
An Adaptive LU Factorization Algorithm
for Parallel Circuit Simulation

Xiaoming Chen, Yu Wang, Huazhong Yang
Nano-scaled Integrated Circuits and Systems Lab

Department of Electronic Engineering
Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing, China

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 2ASPDAC 2012

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 3ASPDAC 2012

Motivation
• SPICE: the most widely used circuit

simulation engine
– Challenges: time-consuming, especially in post-

layout simulation
– Requirement: acceleration of SPICE
– We expect: finish in 12 hours

• Parallel circuit simulation attracts research
interests for decades
– Parallel algorithms by multi-thread are potential

solutions
2016/4/7 ASPDAC 2012 4

Motivation
• SPICE simulation flow

2016/4/7 ASPDAC 2012 5

Matrix pre-processing

Transient iterations

Newton iterations

Newton iteration
converged?

Time node ended?

Iterations

Y

Y

N

N

Model evaluation

Sparse LU factorization
(A=LU)

Right-hand-solving
(Ly=b, Ux=y)

Solving Ax=b

Parallelism is
straightforward

Bottleneck!!

Motivation
• Features of circuit matrices

– Extremely sparse
– Unsymmetric, not positive-definite, usually

irregular structure
– The nonzero pattern remains unchanged during

the iterations (no pivoting)
• The structure of the LU factors are also fixed during

the iterations
• symbolic factorization needs only once

• A special matrix solver for circuit simulation
is needed

2016/4/7 ASPDAC 2012 6

Related work
• SuperLU(1999)

– General-purpose matrix solver
– Sequential/multi-thread/distributed versions
– Uses Supernodes to handle dense blocks
– Poor performance for circuit simulation

• Pardiso(2002)
– General-purpose matrix solver
– Sequential/multi-thread/distributed versions
– Also uses Supernodes

2016/4/7 ASPDAC 2012 7

•[SuperLU] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel supernodal algorithm for sparse gaussian
elimination,” SIAM J. Matrix Analysis and Applications, vol. 20, no. 4, pp. 915–952, 1999.
•[Pardiso] O. Schenk and K. Gartner, “Solving unsymmetric sparse systems of linear equations with pardiso,” Computational
Science - ICCS 2002, vol. 2330, pp. 355–363, 2002.

Related work
• KLU(2010)

– Specially optimized for circuit simulation
– Only sequential version

• UMFPACK(2004), MUMPS(2006)
– Multifrontal (dense blocks)

2016/4/7 ASPDAC 2012 8

•[KLU] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,”
ACM Trans. Math. Softw., vol. 37, pp. 36:1–36:17, September 2010
•[UMFPACK] T. A. Davis, “Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method,” ACM Trans. Math. Softw.,
vol. 30, pp. 196–199, June 2004.
•[MUMPS] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid scheduling for the parallel solution of linear
systems,” Parallel Computing, vol. 32, no. 2, pp. 136–156, 2006.

Related work
• Among all the public sparse matrix solver

implementations, only KLU is specially
designed for circuit simulation
– KLU has no parallel version
– To our knowledge, currently there’s no research

that parallelizes KLU

2016/4/7 ASPDAC 2012 9

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 10ASPDAC 2012

LU factorization basics
• Pre-processing (pre-analysis)

– performs column/row permutations to increase
numeric stability and reduce fill-ins

• Factorization

• Right-hand-solving

2016/4/7 ASPDAC 2012 11

LU factorization basics
• Left-looking algorithm

– Factorizes the matrix by sequentially processing
each column

– When factorizing each column (say k), it uses all
the left columns (1, 2, ..., k-1) to update self

2016/4/7 ASPDAC 2012 12

c

a


b
















c

a


b
















c

a


b
















c

a


b
















a a c b= − ×
  

read

write

Update

•Suitable for cache
based architecture

LU factorization basics
• Left-looking algorithm

– If the matrix is dense, each column (k) depends
on all of its left columns (1, 2, ..., k-1)

– A complete sequential algorithm, strong data
dependency, hard to be parallelized

2016/4/7 ASPDAC 2012 13

LU factorization basics
• When the matrix is sparse...

– Each column only depends on part of its left columns
– Column k depends on column j, iff U(j, k) ≠ 0 (j<k)
– The structure of U determines the column-level

dependency

• Sparse left-looking algorithm
– Gilbert-Peierls (G-P) algorithm
– KLU is an implementation of

the G-P algorithm

2016/4/7 ASPDAC 2012 14

kj

U(j,k)

[G-P] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional
to arithmetic operations,” SIAM J. Sci. Statist. Comput. , vol. 9, pp. 862–874,
1988.

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 17ASPDAC 2012

Parallel LU methodology
• The software flow

2016/4/7 ASPDAC 2012 18

suggestion?

Pre-processing

Static symbolic
factorization

Sequential left-
looking G-P

algorithm

Cluster
parallelism

Pipeline
parallelism

Right-hand-
solving

sequential parallel

Cluster parallelism
with partial pivoting

Pipeline parallelism
with partial pivoting

w/o partial pivoting
[TCAS-II]

w/ partial pivoting
[ASPDAC2012]

δ=NNZ(L+U) / NNZ(A)
If δ<2, the matrix should
use sequential factorization

Determine column-level
dependency (performed
only once)

The factorization is performed in
column-level parallelism, scheduled
by the column-level dependency
(performed many times, for the
iterations in circuit simulation)

Parallel LU methodology
• Partial pivoting

– During iterations, there may be some 0’s or
small values on the diagonal

• Find the maximum element in each column, and
swap it to the diagonal

– Partial pivoting can interchange the rows
– The symbolic structure of L and U depends on

pivot choices, not fixed during iterations
– The exact column-level dependency cannot be

obtained before factorization (The exact column-
level dependency is determined by the structure
of U)2016/4/7 ASPDAC 2012 19

Parallel LU methodology
• Elimination Tree (ETree) is used to represent

the column-level dependency
– J. W. H. Liu, “The role of elimination trees in

sparse factorization,” SIAM J. Matrix Analysis
and Applications , vol. 11, pp. 134–172, 1990.

• ETree contains all potential dependency,
regardless of the actual pivot choices
– overestimates the actual dependency

2016/4/7 ASPDAC 2012 20

Parallel LU methodology
• Elimination Tree (ETree)

2016/4/7 ASPDAC 2012 22

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

(a) matrix A

1

9

8

7

6

5

4

3

2

10
(b) ETree

Node  column
Edge: the potential dependency

Parallel LU methodology
• Level

– the longest distance from each node to the leaf
nodes

2016/4/7 ASPDAC 2012 23

1

9

8

7

6

5

4

3

2

10
(b) ETree

1

9

8

7

6

5

4

3

2

10

(c) level

The nodes in the same level are independent!

Parallel LU methodology
• Elimination Scheduler (EScheduler)

– EScheduler is the primary scheduler in our
solver

2016/4/7 ASPDAC 2012 24

1

9

8

7

6

5

4

3

2

10

(c) level

level task nodes
0
1
2
3

1 2 3 6 7
4 5
8
9
104

(d) ESheduler
The nodes in the same level are independent!

Parallel LU methodology
• Task scheduling

– Cluster mode

2016/4/7 ASPDAC 2012 25

level task nodes
0
1
2
3

1 2 3 6 7
4 5
8
9
104

(d) ESheduler

The nodes in the same level are
independent

Parallel method 1: cluster mode
Level by level
For each level, equally assign
the nodes to all the cores, the
nodes assigned to one core is
called a “cluster”

level task nodes
0
1
2
3

1 2 3 6 7
4 5
8
9
104

Thread 1

Thread 2





cluster
mode

(d) ESheduler

Parallel LU methodology
• Task scheduling

– Pipeline mode

2016/4/7 ASPDAC 2012 26

level task nodes
0
1
2
3

1 2 3 6 7
4 5
8
9
104

Thread 1

Thread 2





cluster
mode

(d) ESheduler

Cluster mode cannot achieve
effective speedup
The nodes in different levels may
be dependent

Parallel method 2: pipeline
exploits parallelism between
dependent levels

Parallel LU methodology
• Time diagram

2016/4/7 ASPDAC 2012 28

column 1 column 2 column 3 column 4

column 1

column 2

column 3

column 4

......

......

column 1

column 2

column 3

column 4

......

......

sequential

cluster
parallelism

pipeline
parallelism

thread 1

thread 2

thread 1

thread 2

time

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 29ASPDAC 2012

Experimental results
• Linux server

– 2 Intel Xeon5670 CPUs, 12 cores in total
– 24GB memory

• Test benchmarks: Tim Davis, University of
Florida Sparse Matrix Collection
– http://www.cise.ufl.edu/research/sparse/matrices

/index.html
• Two types of speedups

– Speedup: speedups over KLU
– Relative speedup: speedups over our 1-core

performance
2016/4/7 ASPDAC 2012 30

http://www.cise.ufl.edu/research/sparse/matrices/index.html

Experimental results
• Benchmark statistics

2016/4/7 ASPDAC 2012 31

min max
#benchmarks 35
Dimension (N) 2.4k by 2.4k 5.5M by 5.5M
density (NNZ(A)/N/N) 9.2E-7 0.0052
row density (NNZ(A)/N) 3.4 10.1
NNZ(L+U)/NNZ(A) 1 86
condition number 2738 1.79E+21
Average pre-processing
time

4.64

Average factorization time
(1-core)

101.72

Average right-hand-solving
time

0.16

Experimental results
• Speedup over KLU, on Set 1 (the matrices which are

suitable for parallel factorization)

2016/4/7 ASPDAC 2012 32

Experimental results
• Speedup over KLU, on Set 2 (the matrices which are

suitable for sequential factorization)

2016/4/7 ASPDAC 2012 33

Experimental results
• Relative speedup over our 1-core solver

2016/4/7 ASPDAC 2012 34

Experimental results
• Estimated relative fill-in

2016/4/7 ASPDAC 2012 35

Set 2
NNZ(L+U) / NNZ(A)

Experimental results
• Not every matrix is suitable for parallel

algorithm
– If the numeric computation time is little, the

parallel overheads will dominate in the total
runtime, such as: scheduling time,
synchronization time, memory/cache conflicts...

– NNZ(L+U) / NNZ(A) (the relative fill-in) can
effectively predict the sequential/parallel
decision

2016/4/7 ASPDAC 2012 36

Outline
• Motivation & related work
• LU factorization basics
• Parallel LU methodology
• Experimental results
• Conclusion

2016/4/7 38ASPDAC 2012

Conclusion
• Column-level parallel LU factorization

algorithm for circuit simulation
– Two parallel modes to fit the different data-

dependency and reduce scheduling overhead
• A simple method to decide whether a matrix

should use parallel or sequential algorithm
– Each matrix can achieve the optimal

performance

2016/4/7 ASPDAC 2012 39

Website
• http://nicslu.weebly.com/index.html

2016/4/7 ASPDAC 2012 40

http://nicslu.weebly.com/index.html

Thanks for your attention

2016/4/7 ASPDAC 2012 41

	An Adaptive LU Factorization Algorithm for Parallel Circuit Simulation
	Outline
	Outline
	Motivation
	Motivation
	Motivation
	Related work
	Related work
	Related work
	Outline
	LU factorization basics
	LU factorization basics
	LU factorization basics
	LU factorization basics
	Outline
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Parallel LU methodology
	Outline
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Outline
	Conclusion
	Website
	Thanks for your attention

