
Memristor-based Approximated Computation
Boxun Li1, Yi Shan1, Miao Hu2, Yu Wang1, Yiran Chen2, Huazhong Yang1

1Dept. of E.E., TNList, Tsinghua University, Beijing, China
2Dept. of E.C.E., University of Pittsburgh, Pittsburgh, USA

1 Email: yu-wang@mail.tsinghua.edu.cn

Abstract—The cessation of Moore’s Law has limited further
improvements in power efficiency. In recent years, the physical
realization of the memristor has demonstrated a promising
solution to ultra-integrated hardware realization of neural net-
works, which can be leveraged for better performance and
power efficiency gains. In this work, we introduce a power
efficient framework for approximated computations by taking
advantage of the memristor-based multilayer neural networks.
A programmable memristor approximated computation unit
(Memristor ACU) is introduced first to accelerate approximated
computation and a memristor-based approximated computation
framework with scalability is proposed on top of the Memristor
ACU. We also introduce a parameter configuration algorithm of
the Memristor ACU and a feedback state tuning circuit to pro-
gram the Memristor ACU effectively. Our simulation results show
that the maximum error of the Memristor ACU for 6 common
complex functions is only 1.87% while the state tuning circuit can
achieve 12-bit precision. The implementation of HMAX model
atop our proposed memristor-based approximated computation
framework demonstrates 22× power efficiency improvements
than its pure digital implementation counterpart.

Index Terms—memristor, approximated computation, power
efficiency, neuromorphic

I. INTRODUCTION

Power efficiency is a major concern in computing systems.
The limited battery capacity urges power efficiency of hun-
dreds of giga floating point operation per second per watt
(GFLOPS/W) for mobile embedded systems to achieve a
desirable portability and performance [1]. However, the highest
power efficiency of contemporary CPU or GPU systems is
only ∼ 20 GFLOPS/W, which is expected not to substan-
tially improve in the predictably scaled technology node [2].
Therefore, researchers are looking for an alternative computing
architecture for the conventional digital computing systems to
achieve performance and power efficiency gains [3].

Brain is such an power efficient platform with incredible
computational capability. Compared to biological systems,
nowadays programmable computing systems are more than
6 orders of magnitude less efficient [4]. This result drives
more and more people to work on neuromorphic computational
paradigms beyond digital logic by replicating the brain’s
extraordinary computational abilities. However, the contem-
porary neuromorphic system’s research is mostly confined to
algorithm field, while the hardware implementations are still
built upon the traditional CPU/GPU/FPGA systems, which
usually consumes a large volume of memory and computing
resources [5], [6]. In general, the algorithm enhancement with
conventional CMOS implementation only alleviates the power
efficiency issue but not fundamentally resolve it.

In recent years, the device technology innovations have
enabled new computational paradigms beyond Von-Neumann

architectures, which not only provide a promising hardware
solution to neuromorphic system but also help drastically close
the gap of power efficiency between computing systems and
the brain. The memristor is one of those promising devices.
The memristor is able to support a large number of signal
connections within a small footprint by taking the advantage
of the ultra-integration density [7]. And most importantly,
the nonvolatile feature that the state of the memristor could
be tuned by the current passing through itself makes the
memristor a potential, perhaps even the best, device to realize
neuromorphic computing systems with picojoule level energy
consumption [8], [9].

Our objective is to use memristors to design a power
efficient neuromorphic framework for approximated compu-
tation with both programmability and computation generality.
The framework is inspired by the theory that a multilayer
neural network can work as a universal approximator, and
the widely observation of approximated computation in a
series of applications, ranging from signal processing, pattern
recognition to computer vision and nature language processing.
Both the neuromorphic computing architecture and the toler-
ance of inexact computation can be leveraged for substantial
performance and power efficiency gains [9], [10].

To realize this goal, the following challenges must be
overcome: Firstly, a power efficient Memristor ACU which can
complete general algebraic calculus is demanded to accomplish
different computing task. Secondly, Memristor ACUs must
be organized effectively to form a computation framework
in order to accomplish different processing tasks. Thirdly,
there needs a parameter configuration algorithm to work out
the effective parameters of the Memristor ACUs according
to the function requirement. Finally, the memristor cannot be
effectively programmed and thus a state tuning scheme both
efficient and accuracy for memristors is demanded.

In this work, we for the first time propose a complete
framework for memristor-based approximated computation.
The contributions of this paper are:

1) We propose a power efficient memristor-based approxi-
mated computation framework. The framework is inte-
grated with our programmable Memristor ACUs. Simu-
lation results show that our Memristor ACU offers less
than 1.87% error for 6 common complex functions and
works reliably under a noisy condition;

2) We provide a parameter configuration algorithm to con-
vert the weights of the neural network to the appropriate
resistance of the memristors in Memristor ACUs. The
algorithm can provide both the maximum dynamic range
and the validity of the memristance by taking the impact
of fabrication variation into consideration;

x

I(t)
RL· RH·(1-)

Fig. 1. Physical model of HP memristor

3) We propose a feedback circuit to program the memristor
accurately. The circuit can provide a linear relationship
between the input voltage and the final value of the
memristor. The accuracy increases with the frequency
of the reference voltage and an analog storage with 12-
bit precision is realized under 2MHz;

The rest of our paper is organized as follows: Section 2
provides background information and related work. Section 3
proposes the details of memristor-based approximated com-
putation framework. Section 4 depicts the detailed program
method of the framework including the parameter configura-
tion algorithm and the high-precision state tuning circuit for
memristors. Section 5 presents a case study based on HMAX
model. Section 6 concludes this work and shows some future
directions.

II. BACKGROUND KNOWLEDGE AND RELATED
WORK

A. Memristor

Memristor was first physically realized by HP Labs in 2008
[11]. Fig. 1 shows the physical model of the HP memristor
[12], which is a two-layer thin film of TiO2. One layer consists
of intact TiO2 while the other layer lacks of a small amount
of oxygen (TiO2−x). These two layers demonstrate different
conductivity and the overall resistance is the sum of the two
layers. When a current is applied to the device, the boundary of
layers (doping front) will move so as to change the resistance
of the memristor.

B. Universal Approximators by Multilayer Feedforward Net-
works

It has been proven that a universal approximator can be
implemented by a multilayer feedforward network with only
one hidden layer and sigmoid activation function [13], [14].
Table I gives the maximum errors of the approximations of
six common functions by this approximated method based
on MATLAB simulation. The mean square errors (MSE) of
approximations are less than 10−7 after the back propagation
training algorithm completes. Theoretically, the networks ac-
curacy will increase with the size of the network. However, it’s
usually more difficult to train a network of a bigger size [15].
A larger network may easily fall into local minima, instead

TABLE I
MAXIMUM ERRORS OF NETWORK APPROXIMATORS

Function Nodes in the Hidden Layer
0 5 10 15 20 25

x1 · x2 · x3 22.79 1.10 0.68 0.28 0.34 0.27
x−1 9.53 0.25 0.20 0.14 0.10 0.05
sin(x) 10.9 0.05 0.07 0.05 0.07 0.06
log(x) 7.89 0.21 0.13 0.14 0.12 0.14

exp(−x2) 20.27 0.04 0.03 0.05 0.03 0.04√
x 13.76 1.87 1.19 1.43 0.35 0.49

Program Unit

Input
Network

Output
Network

Input
Layer

Output
Layer

Hidden
Layer

V
o

lt
ag

e
In

p
u

t

Memristor
Crossbar

Array
(Positive)

Memristor
Crossbar

Array
(Negative)

R

Sig-
moid

Sig-
moid

Voltage Output

Vo1

Vi1

Vi2

Vim

Vo2 Von

Sig-
moid

Inverter

R

Fig. 2. Memristor ACU

of the global one, and thus sometimes provides a worse result
as shown in Table I. Such a precision level (MSE ≈ 10−7) is
sufficient for most approximated computation, e.g., the HMAX
model included in our case study.

III. MEMRISTOR-BASED APPROXIMATED COMPUTATION
FRAMEWORK

A. Memristor ACU

Fig. 2 shows the overview of the Memristor ACU. The
Memristor ACU is based on a memristor-based hardware
implementation of a multilayer network (with one hidden
layer) to work as a universal approximator. The mechanism
is as follows. The basic operation of feedforward network
is matrix-vector multiplication and can be mapped to the
memristor crossbar array illustrated in Fig. 3. The output of
the crossbar array can be expressed as:

Voj = R ·
∑
k

(Vik · gkj), gkj =
1

Mkj
(1)

where Vik and Voj are the input and output voltage of each
row and column. k and j represent the index numbers of input
and output voltage, respectively. And they are also the index
numbers of the rows and columns of the crossbar array sep-
arately. Mkj and gkj represent the resistance and admittance
of each memristor in the crossbar array, respectively; R is the
resistor at the end of the crossbar array.

Op Amps are used to enhance the output accuracy and
isolate the two layers. All Op Amps work as current feedback
amplifiers so that the function of such a crossbar array can be
expressed as a vector-matrix multiplication.

Since both R and M can only be positive, two crossbars
are needed to represent the positive and negative weights of
a network, respectively [9]. Each pair of the corresponding
inputs to the two crossbar arrays is complimentary, e.g., one
is the reversion of the other one to guarantee the opposite
polarities and the same amplitude of the input voltages. The

ik

oj

kj

i1

i3

o1 o3

Fig. 3. Memristor Crossbar Array

polarity

Icurrent Icurrent
polarity

Icurrent

gpositive gnegative
Invertor

Fig. 4. Memristor Pairing

practical weights of the network can be expressed as:

wkj = R · (gkj(postive) − gkj(negative)), gkj =
1

Mkj
(2)

which is the difference between the conductances of the two
paired memristors in the positive and negative crossbar arrays.
In addition, the sigmoid activation function can be generated
by the circuit similar to that in [16] and a complete double-
layer feedforward network unit with one weight matirx is
accomplished.

We note that the polarities of the terminals of the memristors
in two crossbars are set to the opposite direction in order to
minimize the deviations of the memristor states caused by the
accumulation of the current passing through the memristors.
As the input pair is complimentary, the polarities of the
programming currents passing through the paired memristors
in two crossbar arrays are opposite, leading to the same
resistance changing rate and direction of the two memristors.
As a result, the deviations of the two memristors will cancel
each other. We refer to this technique as memristor pairing and
its shown in Fig. 4.

Finally, by combining two double-layer networks together, a
multi-layer feedforward network unit (with one hidden layer)
is realized. As shown in Section 2.2, the network can work as
a universal approximator and thus a memristor approximated
computation unit is accomplished.

The maximum errors of network approximators shown in
Table I are obtained under ideal conditions without any noise.
However, as pointed out in [9], the fluctuations on the input
signal and the parametric variations of the memristor devices
will have influence on the accuracy of the Memristor ACU. In
order to evaluate the robustness of our proposed Memristor
ACU under different noise conditions, we conduct Monte-
Carlo simulations for the functions listed in Table I. The

0.000

0.005

0.010

0.015

0.020

0.025

D
ev

ia
tio

n

Ideal SN=0.1%, MN=0.1% SN=0.1%, MN=0.5%
SN=0.5%, MN=0.1% SN=0.5%, MN=0.5%

x1·x2·x3 x-1 sin(x) log(x) exp(-x2) sqrt(x)

Fig. 5. Maximum errors of the approximators under different noise condition-
s. SN: input signal noise ratio. MN: The standard deviation of the memristor
resistance.

In
p

u
t m

u
ltip

le
xe

r

O
u

tp
u

t m
u

ltip
le

xe
r

In
p

u
t D

ata

Control
Signal

Control
Signal

Memristor
ACU

Memristor
ACU

Memristor
ACU

Memristor
ACU

Memristor
ACU

D
A

C
 A

rray

Lo
cal

M
e

m
o

ry
Lo

cal
M

e
m

o
ry

Lo
cal

M
e

m
o

ry
Lo

cal
M

e
m

o
ry

Memristor
PE

Memristor
PE

Memristor
PE

Memristor
PE

A
D

C
In

te
rface

Fig. 6. Memristor-based Approximated Computation Architecture

number of the nodes in the hidden layer is set to 20. Total 5
different noise conditions are tested with different input signal
noise ratios and memristor resistance deviations. The MSE of
each approximator is trained to less than 10−7 before the test
starts. Each Monte-Carlo simulation includes 15,000 runs. The
simulation results in Fig. 5 shows that our Memristor ACU is
immune to certain magnitude of noise and the immunity varies
with the category of the function: For example, sin(x) and

√
x

are more sensitive to the noise while exp(−x2) and x−1 can
tolerate the noise with larger magnitude. Therefore, during the
application of the Memristor ACUs, the noise condition must
be well controlled below the corresponding level for specific
functions.

B. Memristor-based Approximated Computation Framework

The overview of the proposed memristor approximated
computation framework is shown in Fig. 6. The building
blocks of the framework are the memristor processing elements
(Memristor PE). Each Memristor PE consists of several Mem-
ristor ACU to accomplish algebraic calculus. Each Memristor
PE is also equipped with its own digital-to-analog converters
to generate analog signal for processing and hold it for a
period of time until the Memristor ACU finishes computation.
In addition, the Memristor PE may also have several local
memory, e.g., analog data stored in form of the resistance of
memristors, according to the functional requirement. Atop of
that, all the Memristor PEs are organized by two multiplexers
in Round-Robin algorithm. To be specific, in the processing
stage, the data will be injected into the platform sequentially
and the input multiplexers will deliver the data into the relevant
Memristor PE for approximated computation. The data get
to the Memristor PE in digital format and the DAC in each
Memristor PE help convert the data into analog signals and
hold them. Each Memristor PE may work under low frequency
but all the Memristor PEs work in parallel to achieve a high
performance. Finally, the output data will be transmitted out
from the Memristor PE by output multiplexer for further
processing, e.g., the data can be converted back into digital
format by a high performance ADC.

The framework is scalable and the user can configure it
according to individual demand. For example, for a power
efficiency required task, it’s better to choose low power Op
Amps to form the Memristor ACUs and each Memristor PE
may work under low frequency. On the other hand, high
speed Op Amps and ADCs and hierarchical task allocation
architecture will be a better solution to the problems requiring
high-performance platforms.

IV. PROGRAM MEMRISTOR APPROXIMATED
COMPUTATION UNIT

A. Parameter Configuration

As shown in Section 3, the memristor approximated com-
putation unit is based on the memristor-based hardware imple-
mentation of a multilayer network (with one hidden layer) to
work as a universal approximator. Hence, the parameters of the
network must be determined for specific function. We build a
library for several common functions to reduce the complexity
of configuring the parameters of the network. We also provide
several mature training algorithms, such as stochastic gradient
descent and L-BFGS, for neural networks to calculate the
parameters of unprepared functions [15].

Once the parameters of the network are determined, the
parameters need to be mapped effectively to the appropriate
resistance of the memristors in the crossbar arrays. Improperly
converting the array weights to the resistance of the memristors
may result in the following problems: 1) the converted param-
eter is beyond the actual range of the device; 2) the dynamic
range of the parameters is too small so that the memristor state
may easily saturate; and 3) the weights of the network are so
high that the summation of the output voltage exceeds the
working range of the Op Amps. In this section, we propose a
parameter configuration algorithm to convert the weights of the
neural network to the appropriate resistance of the memristor
to prevent improper parameter conversion.

The feasible range of the weight of the network can be
expressed by the function of the memristor parameters as:

−R · (gon − goff) ≤ w ≤ R · (gon − goff) (3)

where:
gon =

1

Mmin
, goff =

1

Mmax
(4)

where Mmin and Mmax represent the global maximum and
minimum resistance of the memristor crossbar arrays, respec-
tively.

In order to extend the dynamic range and minimize the
impact of fabrication variation, we adjust gon and goff to:

g′on =
1

η ·∆min +Mmin
, g′off =

1

Mmax − η ·∆max
(5)

where ∆min and ∆max represent the maximum deviation for
Mmin and Mmax induced by the fabrication variation of the
crossbar array, respectively. η is a scale coefficient which is
set to 1.1∼1.5 in our design to achieve a safety margin. The
appropriate resistance of the memristors, gpos and gneg , can
be achieved by solving the following cost function:

(gpos, gneg) = arg min{|gpos − g′mid|+ |gneg − g′mid|} (6)

where:

g′mid =
g′on + g′off

2
(7)

The constraint condition of Eq. 6 is:
R · (gpos − gneg) = w
g′on ≤ gpos
gneg ≤ g′off

(8)

where w is the weight of the network. The minimum of the
risk is achieved when:{

gpos = g′mid + w
2R

gneg = g′mid − w
2R

, w ≤ R · (g′on − g′off) (9)

These are the appropriate resistance of the memristors with
the minimum risk of saturate and the impact of fabrication
variation to prevent improper parameter conversion.

B. State Tuning Circuit with Feedback

Once the parameters of the network are determined, the
memristors in the crossbar array need to be programmed
to the specific states. This requires a state tuning circuits.
Unfortunately, there still lacks an approach that fully satisfy the
mobile system requirements: the main categories of memristor
state tuning circuits are either using multiple voltage pulses
to step-by-step tune the memristor, which limits the tuning
accuracy (e.g., ∼ 5-bit precision in [17]) or using several
resistors as reference, which incurs a high hardware cost such
as a large number of reference resistors (for example, an 8-
bit precision state tuning circuit needs about 256 resistors as
reference [18]). Therefore, we introduce a feedback circuit
with minor hardware cost to program the memristor accurately
and guarantee the accuracy of the network parameters.

Fig. 7 illustrates our proposed memristor state tuning circuit
with feedback. OP1 is a current feedback amplifier. Assuming
the initial negative input of OP1 is grounded, the output voltage
of OP1 VOP1(t) is:

VOP1(t) = −IR1(t) ·M(t) = −M(t)

R1
×Vsin(t) (10)

where M(t) represents the resistance of the memristor. Vsin(t)
is the sinusoidal reference signal with small amplitude con-
nected to the negative input of OP1. The frequency of Vsin(t)
should be sufficiently high so that the memristor state is not
influenced significantly over periods. Diode D1 and capacitor
C form a peak detector and record the peak output voltage of
OP1:

VC(t) =
M(t)

R1
×Vsin(max) −VD1(th)

(11)

where VC(t) is the output voltage of the peak detector and
VD1(t) is the voltage drop across D1. In addition, C can get
discharged through R4 so that VC(t) can track the peak of
VOP1(t) even if the peak voltage climbs down. OP2 is also
a current feedback amplifier. When R2 = R4 and R3 = R5,

AC

1

sin

4

5

2

3

1

C(t)

Fig. 7. Memristor State Tuning Circuit

TABLE II
PARAMETERS OF THE MEMRISTOR

RL RH µv L R1 Vread(max)

(Ω) (Ω) (m2 · s−1 · V −1) (nm) (Ω) (V)

100 16000 10−14 1 1000 1

TABLE III
MAXIMUM ERRORS OF MEMRISTOR STATE TUNING (Ω)

M(t)
Frequency of Vsin (100kHz)

1.0 2.0 5.0 10.0 20.0 50.0
1kΩ 32.267 15.984 6.206 3.142 1.586 0.687
2kΩ 24.040 14.413 5.949 2.782 1.363 0.664
5kΩ 22.162 13.037 5.789 2.314 1.078 0.428
10kΩ 20.843 11.758 4.442 2.771 1.224 0.489

OP2 functions as a subtractor and the output voltage of OP2
(VOP2(t)) can be expressed as:

VOP2(t) =
R3

R4
× (Vin −VC(t)) (12)

where Vin is the input voltage that determines the target state
of the memristor. The output voltage of OP2 will be sent back
into the positive input of OP1 as the DC bias of VOP1(t). This
feedback bias will tune the memristor state until VC(t) = Vin.
According to Eq. 11 and 12, the final state of the memristor
can be expressed as:

Mfinal =
R1

Vsin(max)
× (Vin + VD1(th)

) (13)

Eq. 13 demonstrates a linear relationship between the input
voltage and the final resistance (memristance) of the memris-
tor. The negative feedback between M(t) and VOP2 helps to
maintain the memristor state with high accuracy.

Finally, we conduct SPICE simulation to evaluate the pro-
posed state tuning circuit. The memristor parameters adopted
in the simulation are summarized in Table II. Table III shows
the maximum errors of memristor resistance from the target
states under different reference voltage frequency. The tuning
accuracy is around ±0.01% (f=2MHz), indicating a 12-bit
multilevel digital storage.

In addition, compared with other state tuning circuits de-
scribed earlier in this section. Our design provides about
128 times higher accuracy than the first method [17] and
saves around 1000 times number of resistors under the same
accuracy condition and tuning speed compared with the second
method [18]. In conclusion, our circuit provides both high
precision and small circuit size at the same time without
increasing the tuning time cost.

V. A CASE STUDY: HMAX
A. HMAX Model

In order to evaluate the performance of our proposed mixed-
signal accelerator, we conduct a case study on HMAX model.
HMAX is a trainable model for general object recognition in
complex environment by Serre, Wolf, and Poggio [19]. The
model consumes more than 95% amount of computation to
perform pattern matching by calculating the distance between
the prototypes and units as:

D(X,P) = exp{−

12∑
o=1

n∑
w=1

n∑
h=1

(xh,w,o − ph,w,o)
2

α · n2 · 12
} (14)

TABLE IV
PARAMETERS OF MEMRISTOR ACU IN HMAX

Average memristance (Ω) 10000
Average input voltage (V) 0.5
Amount of input in each analog ALU 24
Amount of output in each analog ALU 1
Amount of D/A converters in each analog ALU 24
Amount of A/D converter in mixed-signal framework 1
Bit-length of data 10
Power of each memristor (µW) 1.25
Power of each sigmoid circuit (µW) 10
Power of each D/A converter (µW) 0.4
Power of each A/D converter (µW) 15
Amount of memristors in each analog PE 1270
Amount of Op Amps in each analog PE 223
Amount of sigmoid circuits in each analog PE 95
Amount of D/A converter in each analog PE 240
Delay for A/D converters and input data (ns) 5
Delay for each analog PE (ns) 50

where xh,w,o represents the pixel in each possible position X
and ph,w,o represents the pixel of each pattern. n ∈ 4, 8, 16
is the size of the pattern. α is scale parameter to adjust
feature matching results. During the normal operation, there
are hundreds of such patterns. The amount of computation is
too huge to realize real-time video processing on conventional
CPUs while the computation accuracy requirement is not strict
(around 10 ∼ 12 bit [20]). In our case study, we apply the
proposed memristor-based approximated computation frame-
work to conduct the distance calculations to promote both
processing performance and power efficiency. The overview
of the proposed framework are the same as Fig. 6.

As shown in Fig. 6, each memristor processing element con-
sists of four 6-input Memristor ACU for Gaussian calculators
and one for 4-input multiplication. Therefore, each Memristor
PE can calculate a 24-input distance in Eq. 14 per clock
cycle. Additionally, each Memristor PE is equipped with 4
local analog memory based on memristors to store the pattern.
The main concern in this design is power efficiency and thus
we choose low power amplifiers to construct the Memristor
PEs. The working mechanism of the HMAX framework is the
same as Section 3.2 and the detailed parameters of the PE are
illustrated in Table IV.

B. Performance of the Framework

We use 1,000 images (350 of cars and 650 of the oth-
er categories) from PASCAL Challenge 2011 database [21]
to evaluate the performance of the HMAX system on the
digital and the memristor-based approximated computation
framework. Each image is of 320× 240 pixels with complex
background. The HMAX model contains 300 patterns of car
images which remain the same on each platform. A correct
result indicates both a right judgment on the classification of
the object and a successful detection on the object location.
The results of correct rate are shown in Table. V. As we can
observe, the correct rate degradation is only 2.1% on the ideal

TABLE V
PERFORMANCE OF THE MEMRISTOR-BASED HMAX

Platform Memristor-based Framework CPU
Signal Noise Rate (%) 0 0.1 0.1 0.5 0.5 -Device Noise Rate (%) 0 0.1 0.5 0.1 0.5

Accuracy (%) 78.1 75.8 69.2 65.7 60.1 80.2

TABLE VI
POWER EFFICIENCY OF THE MEMRISTOR-BASED HMAX

DAC ADC Analog Total Flops Frequency Efficiency
(mW) (mW) (mW) (mW) /cycle (MHz) (GFlops/W)

96 15 248.38 359.38 740 200 411.83

TABLE VII
POWER EFFICIENCY COMPARISON WITH DIFFERENT PLATFORMS (FPGA,

GPU, CPUS IN [20])

Parameters Proposed FPGA GPU CPUs
Size of input image 320× 240 256× 256
HMAX orientations 12
HMAX scale 12
HMAX prototypes 300 5120
Average size of prototypes 8
Cycles need for Eq.14 32 -
Amount of Eq.14 /frame 5455× 300 -
Frequency (MHz) 200 -
Power (W) 0.359 40 144 116
Unified fps/W 10.627 0.483 0.091 0.023
Speed Up - 22.00 116.78 462.04

memristor-based approximated computation framework w.r.t.
the CPU platform. Such a small degradation may be easily
compensated by increasing the amount of patterns [19]. When
taking the noise into consideration, the correct rates further
drops to up to 10 percent less, which are still good enough for
normal applications. To satisfy a high accuracy application,
the noise level needs to be suppressed.

C. Power Efficiency of the Memristor-based Framework

The power efficiency evaluation of the memristor-based
HMAX accelerator is given in Table VI while the detailed
comparisons to other platforms are given in Table VII. Our
simulation results show that the power efficiency of memristor-
based approximated computation framework is higher than
400 GFLOPS/W. Compared to other platforms like FPGA,
GPU and CPU in [20], memristor-based HMAX achieved a
performance up to 10.6 fps/W, which is > 20× higher than
its digital counterparts.

VI. CONCLUSION

In this work, we propose a approximated computation
framework based on memristor technology for power-efficient
approximated computation. We first introduced a memristor
approximated computation framework by integrating our pro-
grammable Memristor ACU. Our experiment results of HMAX
application show that the memristor-based framework is able to
achieve > 20× power efficiency with slightly degraded correct
rate. We also introduce the parameter configuration algorithm
of the Memristor ACU along with a high precision feedback
state tuning circuit.

However, there’re still many challenges remaining in this
memristor-based approximated computation framework. For
example, the interfaces between digital and analog systems,
such as ADCs, are always the key consideration of mixed-
signal computing systems. Thus, how to design an automatic
design flow to configure the interfaces efficiently is one of
the challenges. In addition, we note that the accuracy of

Memristor ACUs will slowly degrade when the operation time
increases. The reason is that the parameters of the memristors
drift gradually from the initial states. This observation leads
to an open problem of the optimized refresh scheme for
memristor-based computation. Finally, the performance of the
framework will be limited by the input and output multiplexers,
especially when the number of Memristor PEs becomes higher.
Therefore, how to design an efficient interconnect architecture
for the Memristor PEs will be another interesting problem.

ACKNOWLEDGMENT

This work was supported by 973 project 2013CB329000,
National Science and Technology Major Project
(2011ZX03003-003-01, 2013ZX03003013-003) and National
Natural Science Foundation of China (No.61261160501,
61028006), and Tsinghua University Initiative Scientific
Research Program.

REFERENCES

[1] DARPA. Power efficiency revolution for embedded computing technolo-
gies.

[2] NVIDIA TESLA K-SERIES DATASHEET. Kepler family product
overview, 2012.

[3] Esmaeilzadeh et al. Dark silicon and the end of multicore scaling. In
ISCA, pages 365–376. IEEE, 2011.

[4] Duygu Kuzum, Rakesh GD Jeyasingh, et al. Nanoelectronic pro-
grammable synapses based on phase change materials for brain-inspired
computing. Nano letters, 12(5):2179–2186, 2011.

[5] Jeffrey Dean et al. Large scale distributed deep networks. In Neural
Information Processing Systems, 2012.

[6] Ngiam et al. On optimization methods for deep learning. In Proceedings
of the 28th International Conference on Machine Learning, 2011.

[7] Sung Hyun Jo, Ting Chang, et al. Nanoscale memristor device as synapse
in neuromorphic systems. Nano letters, 10(4):1297–1301, 2010.

[8] Jianxing Wang et al. A practical low-power memristor-based analog
neural branch predictor. In Proceedings of ISLPED 2013.

[9] Miao Hu, Hai Li, et al. Hardware realization of bsb recall function using
memristor crossbar arrays. In DAC, pages 498–503, 2012.

[10] Esmaeilzadeh et al. Neural acceleration for general-purpose approximate
programs. In MICRO, pages 449–460, 2012.

[11] Dmitri B Strukov, Gregory S Snider, et al. The missing memristor found.
Nature, 453(7191):80–83, 2008.

[12] Pino et al. Statistical memristor modeling and case study in neuromor-
phic computing. In DAC, pages 585–590. ACM, 2012.

[13] K. Hornik, M. Stinchcombe, et al. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[14] Yoshifusa Ito. Approximation capability of layered neural networks
with sigmoid units on two layers. Neural Computation, 6(6):1233–1243,
1994.

[15] Laurene V Fausett. Fundamentals of neural networks: architectures,
algorithms, and applications. Prentice-Hall Englewood Cliffs, 1994.

[16] G. Khodabandehloo, M. Mirhassani, and M. Ahmadi. Analog imple-
mentation of a novel resistive-type sigmoidal neuron. TVLSI, 20(4):750
–754, april 2012.

[17] Sangho Shin, Kyungmin Kim, and Sung-Mo Kang. Memristor applica-
tions for programmable analog ics. Nanotechnology, IEEE Transactions
on, 10(2):266 –274, march 2011.

[18] Wei Yi, Frederick Perner, et al. Feedback write scheme for memristive
switching devices. Applied Physics A, 102:973–982, 2011.

[19] Jim Mutch and David G. Lowe. Object class recognition and localization
using sparse features with limited receptive fields. Int. J. Comput. Vision,
80(1):45–57, October 2008.

[20] Ahmed Al Maashri, Michael Debole, et al. Accelerating neuromorphic
vision algorithms for recognition. In DAC, DAC ’12, pages 579–584,
New York, NY, USA, 2012. ACM.

[21] Mark Everingham et al. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010.

