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Abstract— Collaborative exploration in an unknown envi-
ronment without external positioning under limited commu-
nication is an essential task for multi-robot applications. For
inter-robot positioning, various Distributed Simultaneous Lo-
calization and Mapping (DSLAM) systems share the Place
Recognition (PR) descriptors and sensor data to estimate the
relative pose between robots and merge robots’ maps. As
maps are constantly shared among robots in exploration, we
design a map-based DSLAM framework, which only shares
the submaps, eliminating the transfer of PR descriptors and
sensor data. Our framework saves 30% of total communication
traffic. For exploration, each robot is assigned to get much
unknown information about environments with paying little
travel cost. As the number of sampled points increases, the
goal would change back and forth among sampled frontiers,
leading to the downgrade in exploration efficiency and the
overlap of trajectories. We propose an exploration strategy
based on Multi-robot Multi-target Potential Field (MMPF),
which can eliminate goal’s back-and-forth changes, boosting the
exploration efficiency by 1.03×∼1.62× with 3%∼40% travel
cost saved. Our SubMap-based Multi-robot Exploration method
(SMMR-Explore) is evaluated on both Gazebo simulator and
real robots. The simulator and the exploration framework
are published as an open-source ROS project at https:
//github.com/efc-robot/SMMR-Explore.

I. INTRODUCTION

Exploring the unknown environment is a fundamental task
for autonomous robot systems. A typical exploration consists
of two parts, including perception & location and decision.
For perception & location, Distributed Simultaneous Lo-
calization and Mapping (DSLAM) systems can provide the
inter-robot relative pose when different robots experience
the same place. For decision, robots have to explore the
environment individually before experiencing the same place,
and explore cooperatively after relative poses are provided.

Present multi-robot SLAM systems [1]–[6] transfer two
kinds of data: 1) Place descriptors, which is a compact
code describing a place. Place Recognition (PR) extracts and
matches the descriptors to find a same place between robots.
2) Sensor data, which is used to calculate the relative pose
between robots based on the matched same place.
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Fig. 1: Overview of the SMMR-Explore framework. Different
robots only transfer submaps for PR, RelPose, and map generation
& merging. The MMPF-based strategy improves the multi-robot
exploration efficiency.

In the multi-robot exploration task, maps are indispensable
and thus always shared among robots. Since the maps
implicitly contains sensor and scene information, maps
themselves could be used for Place Recognition (PR)
and relative pose estimation (RelPose) without redundant
communication on place descriptors and sensor data.

Frontier-based exploration strategies [7] are widely used
in single or multi-robot exploration. Robots firstly detect
dividing points between known and unknown area (a.k.a.
frontiers) based on the current map. And then each robot
selects the next viewpoint goal from detected frontiers con-
sidering the information gain, travel cost, and other factors.

Currently, sample-based exploration methods [8]–[11] hit
state-of-the-art because of low computation overhead. How-
ever, the exploration efficiency of such methods suffers
downgrade from trajectory overlap [10] and small pas-
sages [12] because of two underlying defects: 1) new sam-
pled frontiers make the next viewpoint goal jump among
different frontier clusters. 2) the ratio of frontiers to num-
ber of map points decreases as map grows. Overall, only
utilizing sampled information of map for exploration should
be blamed. Therefore, a new exploration paradigm is called
for, which could utilize complete map information to
detect and select frontiers without a sacrifice of more
computation resources.

To fulfill the requirements above, in this work, we propose:
• A fully submap-based DSLAM method. Both PR and

RelPose are based on the submaps shared among robots,
eliminating 30% redundant data transmission.

• A Multi-robot Multi-target Potential Field (MMPF)
exploration method. The MMPF utilizes complete in-



formation of frontiers to select the best frontier goal,
thus eliminating the trajectory overlap and increasing
the exploration efficiency by 1.03× ∼ 1.62×.

• The open-source SubMap-based Multi-Robot explo-
ration package (SMMR-Explore) incorporating the
aforementioned two contributions.

As illustrated in Fig. 1, the single-robot SLAM method
(we adopt Cartographer [13]) builds the submaps. Splicing
the submaps generates the single-robot map and, with a given
relative pose, the inter-robot merged map. Each submap is
shared among robots and a NN-based method encodes each
submap into a feature vector for further matching to detect
inter-robot loop closures. The submap is also used to estimate
the relative pose between robots according to the matched
place (detailed in Section III). The MMPF-based exploration
method guides the robot on its own single-robot map or on
the merged global map (detailed in Section IV). Experimental
results will be given in Section V.

II. RELATED WORK

A. DSLAM system

Previous multi-robot SLAM systems, either centralized
[1], [5] or decentralized [2]–[4], [6], consist of two basic
components: 1) place recognition (PR), 2) relative pose
estimation (RelPose). These methods all calculate place
descriptors to figure out the same place, but use different
types of data, such as NetVLAD [14] using image sensor
data, Bag of Words (BoW) [15] based on image feature
points and Segmatch [16] leveraging 3D laser sensor data.
Geometric verification estimates and optimizes the relative
position of two frames whose place descriptors are similar.
Such progress is also called RelPose, which bases on the
sensor data between two robots, such as Perspective-n-
Point needs image feature points [3], and Iterative Closest
Point (ICP) requires laser point cloud [1]. Therefore, present
DSLAM systems need to share the place descriptors and
matched frames’ sensor data among robots.

However, previous DSLAM systems are designed for
multi-robot positioning, ignoring maps sharing between
robots [2], [3]. Thus, they are not feasible in multi-robot
exploration with a high dependency on maps. Compared
with sharing a complete single-robot map, incremental map
construction and merging only need to share newly added
parts of maps and put little pressure on the communication
bandwidth. The Cartographer [13] is widely used in single-
robot SLAM frameworks, which builds the new-coming laser
scan into a submap, and concatenates submaps to construct
the single-robot map incrementally. In this work, inter-robot
maps are also constructed incrementally using submaps from
robots. As the submap (built from a 2D laser) can be used
for PR [17] and RelPose [18], there is no need to share the
redundant place descriptors and the sensor data of matched
frames to reduce communication transfer.

B. Multi-robots Space Exploration Strategy

Recently, sample-based exploration methods are widely
used in practical exploration systems, mainly including RRT
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Fig. 2: An overview of submap-based PR and RelPose. We first use
the distance of PR feature vectors to filter candidate match pairs.
RelPose only processes the candidate match pairs selected by PR
to reduce computation. The Global Relative Pose Filter gives a
credible global relative pose (Z̃β0α0

) when multiple submap pairs are
matched.

family [8]–[10], and random roadmap/graph family [19],
[20]. The RRT continually picks random points in the map to
grow itself and then publishes a goal when it reaches frontiers
[10]. Lai etc. [12] propose disjointed trees to improve the
sampling efficiency of the original RRT. Viseras etc. [21]
cluster infinitely grown RRT to reduce the computation
overhead. Unlike RRT, which performs only frontier detec-
tion, a random graph-based roadmap could also be used
for path planning [20]. Wang etc. [20] reduce the sample
region from the whole map to the free area and extended
graph-based roadmap to support multiple queries for easy
path planning. Although there are many improvements in
sample efficiency and computation overhead for sample-
based methods, frontiers detection and selection still use map
samples, thus overlap just gets reduced instead of eliminated.

The Artificial Potential Field (APF) is proposed to utilize
full map information to perform single target path planning
[22]. In such a potential field, obstacles contribute to high
potentials, and the designated target offer lower potential.
Therefore, a robot under the APF will fall towards targets
in the fastest gradient descent path, but sometimes it gets
trapped in local minimums. Although some tactics to escape
from local minimums are proposed [23], APF using them still
wastes lots of time in local minimums escape. Recently, the
ability to utilize the map information, travel cost, and multi-
robot interference [24] plus the feature to avoid dynamic fea-
tures [25] make APF suitable for multiple robot exploration.
But APF still serves as the single-target path planner and
will introduce numerous local minimums when deploying in
scenarios with multiple targets. Therefore, we propose a new
Multi-robot Multi-target Potential Field (MMPF) to eliminate
local minimums and deploy it directly in multiple target
selection. Besides, previous multi-robot exploration methods
need external positioning system to provide the initial inter-
robot relative pose. We combine exploration with DSLAM
to do exploration without any external positioning.

III. SUBMAP-BASED DSLAM
As illustrated in Fig. 1, there are two main components

for processing inter-robot data in DSLAM system: 1) place



recognition and matching (PR). 2) inter-robot relative pose
estimation (RelPose). In this section, we implement both
components based on submaps. The submap-based DSLAM
flow is illustrated in Fig. 2. mαi

is the ith submap of robot
α. The PR method matches the descriptor of mαi

to find the
same place, and the RelPose method outputs the geometric
confidence (Cβj

αi ) and the geometric transformation (Zβj
αi )

between two submaps, mαi and mβj , from robot α and β.

A. Submap-Based Place Recognition

Robots judge whether they observe the same scene based
on the shared submaps. Intuitively, a submap can be turned
into an image and the PR could use vision-based methods
like BoW [15] and NetVlad [14] to process the submap
images. However, compared with images from the camera,
the information in submaps is sparse and spatially structured,
usually describing the shape of obstacles. Therefore, the full-
image descriptors suffer performance degradation, as shown
in Section V. Based on the fact that a submap is built with
a few consecutive scans [13] and the 2D scan data contain
the same geometric information with 2D point cloud, we
design a submap-based descriptor extractor f(.) to calculate
a feature vector f(mαi).

Our f(.) consists of two components: 1) reconstructing the
2D point cloud from mαi

and 2) 2D-PointNetVLAD, which
encodes a 2D point cloud to a global descriptor vector. 2D-
PointNetVLAD is modified from PointNetVLAD [26] to take
2D rather than 3D points as input and is trained to lower the
d
βj
αi if mαi and mβj represent the same scene. dβj

αi is the
distance between f(mαi

) and f(mβj
), e.g. cosine distance

in our implementation. Each robot locally computes and
compares PointNetVLAD descriptors of all stored submaps,
including its own submaps and others’ submaps. By doing
so, a robot selects candidate pairs of submaps having distance
below a given threshold dthr, and filters out other pairs. The
candidate pairs then go through the geometric consistency
verification based on RelPose in order to achieve credible
recognition results.

B. Submap-Based Relative Pose Estimation

The RelPose module estimates the relative transform of
candidate pair provided by the PR module.

There are 2 stages in relative transform estimation: 1)
Feature-point extraction. 2) Feature-point matching and
transformation calculation. We use the AKAZE feature
detection method in OpenCV [27] to extract the feature-
point, and the AffineBestOf2NearestMatcher func-
tion to match the feature-points and calculate the image
transformation zβj

αi , scale factor sβj
αi , and image consistency

confidence c
βj
αi , as [18] does. In this work, we consider

that the geometric transformation between two submaps
should be the same scale, thus, zβj

αi is normalized by s
βj
αi

to get geometric transformation Z
βj
αi . The final geometric

confidence Cαi
is also influenced by the scale factor. Cβj

αi =

min(s
βj
αi , 1/s

βj
αi) · c

βj
αi . If Cβj

αi is above the threshold cthr
(cthr = 0.5 in experiments), the candidate matched pair
between mαi

and mβj
is verified as the same place.

C. Relative Pose Estimation with Pose Filter

Z
βj
αi can be easily converted to the relative pose of the

initial robots’ poses, Zβ0
α0

(the initial pose is aligned to the 0th

submap of each robot). Different verified pairs may produce
different Zβ0

α0
s. As DSLAM are vulnerable to incorrect place

association and error Zβ0
α0
s [3], we design a relative pose filter

to eliminate mismatchings. When three or more submap pairs
are verified between two robots, we calculate the mean value
and standard deviation (σ) of all of these Zβ0

α0
s. The outliers

which deviate more than 1·σ from the mean value are filtered
out. We calculate the average value of the remaining as the
credible inter-robot relative pose Z̃β0

α0
. Z̃β0

α0
is further used to

merge the inter-robot maps.

IV. MMPF EXPLORATION

As mentioned in Section II, current sample-based explo-
ration strategies fail to solve the trajectory overlap because
of random frontier detection and sample-info-based goal
selection [8], [9]. Though Artificial Potential Field (APF)
can fully utilize the global information, current works [22],
[24], [25] use APF to plan a path towards a single target
goal and waste time on escaping local minimums, as shown
in Fig. 3a. We introduce Multi-robot Multi-target Potential
Field (MMPF) to utilize global information for frontier
selection with three innovations: 1) a new potential field
function of frontier incorporating obstacles’ information and
thus eliminating local minimums as shown in Fig. 3b, 2)
a fast frontier cluster algorithm for reducing computation
overhead, 3) a new potential field function of robots to
dispatch them to different frontier clusters.

A. Potential Function of Frontier

In APF, tremendous local minimums come from interfer-
ence of multiple targets and obstacles for two critical issues.

Firstly, the impact of a target’s potential field decreases
quadratically [23], [24] with the distance to the target in-
creasing. The potential value will decrease to almost 0 in
areas far from target, which is easily affected by potential
fields of other targets, leading to the local minimums. There-
fore we slow down the decrease in potential’s impact by
replacing square of distance r in APF into linear of distance
as shown in Equ. (1), which is also the expression of the
physical electrical potential. In physics, charged particles
always tend to reach the place with the lowest potential
in electric potential fields [28], which guarantees the the
functionality of MMPF.

All frontiers are clustered into several groups, and the
centroid of each group represents all frontiers of the group.
The value in the potential field of the centroid i at point j is

P (i, j) = − kQi
rw(i, j)

(1)

where Qi stands for total number of frontiers in the cluster
that centroid i belongs to, rw(i, j) represents the wave-front
distance [23] from point j to centroid i.

Secondly, the euclidean distance of previous APF methods
could not measure the length of the robot’s actual moving



(a) APF finish in 6667 steps (b) MMPF finish in 512 steps

Fig. 3: MMPF is 10× faster then APF for eliminating local
minimums (from 6667 to 512 search steps).

path, because obstacles are ignored. For example, robots
must avoid obstacles lying between the departure and the
target, yet the straight line between the departure and the
target is not passable. Such difference between real passable
length and measured euclidean length renders the local
minimums. To precisely measure the length of path, we
adopt wave-front distance [23] instead, to eliminate local
minimums above. For each centroid of the frontier cluster,
the wave-front distances from all non-obstacle points to it
should be generated first and then stored as distance map for
querying in following frontier selection. The distance map
of each centroid is generated only once so the progress does
not introduce much computation overhead. What’s better,
in this way, there is no need to calculate the potential
from obstacles because the information of moving and static
obstacles has already been encoded in wave-front distance.
Thus, the obstacles’ potential computing overhead in APF is
also eliminated in our MMPF.

B. Continuity-based Faster Cluster for Frontiers

In Equ. (1), only centroid of each frontier cluster instead of
all frontiers in this cluster is processed to reduce computation
overhead. To avoid information lose, the number of frontiers
in cluster i is denoted as coefficient Qi. Popular clustering
algorithms [29] suffer from great computation overhead be-
cause they need to generate the total number of clusters and
classify all frontiers instead of just performing a classifying
under specific number of groups. For example, the compu-
tation overhead of Meanshift [30] even exceeds the benefit
of clustering feature of frontiers. We found that frontiers are
always distributed in the form of continuous lines or curves.
Leveraging such prior knowledge of frontiers’ continuous
layout (Line 7), our cluster algorithm reduces overhead to
generate the total number of clusters to make it almost a
classification algorithm, as shown in Algorithm 1.

C. Potential Function of Robots

Multiple robots should explore different places to increase
the overall time efficiency, after the robots’ maps are merged.
Therefore, we propose a new repulsive potential and add it
to every robot. The value in repulsive potential field of robot
m at point j is shown in Equ. (2).

Pr(m, j) =

{
kr · (ds − rd(m, j)) rd(m, j) < ds
0 rd(m, j) > ds

(2)

Algorithm 1 Continuity-based Cluster Algorithm

Require: all detected frontiers: Frontiers
1: initialize a frontier cluster list as Clusters
2: while Frontiers is not empty do
3: initialize a cluster as NewCluster
4: copy the first one of Froniters into NewCluster

and remove it from Frontiers
5: repeat
6: for item in Frontiers do
7: if item is a neighbor of any frontier in

NewCluster then
8: copy item into NewCluster and delete item

in Frontiers
9: end if

10: end for
11: until no new frontier added into NewCluster
12: Put NewCluster into Clusters
13: end while

where ds stands for the sensors range, rd(m, j) is the
distance between point j and robot m, k of Equ. (1) and
kr of Equ. (2) are coefficients to bring potential of targets
and robots to the same magnitude.

The potential field of robots only affect the area within
its sensor range, because we only need to separate robots
when they meet each other, and thus the separated robots
will tend to explore different places in MMPF if there are
multiple frontier clusters. Due to the small valid range of
robots’ potential fields, the absolute value of coordinates’
difference could measure the real length of path between
robots and then is used to calculate rd(m, j) to simplify
computation. To strengthen the repulse among robots, we
choose the repulsive potential to be linear with distance.

The root cause of trajectory overlap in sample-based
methods could get solved in MMPF. Firstly, among all
frontiers, only the best viewpoint and always this one is
selected by MMPF, because utilized information does not
change unless frontiers and map change. Secondly, the robot
continues to explore one side without turning back until it has
finished exploring this side, because the impact of distance is
larger than the number of frontiers (the inverse proportional
function decreases faster than the increase of proportional
function).

V. EXPERIMENT RESULT

A. Dataset, Simulation Environment and Real Robot

1) Deutsches Museum Dataset: To evaluate the perfor-
mance of the submap-based place recognition (PR) and
relative pose estimation (RelPose), we use the 2D-Lidar
dataset provided with Cartographer [13]. Cartographer builds
the submaps and calculates each submap frame’s position,
taken as the ground-truth position. The submaps, the distance
of whose centroid is less than 6m, are considered as the
same place in training and evaluation. There are tens of
trajectories in the Museum Dataset. We evaluate our work on
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Fig. 5: The precision-recall curves of different methods

two trajectories (Museum Long/Short) and train the Neural
Network (NN) on the rest.

2) Simulation Environment: We use Gazebo [31] to build
the simulation environments, as shown in Fig. 4(a,b). The
simulation robot has an 180◦ laser scanner, whose distance
range is 7m. Submaps are considered the same place if
the distance between centroids of them is less than 1m in
simulation and real robot evaluation.

3) Real Robot: The SMMR-explore is also deployed and
evaluated in a real two-robot environment, as shown in
Fig. 4(c,d). For perception, a laser scan, an IMU sensor, and
the platform’s odometer data are provided. For computation,
an NVIDIA Jetson Nano board, with 4-core ARM CPU and
an embedded GPU, is deployed on the robot. Cartographer
for map construction and the RelPose run on the ARM CPU,
while the NN-based PR method runs on the GPU.

B. Place Recognition Evaluation

1) Evaluation on Deutsches Museum Dataset: The point
cloud converted from submap is downsampled to a fixed
number of points and rescaled to be zero mean, as [26]
does. The precision-recall curves (PRC) of different PR
methods on submap, Bag of words (BoW), NetVLAD, Point-
NetVLAD, on the Museum test set are illustrated in Fig. 5(a).
We use the AKAZE feature point extracted by RelPose to
train the BoW model on the Museum training set. For lack
of enough feature-points in the 2D submap, the BoW cannot
distinguish different maps. The precision of BoW is almost
zero. Although NetVLAD is more computationally expensive
than PointNetVLAD, its performance is slightly worse than
PointNetVLAD. The reason may be that NetVLAD is not

TABLE I: Speed evaluation on desktop PC and the real robot.

RelPose RelPose with PR filter
Without PR PR RelPose Total

Train PC Worst. 991 29.5 418.5 448
in Sim (ms) Ave. 912.75 13.6 394.1 407.7

Test Nano Worst. 3843 51.9 1579.1 1631
on (ms) Ave. 1854 43.4 686.6 730

Real Acc. Recall 0.537 0.521
Robot (%) Precs 0.809 0.822
1 The column RelPose Without PR records the matching and estimation

time when we directly apply RelPose w/o PR to the pairs of the current
received submap and every stored submap. The column RelPose with
PR filter records the time of different phases using our method.

2 Worst. and Avg. are the longest and average matching time, separately.

designed for 2D maps and suffer from the rotation of maps,
which is a common problem of CNN-based methods [32].

The PRC of the PointNetVLAD’s results under different
dthr after RelPose geometric verification is illustrated in
Fig. 5(b). The orange curve is the PRC of geometric verifica-
tion without a PR filter. The blue curve is the PointNetVLAD
method without geometric verification. To balance the accu-
racy and computation time, we set dthr = 0.275.

2) Evaluation on Simulation and Real Robot: We collect
submaps from the simulation environment for training and
test the trained model in the real-world environment. The
accuracy results and the speed results on Desktop PC (CPU:
Intel I7-7920, GPU: Nvidia 1080TI) and Nano are listed in
Table I. Our pre-trained model has a good ability of domain
adaptation from simulation to a real environment. RelPose
consumes most of the computation. PR can eliminate some
unmatched scenes and reduce the computation of RelPose.
The better the PR performance is, the more computation gets
reduced, and the shorter the overall PR+RelPose time is.
Compared with only geometric verification without PR filter,
our method achieves comparable accuracy and 2×∼3×
acceleration. Note that the Cartographer generates a submap
every several seconds. Our PR+RelPose takes 1 s∼2 s to
finish, which can meet the real-time requirements. As the
scene size expands, the time of PR+RelPose will increase.
For much larger scale scenarios, we need to design a more
efficient PR method in the future.

C. RelPose Evaluation

We choose submap pairs, which are already verified with
our PR and geometry verification modules, to calculate the
map registration error, on Museum, simulation, and real-
world datasets. We compare the translation error terror and
rotation error rerror of our submap-based method, which
directly registers the submap image (Image-based) and the
ICP method, which registers the converted point cloud.
The results are shown in Table II. Image-based method is
much better than ICP. Because ICP is an optimization-based
method, which may lead to local optimum in sparse 2D point
clouds.

D. MMPF Exploration Evaluation

1) Baseline, Criteria and Finishing Condition: APF [24],
[25] is not incorporated in experiments because it fails to
complete exploration for the huge cost to handle local mini-
mums. The exploration efficiency of the previous RRT work



TABLE II: Accuracy comparison between ICP and our method

Image-based ICP
terror(m) rerror(◦) terror(m) rerror(◦)

Museum (Long) 0.55 1.41 6.89 1.51
Museum (Short) 0.13 0.28 8.48 1.74

Simulation 0.45 4.87 0.96 1.96
Real-world 0.23 2.71 0.71 2.24

terror : average translation error (m) rerror : average rotation error (◦).

95 93

141
115

223214

248
233

Small Env. Large Env.
0

50

100

150

200

250

(a) Trajectory Path Comparison

423
327

285
191

774

610

449

345

Small Env. Large Env.
0

200

400

600

800

(b) Time Comparison

Fig. 6: Comparison of MMPF and RRT

[10] suffers from the high latency between goal detection and
selection. Thus, we improve the RRT work with synchronous
goal selection, and take the improved method as the baseline.

We compare our MMPF and RRT with a variant number
of homogeneous robots in a small environment (391m2,
Fig. 4a) and a large environment (661m2, Fig. 4b). The
exploration time of a robot refers to the total time from the
robot’s departure to the completion of exploring all frontiers
in the environment. For multiple robots, the exploration
time is the average of all robots’ exploration time, and the
trajectory length is the accumulation of length of all robots’
trajectories.

2) Result: As shown in Fig. 6, compared with SOTA
RRT, a single robot explores 1.18×∼1.27× faster with
15.7% length saved in small places under MMPF and
1.03×∼1.62× faster with 19%∼40% length saved in a
large place. All improvement comes from 1) overlaps be-
tween two frontiers are eliminated by MMPF, which means
robots will not move back and forth frequently. 2) robots
will directly go to the frontiers without waiting for sampled
points to fall on one of the frontiers, enabling MMPF to pass
small passages rapidly.

When it comes to multiple robots, MMPF performs even
better with 1.17×∼1.50× efficiency with 10%∼23% less
travel cost in small place and 1.30×∼1.45× efficiency
with 3%∼6% less travel cost. Apart from the overlap and
the sample efficiency, such an efficiency boost in multi-
robot scenarios also comes from collaborations. MMPF tends
to dispatch robots to different frontier clusters to explore
multiple places simultaneously, which RRT can not offer.
Such improvement becomes more significant as the map’s
size becomes larger since low ratios of frontiers in maps
make frontiers harder to detect.

3) Deep Dive in MMPF: As we observe, the map of
MMPF will have more corner details than that of RRT
because MMPF will always exhaust all unexplored small
places, which are hard for sample-based methods to detect.
Such a feature could be critical for rescue scenarios since
trapped people usually stay just at corners.

As for overhead, distance maps consume the most memory

TABLE III: Data transmission between two robots

Method
Data Transmission (KB)

PR RelPose Submap Total
ScanPerSubmap 56.3 79.2 357.5 493

Small ScanPerMatch 56.3 20.2 357.5 434
OnlySubmap 0 0 357.5 357.5

ScanPerSubmap 163.5 250.2 990 1403.7
Large ScanPerMatch 163.5 155.4 990 1308.9

OnlySubmap 0 0 990 990

in MMRF, which cost tens of MB on average. Although
the computation overhead of MMPF per iteration is more
than that of RRT per iteration, the average computation of
MMPF stays almost at the same level with RRT because
MMPF only needs to run at 1Hz to satisfy the real-time
demand. In contrast, RRT needs to run as frequently as
possible, otherwise, it leads to low probability of sampling
out a frontier. (100Hz in our experiments).

E. Communication Evaluation

As described in Section III, the information shared be-
tween robots in our system is only the submap. In some
centralized multi-robot SLAM systems like [1], every robot
needs to share the PR descriptors of each submap and the
scan data associated with the submap (Sharing scan data
together with each submap, ScanPerSubmap). In previous
DSLAM systems like [2], [3], they need to transmit PR
descriptors of all keyframes to detect the same scene. When
a match occurs, these methods need to send the keypoint or
the raw data associated with the matched keyframe (Sharing
raw/scan data when keyframe/submap matched, ScanPer-
Match). Table III reports the data transmission between two
robots on the trajectories from the small and large simu-
lation environments. We share the submaps in compressed
PNG format. Compared with the above two information
sharing paradigms, our method (OnlySubmap) reduces the
communication cost by roughly 30%. In fact, a robot extract
PR descriptors not only for its own places, but also for
other robots from the shared submaps. It is an exchange of
computation for communication cost.

Although results of only two robots are given in this
section, our framework supports three or more robots. More
videos and results can be found on our website.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed 1) a submap-based map merge
method which saves communication overhead caused by
sensor scans, 2) a Multi-robot Multi-target Potential Field
(MMPF) exploration method, which designates single robot
or multiple robots to explore small or large places with better
efficiency and less travel cost than sample-based methods.

As place recognition module has a significant influence
on the computation cost and mapping quality, other place
recognition methods for 2D range scans, such as [33], [34],
can be involved in future. We will also try to expand the
SMMR-Explore framework to 3D scene in future.
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