

An Adaptive LU Factorization Algorithm for Parallel Circuit Simulation

Xiaoming Chen, Yu Wang, Huazhong Yang

Nano-scaled Integrated Circuits and Systems Lab

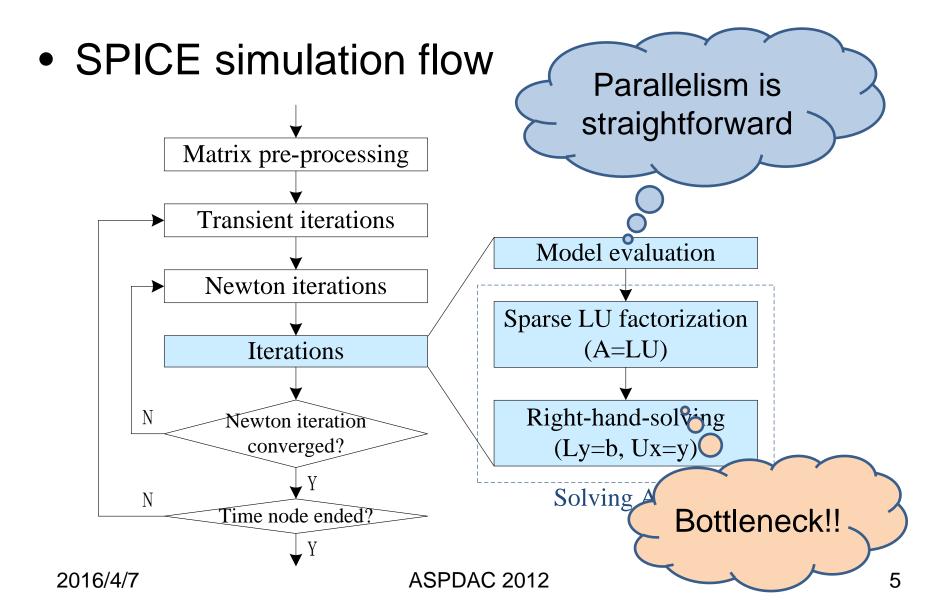
Department of Electronic Engineering

Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing, China

Outline

- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion


Outline

- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion

Motivation

- SPICE: the most widely used circuit simulation engine
 - Challenges: time-consuming, especially in postlayout simulation
 - Requirement: acceleration of SPICE
 - We expect: finish in 12 hours
- Parallel circuit simulation attracts research interests for decades
 - Parallel algorithms by multi-thread are potential solutions

Motivation

Motivation

- Features of circuit matrices
 - Extremely sparse
 - Unsymmetric, not positive-definite, usually irregular structure
 - The nonzero pattern remains unchanged during the iterations (no pivoting)
 - The structure of the LU factors are also fixed during the iterations
 - symbolic factorization needs only once
- A special matrix solver for circuit simulation is needed

ASPDAC 2012

Related work

- SuperLU(1999)
 - General-purpose matrix solver
 - Sequential/multi-thread/distributed versions
 - Uses Supernodes to handle dense blocks
 - Poor performance for circuit simulation
- Pardiso(2002)
 - General-purpose matrix solver
 - Sequential/multi-thread/distributed versions
 - Also uses Supernodes

^{•[}SuperLU] J. W. Demmel, J. R. Gilbert, and X. S. Li, "An asynchronous parallel supernodal algorithm for sparse gaussian elimination," *SIAM J. Matrix Analysis and Applications, vol. 20, no. 4, pp. 915–952, 1999.*

^{•[}Pardiso] O. Schenk and K. Gartner, "Solving unsymmetric sparse systems of linear equations with pardiso," *Computational Science - ICCS 2002*, vol. 2330, pp. 355–363, 2002.

Related work

- KLU(2010)
 - Specially optimized for circuit simulation
 - Only sequential version
- UMFPACK(2004), MUMPS(2006)
 - Multifrontal (dense blocks)

^{•[}KLU] T. A. Davis and E. Palamadai Natarajan, "Algorithm 907: KLU, a direct sparse solver for circuit simulation problems," *ACM Trans. Math. Softw.*, vol. 37, pp. 36:1–36:17, September 2010

^{•[}UMFPACK] T. A. Davis, "Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method," *ACM Trans. Math. Softw.,* vol. 30, pp. 196–199, June 2004.

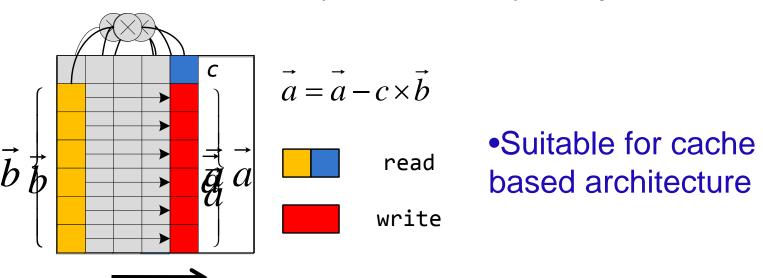
^{•[}MUMPS] P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet, "Hybrid scheduling for the parallel solution of linear systems," *Parallel Computing, vol. 32, no. 2, pp. 136–156, 2006.*

Related work

- Among all the public sparse matrix solver implementations, only KLU is specially designed for circuit simulation
 - KLU has no parallel version
 - To our knowledge, currently there's no research that parallelizes KLU

Outline

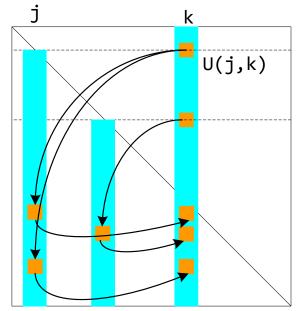
- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion


- Pre-processing (pre-analysis)
 - performs column/row permutations to increase numeric stability and reduce fill-ins
- Factorization

$$A = LU = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & 0 & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & \cdots & u_{1n} \\ & 1 & \cdots & u_{2n} \\ & 0 & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$

Right-hand-solving

$$L\overrightarrow{y} = \overrightarrow{b}$$
 $U\overrightarrow{x} = \overrightarrow{y}$


- Left-looking algorithm
 - Factorizes the matrix by sequentially processing each column
 - When factorizing each column (say k), it uses all the left columns (1, 2, ..., k-1) to update self

- Left-looking algorithm
 - If the matrix is dense, each column (k) depends on all of its left columns (1, 2, ..., k-1)
 - A complete sequential algorithm, strong data dependency, hard to be parallelized

- When the matrix is sparse...
 - Each column only depends on part of its left columns
 - Column k depends on column j, iff U(j, k) ≠ 0 (j<k)
 - The structure of U determines the column-level dependency
- Sparse left-looking algorithm
 - Gilbert-Peierls (G-P) algorithm
 - KLU is an implementation of the G-P algorithm

[G-P] J. R. Gilbert and T. Peierls, "Sparse partial pivoting in time proportional to arithmetic operations," SIAM J. Sci. Statist. Comput., vol. 9, pp. 862–874, 1988.

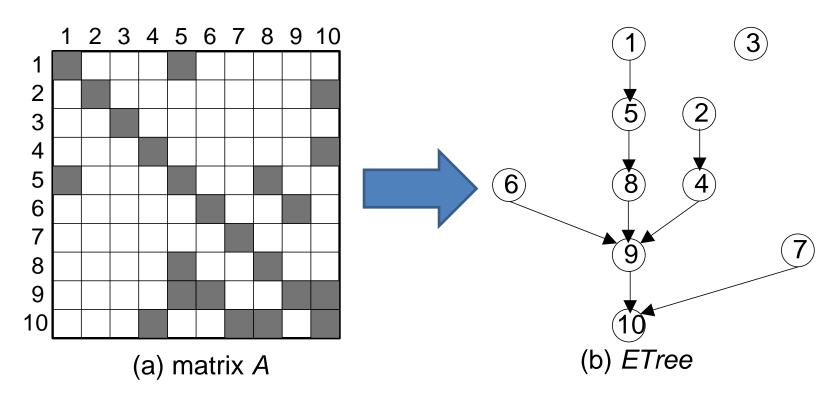
Outline

- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion

Parallel LU meth

The software flow

Determine column-level dependency (performed only once)

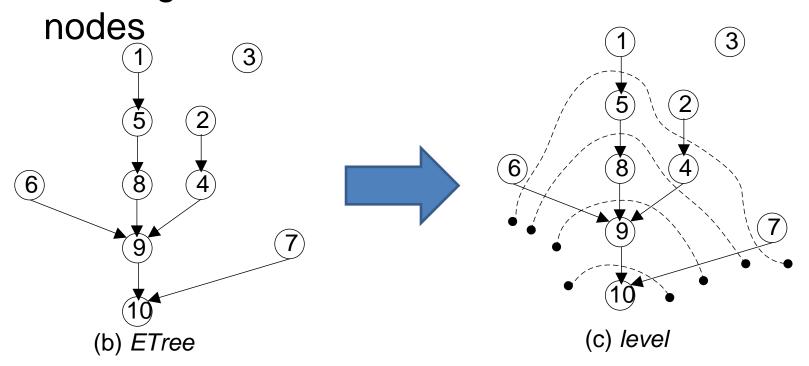


- Partial pivoting
 - During iterations, there may be some 0's or small values on the diagonal
 - Find the maximum element in each column, and swap it to the diagonal
 - Partial pivoting can interchange the rows
 - The symbolic structure of L and U depends on pivot choices, not fixed during iterations
 - The exact column-level dependency cannot be obtained before factorization (The exact columnlevel dependency is determined by the structure

2016/4**7f U)** ASPDAC 2012 19

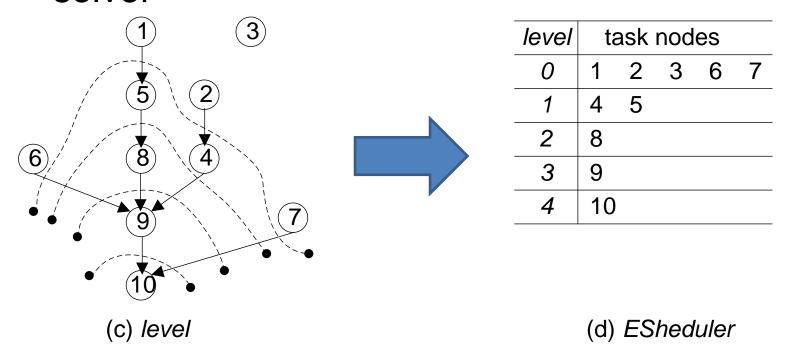
- Elimination Tree (ETree) is used to represent the column-level dependency
 - J. W. H. Liu, "The role of elimination trees in sparse factorization," SIAM J. Matrix Analysis and Applications, vol. 11, pp. 134–172, 1990.
- ETree contains all potential dependency, regardless of the actual pivot choices
 - overestimates the actual dependency

Elimination Tree (ETree)



Node ⇔ column

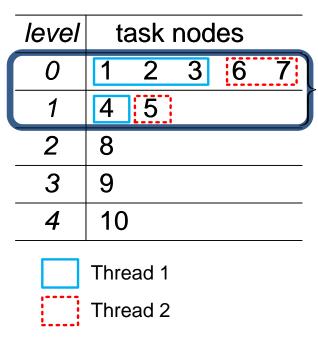
Edge: the potential dependency


Level

the longest distance from each node to the leaf

The nodes in the same level are independent!

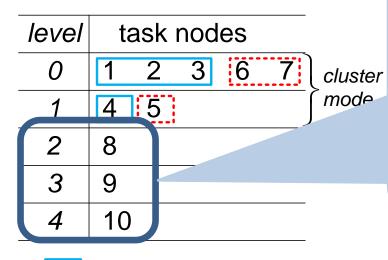
- Elimination Scheduler (EScheduler)
 - EScheduler is the primary scheduler in our solver


The nodes in the same level are independent!

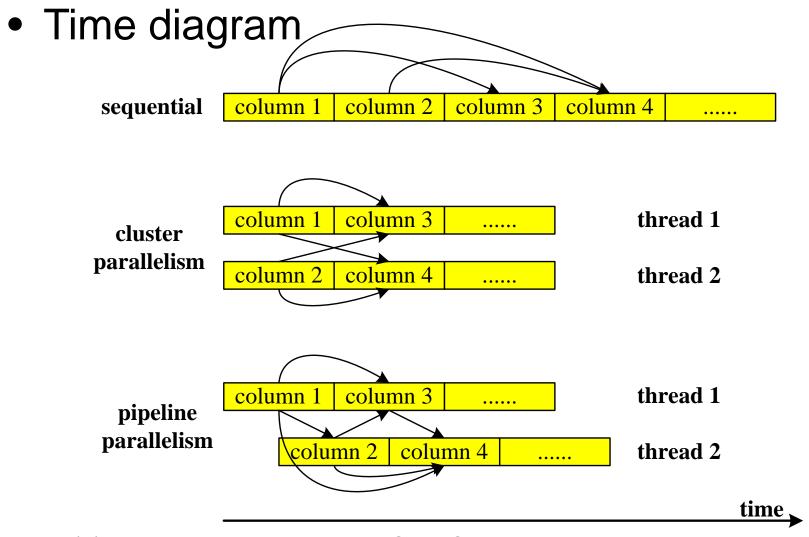
cluster

mode

Task scheduling


Cluster mode

(d) ESheduler


- The nodes in the same level are independent
- ➤ Parallel method 1: cluster mode
- ➤ Level by level
- For each level, equally assign the nodes to all the cores, the nodes assigned to one core is called a "cluster"

- Task scheduling
 - Pipeline mode

- Thread 1
 Thread 2
 - (d) ESheduler

- ➤ Cluster mode cannot achieve effective speedup
- The nodes in different levels may be dependent
- ➤ Parallel method 2: pipeline
- > exploits parallelism between dependent levels

Outline

- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion

- Linux server
 - 2 Intel Xeon5670 CPUs, 12 cores in total
 - 24GB memory
- Test benchmarks: Tim Davis, University of Florida Sparse Matrix Collection
 - http://www.cise.ufl.edu/research/sparse/matrices/ index.html
- Two types of speedups
 - Speedup: speedups over KLU
 - Relative speedup: speedups over our 1-core performance

Benchmark statistics

<u>Denominark Statisti</u>	<u> </u>					
	min	max				
#benchmarks	35					
Dimension (N)	2.4k by 2.4k	5.5M by 5.5M				
density (NNZ(A)/N/N)	9.2E-7	0.0052				
row density (NNZ(A)/N)	3.4	10.1				
NNZ(L+U)/NNZ(A)	1	86				
condition number	2738	1.79E+21				
Average pre-processing time	4.64					
Average factorization time (1-core)	101.72					
Average right-hand-solving time	0.16					

2016/4/7

 Speedup over KLU, on Set 1 (the matrices which are suitable for parallel factorization)

Matrix	N	NNZ_A		K	LU		Our algorithm									
benchmark			time(s)	fill-in	flops	residual	P.	P=1 $P=4$				= 8	fill-in	flops	residual	
Concinnation	×103	×10 ³	Lime(s)		l nops	l concuer	time(s)			speedup				порз	l concuu.	
						Set 1 b	enchmarl									
rajat03	7.6	32.7	0.024	4.79	6.55E+06	1.52E-20	0.023	1.02	0.012	1.99	0.013	1.89	4.89	6.97E+06	1.49E-20	
coupled	11.3	98.5	0.074	3.68	2.37E+07	2.79E-19	0.074	1.00	0.027	2.67	0.026	2.80	3.79	2.47E+07	2.34E-19	
onetone l	36.1	341.1	16.373	32.83	1.08E+10	8.48E-13	2.373	6.90	0.601	27.24	0.319	51.38	8.90	1.34E+09	1.72E-17	
onetone2	36.1	227.6	0.620	9.36	4.66E+08	1.39E-13	0.265	2.34	0.116	5.35	0.081	7.71	5.46	1.98E+08	1.37E-17	
ckt11752_dc_1	49.7	333.0	0.086	3.17	3.51E+07	5.18E-18	0.417	0.21	0.252	0.34	0.154		6.47	3.04E+08	4.55E-18	
ASIC_100ks	99.2	578.9	2.924			2.52E-23	1.793		0.636		0.398	7.35			9.37E-24	
ASIC_100k	99.3	954.2	2.342	4.58	1.73E+09	3.89E-23	1.501	1.56	0.629	3.72	0.433	5.41	4.20	1.11E+09	3.45E-23	
P=1																
					P =	1			P =	= 4			Ī	P =	8	
			ti	me(1 speed	up	time	_	= 4 spee	edup	tin	ne(8 peedu	
geometric	c-av	erag				speed	up	time	_	spee	dup	+	ne(

 Speedup over KLU, on Set 2 (the matrices which are suitable for sequential factorization)

	Set 2 benchmarks														
add20	2.4	17.3	0.002	1.00	1.31E+05	1.53E-17	0.002	1.05	0.011	0.15	0.004	0.38	1.00	1.31E+05	1.46E-17
circuit_1	2.6	35.8	0.004	1.18	6.64E+05	2.44E-20	0.004	1.00	0.004	1.20	0.026	0.16	1.21	9.09E+05	1.34E-20
circuit_2	4.5	21.2		1.68	4.45E+05	1.27E-16	0.003	1.06	0.003	1.09	0.020	0.17	1.54	4.16E+05	1.06E-21
add32	5.0	23.9	0.002	1.00	4.87E+04	1.94E-17	0.002	0.71	0.005	0.36	0.018	0.10		4.87E+04	
circuit_3	12.1	48.1	0.007	1.38	2.12E+05	1.13E-18	0.006	1.22	0.010	0.69	0.013	0.55	1.42	2.47E+05	2.70E-21
circuit_4	80.2	307.6	0.032	1.44	6.93E+06	3.85E-20	0.025	1.27	0.068	0.47	0.063	0.50	1.40	5.36E+06	9.99E-20
heireuit	105.7	513.1	0.046	1.22	2.30E+06	1.92E-19	0.036	1.28	0.076	0.60	0.077	0.59	1.23	2.42E+06	1.88E-19
dcl	116.8	766.4	0.114	1.49	3.83E+07	4.35E-19	0.102	1.11	0.146	0.78	0.147	0.77	1.47	3.59E+07	1.72E-18
trans4	116.8	766.4	0.118	1.48	3.82E+07	2.03E-20	0.108	1.09	0.148	0.79	0.144	0.82	1.47	3.59E+07	3.72E-20
ASIC_680k	682.9	3871.8	2.989	1.72	1.07E+09	1.68E-28	2.047	1.46	1.361	2.20	1.141	2.62	1.70	9.99E+08	3.44E-28
circuit5M	5558.3	59524.3	4.346	1.04	1.00E+09	4.57E-19	3.299	1.32	6.129	0.71	6.390	0.68	1.04	1.10E+09	6.64E-19
arithmetic-average								1.14		0.82		0.67			
geometric-average								1.13		0.67		0.46			

	P =	= 1	<i>P</i> :	= 4	<i>P</i> :	= 8
	time(s)	speedup	time(s)	speedup	time(s)	speedup
geometric-average		1.13		0.67		0.46

• Relative speedup over our 1-core solver

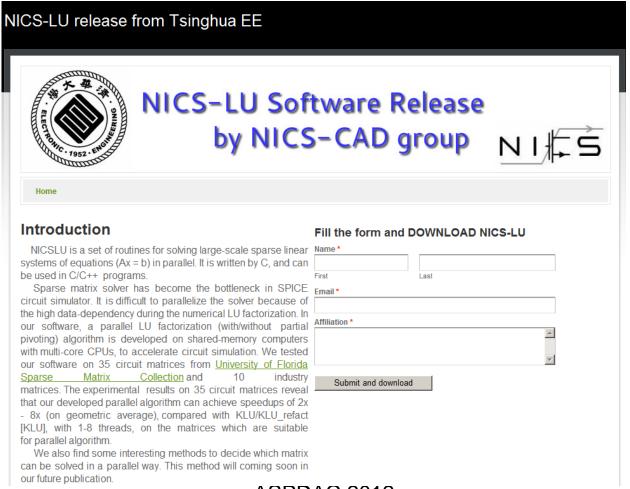
Matrix benchmark	relative	speedup	$\frac{NNZ_S}{NNZ_A}$	Matrix benchmark			$\frac{NNZ_S}{NNZ_A}$			
	benchm		FITT ZA		t 2 benc					
rajat03	1.95	1.84	4.89	add20	0.14	0.36	1.00			
coupled	2.68	2.80	3.79	circuit_1	1.20	0.16	1.21			
onetonel	3.94	7.45	8.44	circuit_2	1.03	0.16	1.54			
onetone2	2.28	3.29	5.46	add32	0.51	0.14	1.00			
ckt11752_dc_1	1.65	2.70	3.33	circuit_3	0.56	0.45	1.42			
ASIC_100ks	2.82	4.51	6.29	circuit_4	0.37	0.40	1.40			
ASIC_100k	2.39	3.47	4.20	heireuit	0.47	0.46	1.23			
twotone	2.91	4.75	9.44	dcl	0.70	0.69	1.47			
G2_circuit	3.27	5.46	27.48	trans4	0.73	0.75	1.47			
mac_i	Set I bellemmarks									
AS A				ľ	elati	ve :	speedu	re	lative speedup	
					P =	4	P = 8	brack P	P = 4 P = 8	
AS geo	me	tric	-ave	rage	2.6	6	4.01	geometric-average	0.60 0.41	
d										
m Freescale I	2.25	3.22					<u> </u>			
m Freescale1 circuit5M_dc	3.31	5.80	17.28							
m Freescale I	3.31 3.35		17.28 13.09	arithmetic-avera	ge 0.70	0.53	1.32			

Estimated relative fill-in

Matrix	relative	speedup	NNZ_S	Matrix		speedup		
benchmark	P = 4	P = 8	NNZ_A	benchmark	P = 4	P = 8	VNZ_A	
Set 1 b	Set 1 benchmarks Set 2 benchmarks				2 benc	hmarks		Set 2
rajat03	1.95	1.84	4.89	add20	0.14	0.36	1.00	Jet 2
coupled	2.68	2.80	3.79	circuit_1	1.20	0.16	1.21	NNZ(L+U) / NNZ(A)
onetonel	3.94	7.45	8.44	circuit_2	1.03	0.16	1.54	
onetone2	2.28	3.29	5.46	add32	0.51	0.14	1.00	1.00
ckt11752_dc_1	1.65	2.70	3.33	circuit_3	0.56	0.45	1.42	1.00
ASIC_100ks	2.82	4.51	6.29	circuit_4	0.37	0.40	1.40	
ASIC_100k	2.39	3.47	4.20	heireuit	0.47	0.46	1.23	1.21
twotone	2.91	4.75	9.44	dc1	0.70	0.69	1.47	
G2_circuit	3.27	5.46	27.48	trans4	0.73	0.75	1.47	1.54
transient	1.38	1.57	2.09	ASIC_680k	1.50	1.79	1.70	
mac_econ_fwd500	2.44	4.14	47.54	circuit5M	0.54	0.52	1.04	1.00
Rajl	1.73	1.98	5.60					1.00
ASIC_320ks	3.47	6.59	2.65					1.42
ASIC_320k	3.62	6.53	2.14					1.72
mc2depi	3.57	6.60	25.88					1.40
rajat30	2.31	3.21	3.10					1.40
pre2	3.17	4.92	17.12					1.23
ASIC_680ks	2.29	3.36	2.13					1.23
Hamrle3	2.74	4.31	43.71					1.47
G3_circuit	3.26	5.12	49.21					1.47
memchip	3.25	5.20	14.79					1.47
Freescale 1	2.25	3.22	3.24					1.47
circuit5M_dc	3.31	5.80	4.11					1.50
rajat31	3.35	5.30	17.28					1.70
arithmetic-average		4.34	13.09	arithmetic-average		0.53	1.32	
geometric-average	2.66	4.01	7.63	geometric-average	0.60	0.41	1.30	1.04

- Not every matrix is suitable for parallel algorithm
 - If the numeric computation time is little, the parallel overheads will dominate in the total runtime, such as: scheduling time, synchronization time, memory/cache conflicts...
 - NNZ(L+U) / NNZ(A) (the relative fill-in) can effectively predict the sequential/parallel decision

Outline


- Motivation & related work
- LU factorization basics
- Parallel LU methodology
- Experimental results
- Conclusion

Conclusion

- Column-level parallel LU factorization algorithm for circuit simulation
 - Two parallel modes to fit the different datadependency and reduce scheduling overhead
- A simple method to decide whether a matrix should use parallel or sequential algorithm
 - Each matrix can achieve the optimal performance

Website

http://nicslu.weebly.com/index.html

Thanks for your attention