FPGA-BASED ACCELERATION OF NEURAL NETWORK FOR RANKING IN WEB
SEARCH ENGINE WITH A STREAMING ARCHITECTURE

Jing YAN'2, Ning-Yi XU*', Xiong-Fei CAI', Rui GAO', Yu WANG ™12, Rong LUO?, Feng-Hsiung Hsu*

'Hardware Computing Group, Microsoft Research Asia, Beijing, China, 100190
2Department of Electronic Engineering, Tsinghua university,Beijing, China, 100084
email: {v-jiy, ningyixu, xfcai, ruigao, fhh} @microsoft.com, {yu-wang,luorong } @mail.tsinghua.edu.cn

ABSTRACT

Web search engine companies are intensively running learn-
ing to rank algorithms to improve the search relevance. Neu-
ral network (NN)-based approaches, such as LambdaRank,
can significantly increase the ranking quality. While, their
training is very slow on a single computer and inherent coarse-
grained parallelism could be hardly utilized by computer
clusters. Thus an efficient implementation is necessary to
timely generate acceptable NN models on frequently up-
dated training datasets. This paper presents our work in
accelerating LambdaRank with an FPGA-based hardware
accelerator. A SIMD streaming architecture is proposed to
i) efficiently map the query-level NN computation and data
structure to FPGA, ii) fully exploit the inherent fine-grained
parallelism, and iii) provide scalability to large scale datasets.
The accelerator shows up to 17.9X speedup over the soft-
ware implementation on datasets from a commercial search
engine.

1. INTRODUCTION

Web search based Internet advertising services have become
a huge business in recent years with billions of annual earn-
ings. To attract more users and obtain larger market share,
search engine companies are intensively using ranking tech-
niques to increase their search relevance, which is deter-
mined by ranking functions that rank resultant documents
(URLSs) according to their similarities to the input query.
Many factors affect the ranking function for search rele-
vance, such as page content, title, URL, spam, and page
freshness. It is extremely difficult to manually tune rank-
ing function parameters to combine these factors in an ever-
growing web-scale system. Alternatively, to solve this prob-
lem, “learning to rank™ algorithms have been actively de-
signed and applied to automatically learn complex ranking
functions from large-scale training sets in recent years [1].

*Corresponding author

+Yu WANG’s work was partially supported by National Natural Sci-
ence Foundation of China No.60870001 and TNList Cross-discipline Foun-
dation.

978-1-4244-3892-1/09/$25.00 ©2009 IEEE

662

Among the proposed algorithms, NN-based approaches,
such as RankNet [2] and LambdaRank [3][4] have shown
superior quality over others. RankNet, which uses backward
propagate (BP) NN to optimize a smooth cost function, was
the first work that was evaluated on a commercial search
engine. LambdaRank, implemented with RankNet models,
has shown significant relevance improvements on commer-
cial search engine datasets. While, it is still very slow. On a
typical dataset, it costs half a day for acceptable results.

This paper proposes the design of a FPGA-based accel-
erator for the LambdaRank algorithm. We devise a SIMD
streaming architecture to accelerate the training process for
the web relevance ranking. With this architecture, the Lamb-
daRank accelerator presents up to 17.9X speedup compared
with the software on datasets from a commercial Web search
engine, and more speedup is expected through further per-
formance optimizations. Experiments also show that this
architecture scales well to the large scale training data.

This paper is organized as follows: Section 2 describes
the LambdaRank algorithm for relevance ranking, and an-
alyzes the software implementation. Section 3 presents the
design of the accelerator architecture. The experimental re-
sults and performance model are discussed in section 4. Sec-
tion 5 concludes the paper and discusses the future work.

2. APPLICATION: LAMBDARANK FOR RANKING

2.1. LambdaRank algorithm

LambdaRank is proposed by Christopher J.C. Burges in 2005
[3] to minimize any multivariate, non-differentiable cost func-
tion. The algorithm is provided by a two-layer NN formula-
tion (noted as LambdaRank in the following), although the
idea can be applied to any differentiable function class. We
will briefly describe how LambdaRank is applied to train the
ranking functions for Web search. Ranking functions are
used to assign scores to web pages that match the queries
from users, and these scores determine the order of returned
pages.

The input data, or so called training dataset, is struc-

tured with queries that are issued by search engine users.
A dataset has Ng queries, and the ¢"" query has N, Dq doc-
uments. Each document is expressed by Nr document fea-
tures. Each document feature is a real-valued number. Doc-
ument features can be classified as query-dependent features
(such as query term frequencies in a document and term
proximity) or query-independent features (such as document
length and PageRank [5]). Thus, the same document may be
represented by different feature vectors for different queries
due to the existence of query-dependent features. We use
feature,qs to represent the f'" feature value of the d' doc-
ument in the ¢*” query. A ranking model is actually a func-
tion of document features. The proposed 2-layer NN model
has N input nodes, Ny hidden nodes and one output node.
The model parameters include: i) the hidden node weight
wy, ¢ assigned to the edge from the f** input node to the h'"
hidden node; ii) the output node weight wy, assigned to the
edge from the h*" hidden node to the output node; and iii)
hidden node threshold 6}, assigned to the h;, hidden node.

For training, a label I; € {“bad match”,“good match”,
etc.} is assigned to each document d by people, according to
its relevance to the corresponding query. In the same query,
two documents are defined as a pair when they have differ-
ent labels. In web relevance ranking, normalized discounted
cumulative gain (NDCG) [6] is usually used as the measure-
ment to evaluate the quality of the ranking results. A higher
NDCG value means better relevance.

Instead of defining the cost function C, LambdaRank
defines the gradient of C' with respect to the score s; of the
document j, for the ¢*" query. The A functions are defined
to reflect human intuitions of particular quality measure.

Furthermore, LambdaRank is proposed as a batch learn-
ing per query (weights are updated for each query). For each
query in the training data, firstly, scores s;,5 = 1,...,n of
each document are calculated by

Ny Np
s = th tanh(z wpy featureq;s + 0p) (1)
h=0 F=0

This step is called forward propagation (FP).

Let P be the set of document pairs indices and wy, € R be the
model parameters. The total cost is Cr = >-(; ;1o p C(si, 85).-
Let P; be the set of indices j for which {7, 5} is a valid pair, and
let D be the set of document indices. The derivative of Cr with
respect to wy is

8CT 831‘ 80(81 Sj)
o T 05) 2
8wk zEZD 8wk Z 38i ()
Jjep;
Then the second step calculates \; = Zj cP; %ﬁ’ls]) for each

i=1,...,n. The term w is designed to reflect the intent of

NDCG, which is beyond theqrscope of this paper. We use

80(&', Sj) o
881‘

(2" —2Y)
S l4esiTe

1+ rank(j)

1+ rank()) ®

og(

663

Algorithm 1: Pseudo code of LambdaRank

Input: training round number 7", N 7, document features and pair indices, 7
Output: W £ Wh» 0h’

1 Initialization: wp = random(), wp, = 0,0 =0
2 fort = 1toT do
3 forq = 1to N do
/+ FPCalc)
4 ford = 1to N do
5 for h = 1to Ny do
6 for f = 1to N g do
7 | sqn+ = wpy * featuregqp
8 end
9 sqp = tanh(sgp + 0p)
10 end
11 sqt+ = wp, * sqp
12 end
/+ LambdaCalc */
13 Sort(s;,i=1,..., NDq)mgclra,nk(i)‘ i=1,..., NDq
14 fori = 1to Np do
15 for j € P; do
/* ref to equation(3) */
16 A(i)+ = Partial(s;, sj, rank(i), rank(j), 1;, 1)
17 end
18 end
/+ BPCalc */
19 for b = 1to Ny do
20 ford = 1to Np do
21 for f = 1to N do
ds
d_ _ _ g2
22 dwpg = wn(= san)fdqs
23 end
9sq _
24 Bwy, ~ Sdh
ds 2
25 sot = wh (1= s3,)
26 end
27 Update O, , wy, £, wy, with their § and 77 using equation (4)
28 end
29 end
30 end

to calculate As, where rank(j) is the ranking position of s; in this

query.
The third step is back propagation with

8Si
Oowy,

aC:
wh=wi gt = wb Y g A “
€D

to update the NN model parameters. Here, 7 is the learning rate.
The partial derivatives with respect to scores Eiil could be com-
puted in the same way with a traditional BPNN algorithm. The

pseudo code of the algorithm is given in Algorithm 1.

2.2. Software profiling

The software is implemented with C++, compiled with Microsoft
Visual Studio 2008, and optimized for speed with SSE3 option.
A typical run with 300 rounds in software costs about 7 hours on
the benchmark dataset whose size is 1.22 GB and query number
is 15,986. Much more training rounds may be required for an ac-
ceptable result. The profiling results show that FPCalc and BPCalc
take 6.11 hours of all. Intensive floating point operations and cache
misses are the major reasons to the long computation time.

3. FPGA-BASED ACCELERATOR DESIGN WITH A
STREAMING ARCHITECTURE

3.1. AJAW: FPGA-based accelerator platform

AJAW board uses an Altera Stratix-II FPGA (EP2S180C5) as the
main computation engine for its good performance/cost ratio at the
time we built it. A Xilinx Virtex-5 LXT FPGA (LX50T) is also

Stratix-Il FPGA

Virtex-5 Kernel processing engines

FPGA

Data
Stream

FIFO:
® Data Buffer

*

PEO
ALU

PCle
Controller

SRF LRF

f vV
oPE
ALU

vi

Lambda
Calculation

I

™! pCle Local
Interface

Memory
Control [
Unit

Fig. 1. The block diagram of the FPGA-based accelerator.

used to provide a PCI Express (PCle) interface with the host com-
puter. The embedded PCle endpoint hard core supports up to 8
lanes (x8) and 4 GBps bidirectional throughput in theory. AJAW
board also supports 2 DDR2 modules which can provide up to 16
GB capacity.

3.2. Streams and kernels

We organize the LambdaRank algorithm implementation into streams

and kernels to expose the inherent locality and concurrency for ac-
celeration [7]. In our design, streams contain a set of training data
which are separated by queries, and data exchanged among ker-
nels; kernels are FPCalc, LambdaCalc, and BPCalc, which are
corresponding to the three major routines in the algorithm.

Because of the similarities of FPCalc and BPCalc in the com-
putation, we map both of them to the so-called hidden-layer pro-
cessing engine (hPE), which implements the hidden nodes of the
NN model. Similarly, the output node is implemented by the out-
put layer processing engine (0PE). LambdaC'alc is mapped to a
separate processing engine. The structure of the accelerator is pre-
sented in figure 1.

3.3. Bandwidth hierarchy

To support the stream processing, we provide three levels of stor-
age that form a data bandwidth hierarchy [7]. The first level is
composed of the local register files (LRFs), which store data used
within kernels. The second level is the stream register file (SRF),
which is used to exchange data among kernels. We map all the
inputs and outputs of FPCalc, LambdaCalc and BPCalc to SRF.
The third level is the host computer memory, which is used to store
the training data. In the accelerator, bandwidths of three levels are:
343.8 Gbps via LRFs, 56 Gbps via SRF, and 6.4 Gbps via the host
computer memory. The ratio 54:8.75:1 means 98.4% of all data ac-
cesses are captured locally in the FPGA and only 1.6% of all data
accesses occur outside the FPGA.

3.4. HW/SW partitioning and data preparation

The software part of the accelerator will i) initialize the parameters
of the NN model (line 1 in the pseudo code), ii) organize the train-
ing data into a regular format in the order of the hardware com-
ponent consuming it, and iii) attach some pre-computing results.
Then the software sends the preprocessed data to the accelerator

664

hardware with DMA write operations. In each round, the acceler-
ator consumes the training data from the software, then sends NN
models back to the software on the host computer. At last, the
software stores the training results (parameters of the NN model in
each round) to files.

3.5. Parallelism utilization

In the implementation, data dependencies make three major tasks
cannot run in a fully overlapped manner. According to the pseudo
code, the first procedure in LambdaCalc is to sort all the document
scores from FPCalc. Thus, LambdaCalc cannot start until FPCalc
outputs the first score. Similarly, line 27 in BPCalc cannot start
until LambdaCalc outputs the first A. That is, line 27 cannot start
until FPCalc finishes, because each A needs to calculate over all
the scores from FPCalc, according to the equation 3. Another de-
pendency is that FPCalc cannot start until all parameters of the NN
model are updated in BPCalc. Restricted by these data dependen-
cies, we design the task-level overlapping scheme to fully utilize
the inherent parallelism.

To utilize the data-level parallelism, the hidden node loops
(line 5 and line 19 in the pseudo code) are unrolled completely,
and each hidden node is implemented with a hPE as described in
section 3.2. We implement the hidden node layer with 10 hidden
nodes which provides the best learning results. Moreover, we par-
tially unroll the document loops (line 4 and line 20 in the pseudo
code) with two sets of computation modules in arithmetic logic
units (ALUs) of hPE. Thus, hPE can consume two document fea-
tures in each cycle.

3.6. Data representation and arithmetic units design

In software, data are represented as double precision floating point
numbers. In hardware, we measured the ranking quality of models
generated by hardware with a behavior model in C++ for the accel-
erator. The experiments indicate that the single precision floating
point representation is acceptable for the application.

In the hardware implementation, we don’t use the floating point
arithmetic IP cores provided by the FPGA vendor because of their
high latencies. We build an arithmetic unit library for the single
precision floating point number, which contains multipliers, accu-
mulators (can be used as adders/subtracters), fixed to float convert-
ers, etc. The library only supports parts of the IEEE 754 standard.
In detail, we don’t implement the logic for handling denormal num-
bers and some rounding modes except round to even mode, which
is the most widely-used in the real applications. Table 1 shows
comparisons between our implementations and IP cores generated
by MegaWizard in Quartus II 7.1 from Altera. They are all synthe-
sized with EP2S180C5 FPGA.

4. RESULTS

We implement the LambdaRank algorithm with AJAW board. The
RTL code is compiled by Quartus II 7.1. The synthesis result shows
80% logic and 30% memory bits usage in EP2S180C5 FPGA. The
implementation runs at 100MHz, in which frequency the peak per-
formance is 11.7 GFLOPS.

Table 1. Comparison of single precision floating point arith-
metic units on EP2S180CS5.

Unit ‘ ALUTs ‘ Latency (cycles) ‘ Freq (MHz)
Adder_Custom 670 3 104.5
Adder_Altera 868 7 106.5
Multiplier_Custom 80 3 133.2
Multiplier_Altera 123 5 137.4

4.1. Speedup analysis and performance model

We run 300 rounds on the benchmark dataset. The pure software
takes about 7.1 hours on Intel Xeon 2.40 GHz processor with 2
GB RAM. The accelerator takes only about 32.1 minutes. It shows
13.26X speedup over the pure software. On other datasets, the
speedup is observed to be within the range from 13.0X to 17.9X.

We further conduct experiments on datasets with increasing
sizes. The experimental results show that the speedup ratio keeps
around 13 ~ 15 times with different data sizes from 604 MB to
1.65 GB. The ratio will drop when the dataset is too large to fit
into the host memory. Then the performance bottleneck will be the
bandwidth of the secondary storage, which may be a hard disk, a
RAID or a high performance solid-state disk (SSD).

The performance of the LambdaRank accelerator is determined
by the smaller one of the communication bandwidth and the com-
putation bandwidth. The peak PCle x4 DMA bandwidth of AJAW
board is measured to be 800 MBps when transferring 1GB data
from host memory to FPGA. The peak computation bandwidth is
designed to be also 800 MBps with two 32-bit data streams in par-
allel (refer to section 3.2). However, when the computation engines
are running LambdaCalc and BPCalc, training data from Virtex-
5 are not consumed. Thus, the computation bandwidth could not
reach its peak value when averaged over the whole training process.
The logic simulation shows that the computation bandwidth can
achieve an average of 443 MBps. In-system experiment shows a
total bandwidth of about 203 MBps. This degradation comes from
pipeline stalls brought by the discontinuous data stream between
the host computer and the FPGA. Increasing the data buffer size in
the PCle FPGA can tolerate more variance in the data stream con-
sumption. To remove this bandwidth bottleneck, on-board DDR2
modules can be used as a much larger buffer.

4.2. Quality of hardware generated ranking models

We execute 5 runs for hardware and software respectively with the
same settings on the benchmark dataset, and take the best 10 NN
models from each run to calculate NDCG on a validation dataset.
Figure 2 shows the average NDCG values together with error bars.
Values of error are doubled for a better view. The absolute dif-
ference of average values is 0.00034, which is much less than the
variance 0.00324 among different runs with software.

5. CONCLUSION AND FUTURE WORK

This paper describes our design of the FPGA-based accelerator for
LambdaRank. We propose a SIMD streaming architecture to ex-
ploit the inherent parallelism and locality in the application, and

665

software

hardware

5 I I I I I I I I I I
NDCG@0 NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 NDCG@6 NDCG@7 NDCG@8 NDCG@9

Fig. 2. NDCG of models trained with hardware accelerator
and software. 300 rounds on the benchemark dataset.

provide a scalability to the large scale dataset. The implementation
can provide an acceleration rate of up to 17.9X on commercial web
search datasets. This accelerator has been used by domain experts
within Microsoft to reduce the training time.

Several improvements can be applied to further increase the
performance of the current implementation. The current PCle DMA
design is going to be upgraded to support PCle x8 which is ex-
pected to double the bandwidth between the host computer mem-
ory and the FPGA. With on-board DDR2 modules, a larger data
buffer to tolerate the variance of data streaming should also be im-
plemented.

6. ACKNOWLEDGEMENTS

The authors would like to thank Liang-Wei GE, Chong-Qi ZHAO,
Yiling HSIEH, Jian OUYANG for their support in this work, and
Lei ZHANG for his useful feedback.

7. REFERENCES

[1] NIPS’05 workshop on learning to rank, 2005.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender, “Learning to rank using gradi-
ent descent,” in ICML ’05, 2005, pp. 89-96.

C. J. C. Burges, “Ranking as learning structured outputs,” in
Proceedings of the NIPS 2005 workshop on Machine Learn-
ing, Dec. 2005, pp. 7-11.

R. R. Christopher J. C. Burges and Q. V. Le, “Learning to rank
with nonsmooth cost functions,” in Proceedings of NIPS 2006,
Dec. 2006, pp. 193-200.

S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual web search engine,” Computer Networks and ISDN Sys-
tems, vol. 30, no. 1-7, pp. 107-117, 1998.

K. Jarvelin and J. Kekalainen, “Ir evaluation methods for re-
trieving highly relevant documents,” in SIGIR ’00, 2000, pp.
41-48.

U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. H. Ahn,

P. Mattson, and J. Owens, “Programmable stream processors,”
Computer, vol. 36, no. 8, pp. 54-62, Aug. 2003.

(3]

[4]

[5]

(6]

(71

