complexity and energy consumption increase rapidly to obtain better
and better recognition accuracy
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Energy Efficient Circuits and Systems
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RRAM-based Matrix-Vector Multiplication
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RRAM-based Convolution

A The function of a convolution kernel is also vector-
vector multiplication
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A Multiple Conv kernels share the same input data

I Convolution kernels can be regarded as Matrix-Vector
multiplication
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Large Overhead of Interface

A The intermediate data between convolutional layers need to

be buffered . —— .
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A Digital data introduce large amount of ADCs and DACSs
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More than 98% of power is consumed by interface!




Can we use 1-bit?

A 1-bit digital signal can be used as analog signal without
high-cost interface
i Binary ANN (full-connected NN) has been verified [Kim ICML 2015]

A Can we use 1-bit intermediate data in CNN?

A Can 1-bit CNN really reduce the interface cost?
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Intermediate Data Quantization

A Data analysis shows that the ReLU function used in CNN

makes most of the layer output data around zero

Range of

Normalized Data O0~1/16 | 1/16~1/8 1/8~1/4 1/4~1
Layer 1 95.18% 3.71% 1.00% 0.11%
Layer 2 98.65% 1.20% 0.14% 0.01%
Layer 3 96.63% 2.90% 0.45% 0.02%
Layer 4 93.51% 5.10% 1.31% 0.08%
Layer 5 98.38% 1.25% 0.34% 0.03%

All Layers 98.63% 1.20% 0.16% 0.01%

RelLU Function

A We can modify the non-linear function into a threshold

processing to obtain 1-bit output data
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Threshold Optimization

A Three-step greedy algorithmE

A Weight Re-scaling
I Re-scale the data distribution into [0,1]

A Layer-by-Layer Greedy Strategy
I Search different threshold for each layer to reduce the accuracy loss
I Use a greedy algorithm to optimize the threshold layer by layer

A ThreShOId SearChlng Algorithm 1: Threshold Searching Algorithm

Input: CNN, TrainingSet, Thres,,in.SearchStep, Thresmax

I The threshold of a specific layer  output: 7hreshotd

. 1 Initial T'hreshold as Empty Array;
IS searched by a brute-force 2 for L =1 CNN Louer Amg

3 Using the quantization results of front layers to obtain outputs of
methOd Layer L:Output(L) =
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I Use the 60,000 Samp|eS N 4 CNN.Weight(L) = CNN.Weight(L) / max(Output(L) ) :
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Set, T’hreshold, T’ hrestemp):

8 if Accuracytemp > Accuracymqa. then
9 | Threshold(L) = Threstemp:

10 end

11 end

12 ena

13 return 7 hreshold 12




Quantization Result

A Test the quantization method on three CNNs on MNIST
A The accuracy loss is less than 1%

ERROR RATE RESULTS OF QUANTIZATION METHOD ON MNIST
Network 1 2 3

Before Quantization 0.93% 2.88% 1.53%
After Quantization 1.63% 3.42% 2.07%




