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Motivation
• SPICE: the most widely used circuit 

simulation engine
– Challenges: time-consuming, especially in post-

layout simulation
– Requirement: acceleration of SPICE
– We expect: finish in 12 hours

• Parallel circuit simulation attracts research 
interests for decades
– Parallel algorithms by multi-thread are potential 

solutions
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Motivation
• SPICE simulation flow
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Motivation
• Features of circuit matrices

– Extremely sparse
– Unsymmetric, not positive-definite, usually 

irregular structure
– The nonzero pattern remains unchanged during 

the iterations (no pivoting)
• The structure of the LU factors are also fixed during 

the iterations
• symbolic factorization needs only once

• A special matrix solver for circuit simulation 
is needed
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Related work
• SuperLU(1999)

– General-purpose matrix solver
– Sequential/multi-thread/distributed versions
– Uses Supernodes to handle dense blocks
– Poor performance for circuit simulation

• Pardiso(2002)
– General-purpose matrix solver
– Sequential/multi-thread/distributed versions
– Also uses Supernodes
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•[SuperLU] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel supernodal algorithm for sparse gaussian 
elimination,” SIAM J. Matrix Analysis and Applications, vol. 20, no. 4, pp. 915–952, 1999.
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Related work
• KLU(2010)

– Specially optimized for circuit simulation
– Only sequential version

• UMFPACK(2004), MUMPS(2006)
– Multifrontal (dense blocks)
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•[KLU] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,” 
ACM Trans. Math. Softw., vol. 37, pp. 36:1–36:17, September 2010
•[UMFPACK] T. A. Davis, “Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method,” ACM Trans. Math. Softw., 
vol. 30, pp. 196–199, June 2004.
•[MUMPS] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid scheduling for the parallel solution of linear 
systems,” Parallel Computing, vol. 32, no. 2, pp. 136–156, 2006.



Related work
• Among all the public sparse matrix solver 

implementations, only KLU is specially 
designed for circuit simulation
– KLU has no parallel version
– To our knowledge, currently there’s no research 

that parallelizes KLU
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LU factorization basics
• Pre-processing (pre-analysis)

– performs column/row permutations to increase 
numeric stability and reduce fill-ins

• Factorization

• Right-hand-solving
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LU factorization basics
• Left-looking algorithm

– Factorizes the matrix by sequentially processing 
each column

– When factorizing each column (say k), it uses all 
the left columns (1, 2, ..., k-1) to update self
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LU factorization basics
• Left-looking algorithm

– If the matrix is dense, each column (k) depends 
on all of its left columns (1, 2, ..., k-1)

– A complete sequential algorithm, strong data 
dependency, hard to be parallelized
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LU factorization basics
• When the matrix is sparse...

– Each column only depends on part of its left columns
– Column k depends on column j, iff U(j, k) ≠ 0 (j<k)
– The structure of U determines the column-level 

dependency

• Sparse left-looking algorithm
– Gilbert-Peierls (G-P) algorithm
– KLU is an implementation of 

the G-P algorithm
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[G-P] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional 
to arithmetic operations,” SIAM J. Sci. Statist. Comput. , vol. 9, pp. 862–874, 
1988.
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Parallel LU methodology
• The software flow
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Parallel LU methodology
• Partial pivoting

– During iterations, there may be some 0’s or 
small values on the diagonal

• Find the maximum element in each column, and 
swap it to the diagonal

– Partial pivoting can interchange the rows
– The symbolic structure of L and U depends on 

pivot choices, not fixed during iterations
– The exact column-level dependency cannot be 

obtained before factorization (The exact column-
level dependency is determined by the structure 
of U)2016/4/7 ASPDAC 2012 19



Parallel LU methodology
• Elimination Tree (ETree) is used to represent 

the column-level dependency
– J. W. H. Liu, “The role of elimination trees in 

sparse factorization,” SIAM J. Matrix Analysis 
and Applications , vol. 11, pp. 134–172, 1990.

• ETree contains all potential dependency, 
regardless of the actual pivot choices
– overestimates the actual dependency
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Parallel LU methodology
• Elimination Tree (ETree)
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Parallel LU methodology
• Level

– the longest distance from each node to the leaf 
nodes
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The nodes in the same level are independent!



Parallel LU methodology
• Elimination Scheduler (EScheduler)

– EScheduler is the primary scheduler in our 
solver
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Parallel LU methodology
• Task scheduling

– Cluster mode
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Parallel LU methodology
• Task scheduling

– Pipeline mode
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Parallel LU methodology
• Time diagram
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Experimental results
• Linux server

– 2 Intel Xeon5670 CPUs, 12 cores in total
– 24GB memory

• Test benchmarks: Tim Davis, University of 
Florida Sparse Matrix Collection
– http://www.cise.ufl.edu/research/sparse/matrices

/index.html
• Two types of speedups

– Speedup: speedups over KLU
– Relative speedup: speedups over our 1-core 

performance
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Experimental results
• Benchmark statistics
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min max
#benchmarks 35
Dimension (N) 2.4k by 2.4k 5.5M by 5.5M
density (NNZ(A)/N/N) 9.2E-7 0.0052
row density (NNZ(A)/N) 3.4 10.1
NNZ(L+U)/NNZ(A) 1 86
condition number 2738 1.79E+21
Average pre-processing
time

4.64

Average factorization time
(1-core)

101.72

Average right-hand-solving
time

0.16



Experimental results
• Speedup over KLU, on Set 1 (the matrices which are 

suitable for parallel factorization)
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Experimental results
• Speedup over KLU, on Set 2 (the matrices which are 

suitable for sequential factorization)
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Experimental results
• Relative speedup over our 1-core solver
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Experimental results
• Estimated relative fill-in
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Set 2
NNZ(L+U)  / NNZ(A)



Experimental results
• Not every matrix is suitable for parallel 

algorithm
– If the numeric computation time is little, the 

parallel overheads will dominate in the total 
runtime, such as: scheduling time, 
synchronization time, memory/cache conflicts...

– NNZ(L+U) / NNZ(A) (the relative fill-in) can 
effectively predict the sequential/parallel 
decision

2016/4/7 ASPDAC 2012 36



Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 38ASPDAC 2012



Conclusion
• Column-level parallel LU factorization 

algorithm for circuit simulation
– Two parallel modes to fit the different data-

dependency and reduce scheduling overhead
• A simple method to decide whether a matrix 

should use parallel or sequential algorithm
– Each matrix can achieve the optimal 

performance
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Website
• http://nicslu.weebly.com/index.html
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Thanks for your attention
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