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ABSTRACT

Memristor based neuromorphic computing systems give alterna-
tive solutions to boost the computing energy efficiency of Neural
Network (NN) algorithms. Because of the large-scale applications
and the large architecture design space, many factors will affect the
computing accuracy and system’s performance. In this work, we
propose a behavior-level modeling tool for memristor-based neuro-
morphic computing systems, MNSIM 2.0, to model the performance
and help researchers to realize an early-stage design space explo-
ration. Compared with the former version and other benchmarks,
MNSIM 2.0 has the following new features: 1. In the algorithm level,
MNSIM 2.0 supports the inference accuracy simulation for mixed-
precision NNs considering non-ideal factors. 2. In the architecture
level, a hierarchical modeling structure for PIM systems is proposed.
Users can customize their designs from the aspects of devices, inter-
faces, processing units, buffer designs, and interconnections. 3. Two
hardware-aware algorithm optimization methods are integrated in
MNSIM 2.0 to realize software-hardware co-optimization.
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1 INTRODUCTION

In the past few years, Convolutional Neural Networks (CNNs)
have demonstrated powerful capabilities in many fields. However,
in addition to the high classification accuracy, the amount of net-
work parameters and computations increase dramatically as the
CNN models become more and more complex, which makes CNNs
cause high energy consumption and long computation time.
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Existing work has shown that emerging memristors (e.g., RRAM,
Resistive Random Access Memory) and memristor-based Processing-
In-Memory (PIM) architectures can improve CNN computing per-
formance and energy efficiency by over 100X compared with both
CMOS ASIC and GPU solutions [2, 16]. The performance gain of
PIM systems comes from the feature that memristor crossbar struc-
tures can perform the Matrix-Vector-Multiplications (MVMs) in
memory and eliminate the weight data movements between mem-
ory and computing units in traditional von Neumann architectures,
which are also the most time and energy consuming part in CNNs.

In memristor-based PIM systems, due to the huge architecture de-
sign space and large-scale algorithm models, the SPICE simulation
will take an unacceptable long time for simulating the entire system
[20]. To overcome this challenge, researchers have proposed several
behavior-level simulators or modeling frameworks to evaluate the
performance within a short time [6, 12, 15, 20, 21]. MNSIM [20] is a
behavior-level simulation platform, which provides a hierarchical
hardware structure abstraction to model different PIM accelera-
tors. Although the processing elements can be quickly evaluated
in MNSIM, it lacks simulation of other digital parts in PIM systems.
Besides, the accuracy simulation of MNSIM is only applicable to
MVM of a single memristor crossbar without considering the accu-
racy of the entire CNN model. NeuroSim [15] and XPESim [21] are
two circuits-level modeling tools to benchmark the performance of
PIM systems. They all provide detailed circuits-level evaluations
from the aspects of device technologies, non-ideal parameters, and
network topology. The target users of these tools are mainly de-
vice researchers. But in the algorithm and architecture level, these
two tools lack flexibility in supporting various CNN structures and
different architecture designs. DL-RSIM [12] and PytorX [6] are
designed for analyzing the CNN inference accuracy in PIM systems.
DL-RSIM focuses on estimating the accuracy with the consideration
of device non-ideal factors and data mapping strategy onto low pre-
cision devices. PytorX not only evaluates computing accuracy, but
also settles down these non-ideal effects from hardware and soft-
ware approaches. Nevertheless, hardware performance evaluation
is missed in these tools.

In this paper, we propose MNSIM 2.0° on the basis of MNSIM to
model the CNN computing accuracy and hardware performance
(i.e., area, power, energy, and latency) in behavior-level. MNSIM 2.0
is developed for memristor-based PIM architecture designers and
CNN algorithm researchers who want to fast evaluate the CNN
accuracy and hardware performance of their architecture and algo-
rithm model design. The contributions of this paper include:

“The code is avaliable in https://github.com/thu-nics/MNSIM-2.0.git
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(1) In the algorithm level, MNSIM 2.0 can simulate the infer-
ence accuracy of mixed-precision CNNs considering data splitting
strategy and memristor non-ideal factors. MNSIM 2.0 also integrates
two hardware aware CNN optimization strategies, i.e., PIM over-
head aware mixed-precision CNN quantization method and energy
efficient non-uniform activation quantization method, to optimize
CNN models for PIM systems.

(2) In the hardware level, we propose a hierarchical model-
ing structure to describe the configurable mixed-precision CNN
computing architecture. In MNSIM 2.0, users can make use of this
hierarchical structure to customize their architecture designs from
device to module interconnection. Furthermore, MNSIM 2.0 provides
an inner-layer pipeline structure as the default configuration to eval-
uate computation latency and energy consumption. The pipeline
structure leverages the CNN data flow characteristics to improve
the computing parallelism and reduce computing latency.

(3) We propose a general CNN mapping and schedule module,
which provides connections and interface between various algo-
rithm models and architecture designs. It also conduces to explore
the architecture design space.

(4) Case studies of MNSIM 2.0 are presented, which help us to
analyze the trade-off between accuracy and hardware performance
merits under different hardware configurations and CNN models.

2 PRELIMINARY

2.1 Convolutional Neural Network

In the algorithm level, MNSIM 2.0 aims to evaluate the CNN al-
gorithm. CNNs are usually composed of three types of layers, i.e.,
the convolutional (CONV) layers, the pooling layers, and the fully-
connected (FC) layers. CONV layers perform convolution opera-

tions which can be expressed as:
K-1K-1Cipn
Folx,0,2)=f (). 3" 3 Fixiy+), 0wz (i, k) (1)
i=0 j=0 k=1
where 3-dimensional matrices F, and F; represent the input and
output feature maps, respectively; w; is the zth 3-dimensional con-
volution kernel with the size of K X K X Cjp; K is the kernel size
and Cjp, is the number of input channels. The number of kernels is
equal to the output channel number as denoted as Coy;. f() is a
nonlinear activation function. The computations in FC layers are
similar to those in CONV layers.

2.2 Memristor Basics

Memristor is a kind of non-volatile memory which stores infor-
mation in the form of different resistance values. Crossbar is an
area-efficient memristor connection structure, which also has the
capability of combining the storage and computing together. In
PIM systems, the input vector is represented by a voltage vector V
applied to the word-line (WL) of crossbars, and the memristors are
used to represent the matrix. Then the MVM results are derived by
the output current vector I from each bit line (BL):

N
loutk = ng,jﬂin,j @)

Jj=1
where vjp j, iy represent the element of the input voltage vec-
tor V and the output current vector I gy ; is the conductance of
the (i, j) cell. Because memristor crossbar performs MVMs in the
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Figure 1: The overview of MNSIM 2.0. Up: CNN model opti-
mization flow; Down: Performance modeling flow

analog domain, some interfaces (e.g. Anong-to-Digital Convert-
ers (ADCs), Digital-to-Analog Converters (DACs)) are required
between crossbars and peripheral circuits.

3 MNSIM2.0 OVERVIEW

The overview of MNSIM 2.0 is shown in Figure 1, which consists
of the CNN model optimization flow and the performance modeling
and evaluation flow. These two parts form a closed feedback loop,
i.e., the CNN model optimization flow utilizes modeling results
generated by the modeling and evaluation flow to guide the CNN
quantization strategy, then the optimized algorithm parameters
are sent to the modeling and evaluation flow to further assess the
performance of PIM systems.

The CNN model optimization flow is designed to realize PIM
hardware-aware quantization methods rather than modify the net-
work structure (e.g., layer number and connections). The model
optimization flow contains the mixed-precision CNN quantization
method and the non-uniform activation quantization method. The
former performs the layer-wise weights and input activation quan-
tization based on PIM computing performance, which can reduce
the storage overhead and latency while maintaining comparable
accuracy. The latter method aims at introducing the non-uniform
quantization method into the output activation of each layer to
reduce the requirement for ADC resolution.

The modeling and evaluation flow contains two parts: hardware
performance modeling (Section 5) and CNN accuracy estimation
(Section 6). For the hardware performance modeling part, it makes
use of CNN structures and the architecture design to model the
hardware performance. Firstly, the algorithm mapping module com-
pletes the hardware resource allocation in terms of the architecture
parameters. It also determines the computing units utilization and
their connection relationship. Then, the specific data flow is con-
structed with considerations of CNN structure, unit connections,
and Network-on-Chip (NoC) structure. Finally, the overall perfor-
mance of the PIM system is estimated according to the specific data
flow, resource utilization, module performance, and reference data
obtained from other simulators. For the accuracy estimation part,
it takes the exact weights and input features (given by the CNN
model optimization flow) and the architecture design as inputs. The
classification accuracy of the entire CNN model is obtained by four
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steps: splitting data, introducing non-ideal factors and quantization
error, merging MVM results, and propagating error.

4 HIERARCHICAL STRUCTURE FOR PIM

MNSIM 2.0 provides a hierarchical modeling structure and a basic
architecture design for describing different architectures, which are
shown in Figure 2. From the system point of view, the proposed PIM
system is composed of CPU, DRAM, and memristor-based CNN
accelerator. In our design, the CPU is responsible for controlling
the weights writing in the model deployment phase and waking
up the accelerator in the inference phase. DRAM stores weight
parameters and input features during the deployment phase and the
inference phase, respectively. When the model is deployed, the CNN
accelerator reads the input feature map from DRAM after waking
up and uses the on-chip buffer for storing all the intermediate data
during the computation. After the accelerator completes inference
computation, the results are returned to the CPU. It should be noted
that MNSIM 2.0 mainly simulates the inference computation. The
simulation of CNN training will be supported in our future work.

The memristor-based CNN accelerator includes several memris-
tor banks, the global buffer, and the global accumulator. The global
buffer and accumulator are responsible for calculating the element
sum layer in the bypass network structure. For the memristor bank,
we propose a basic architecture which supports mixed-precision
CNN computing and can be used to describe other existing archi-
tecture designs (e.g., PRIME[2] and ISAAC[16]) with a few mod-
ifications. From the high level to the low level, the hierarchical
structures of this architecture include memristor banks, memristor
tiles, processing elements (PEs), and memristor crossbars.

In each memristor bank, an array of memristor tiles are or-
ganized and connected in a way similar to NoC. To reduce the
complexity of control logic and data path, we specify each tile will
only process one layer of CNN, while for some large-scale layers,
matrix splitting and multiple tiles will be needed. Different memris-
tor banks are connected with buses and use the bank level output
buffer for data communications.

One memristor tile is adjacent to a data forwarding unit, which
receives data from other tiles, merges (i.e., add or concatenate) them,
and outputs the result to the local tile or other tiles. According to the
layer type, tiles can be configured as pooling mode or MVM mode,
which are realized by the pooling module and the process elements
(PEs) array. The memristor PEs in one tile are linked as an H-Tree
structure to reduce the intra tile interconnection overhead. Each

Table 1: Architecture Configuration Parameters of MNSIM 2.0
(R/W represents Read and Write, ADDA means ADC/DAC)

Variable Parameters Variable Parameters
Device Area PE Crossbar Number
Device Device R/'W Power Level ADDA Number
Device R/W Latency Crossbar Polarity
Level - —
Device Precision Tile PE Number
Variation and SAF Level Inter Tile Bandwidth
Crossbar Size Intra Tile Bandwidth
Crossbar Cell Type Tile Number
Level Wire RC Bank | Inter Bank Bandwidth
Technology Node Level | Intra Bank Bandwidth
ADDA Resolution NoC Configuration
Interface ADDA Sample Rate Arch Bank Number
Level ADDA Power Level Buffer Configuration
ADDA Area Pooling Structure

connection node of the H-Tree is a joint module, which manages
the data forwarding and summations of PE results.

PE mainly contains multiple memristor crossbars with periph-
eral circuits (i.e., drivers, DACs, and ADCs). To solve the limited de-
vice precision problem and to support mixed-precision algorithms,
multiple low precision memristor crossbars in one PE are used to
store the high precision weight values. For example, eight 1-bit
memristor crossbars are required for storing 8-bit CONV kernels.
Besides, if the weights are signed value, the crossbar number will
be doubled (Positive and Negative Crossbars) in order to store the
signed weights in the positive conductance. Computing results of
different crossbars are merged together by shifter and adder tree.

The detailed architecture configuration parameters are listed in
Table 1. Users can configure their own architecture design from
different levels. For example, in ISAAC chip [16], it has 16 Tiles
and each Tile contains 12 In-Situ Multiply Accumulates (IMAs).
There are eight 128 X 128 memristor crossbars. In order to describe
it with our hierarchical structure, we can set the Bank Number to
one, regard IMA as PE in our design, and configure the parameters
of Table 1 to the values given by ISAAC.

5 HARDWARE PERFORMANCE MODELING

5.1 CNN Model Mapping and Hardware

Resource Allocation

Ideally, in memristor-based PIM CNN accelerators, the 3D CONV
kernel is flattened into 1D column vector and mapped onto devices
in one column of memristor crossbars. Different kernels in one
layer are placed in different columns of the same crossbar. However,
on account of the limited device precision and crossbar size, it is
difficult to map a large-scale network layer in one crossbar. There-
fore, we split the CONV kernels from two dimensions, i.e., weight
precision and kernel size, to complete the mapping procedure, as
shown in Figure 3(a). In the weight precision splitting, if the weight
precision is higher than the number of memristor resistance levels,
we use several crossbars in one PE to store some bits of CONV
kernels. For example, in Figure 3(a), we assume the memristor is
1-bit/cell while the weights’ precision is P,, bit, then we need P,,
crossbars in one PE for storage. Therefore, we can flexibly deploy
mixed-precision CNN by using different numbers of crossbars for
different layers. In the kernel size splitting, if the number of output
channels and the kernel vector length exceeds the crossbar size,
multiple PEs are needed in the horizontal and vertical direction
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respectively, each of which processes a part of the CONV layer.
According to the CONV kernel mapping strategy, we can get the
tile allocation results for CONV layers in Equation 3:

| s || 2o || s |
#PE/Tile

#Tilecony = 3)
where xbary, xbar, are the row/column number of memristor cross-
bar, P,, represents the weight precision. Similarly, denoting the the
length of the input/output feature in FC layers as Length;y, oy, We

can get the tile number used in FC layers:
[Lengthh,][Lengthou,W[ P, ]

xbar, xbar. #xbar|PE

©

#Tilerc = #PE/Tile
The input feature mapping is shown in Figure 3(b). Correspond-
ing to the expansion of CONV kernels, the 3D input feature block
is converted to a vector, which will be transformed into voltage
pulse signals through DACs and loaded onto the WLs of crossbars.
Different from the spatial expansion in multiple crossbars of CONV
kernels, the input feature blocks in each sliding window need to be
loaded sequentially in different computation cycles. Besides, if the
precision of feature map is higher than the DAC’s resolution, the
input needs to be split and loaded onto the WLs in multiple cycles.

5.2 Data Flow Construction

MNSIM 2.0 utilizes the inner-layer pipeline scheme to increase
computing parallelism. The basic idea of it is to start computation
once the required input data of this layer are ready, rather than
waiting for the previous layer to complete all the calculations. If
we want to calculate the output (r, ¢); in layer i, the coordinate of
the last output that the previous layer needs to provide is:

min(Hj-1, Kj—1+s¢,i-1X(r=1)=pi-1)) CONV
Treq= (5
Hi_y FC
min(Wi—1, Kj—1+sz;-1X(c—=1)=p;—1) CONV
Creq= (6)
Wi-1 FC

where H;_1 and W;_1 are the height and width of the output feature
map of layer i — 1, and s;, p represent stride size and padding,
respectively. According to Equation 5~6, when the calculation of
the previous layer (i — 1)’s output (rreq, Creq)i-1 is finished, the
next layer can start to calculate the (r, c¢); output.

As mentioned before, if the size of one layer exceeds the amount
of parameters that one memristor tile can store, multiple tiles are
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required and their results need to be merged together before trans-
ferring to the next layer. The tile can be configured into two opera-
tion modes, i.e., MVM mode for CONV and FC layers and Pooling
mode for Pooling layers, as shown in Figure 4. The entire data flow
within the memristor tile is composed of three parts:

1. Input data flow (the cyan-blue arrow): For the MVM mode,
the input data flow starts from the data forwarding unit and goes
through the H-tree to PEs, then the input data are written to the
input activation buffer. For the pooling mode, the input data flow
bypasses the H-tree structure and ends to the pooling buffer.

2. Computation data flow (the violet arrow): For the MVM mode,
the input activation is first read from the buffer and then sent to the
input register (iReg). On account of the restricted DAC resolution
and WL/BL parallelism, the crossbar needs to keep activated for
multiple cycles to complete the calculation of the input activation:

2 . xbar, .
K mln(l K2 J’C’") min(Coyy, xbarc)
Parallel, Parallel,

Pq
ResDAc

mul:[

In Equation 7, the first term represents that multiple cycles are
required for loading the high precision activation (P,) to the low
resolution DAC (Respc), the second and the third terms show
the limited WL/BL computation parallelism (Parallely, Parallel,)
increases the computation latency. In each cycle, several input acti-
vation bits are loaded to the DAC of the crossbar, then the crossbar
calculation starts. After that, the analog values generated by cross-
bars are converted to the digital form by ADCs. The temporary
results are shifted and added with the previous computation step’s
results and are stored in the output reg. After mul cycles, the adder
tree merges all the crossbars’ results in this PE.

3. Output data flow (the green arrow): The output data flow is
similar to the input data flow. The results of PEs are firstly merged
by the joint module, then the merged PE results and pooling results
are sent to the output buffer. Data forwarding units read data from
output buffer and send them to other tiles.

5.3 Area, Power, and Latency Models

5.3.1 Memiristor Crossbar. Because the device parameters and
characteristics are various, MNSIM 2.0 provides the device descrip-
tion interface in Table 1 to model different device technologies.
For the area estimation, users can provide information from three
aspects: crossbar area, device area, and technology node, as shown



in Equation 8:

User‘s Given Value

xbar. X xbary X Device_Area

xbare X xbary x 3(W/L +1)F? 1TIR
xbare X xbar, x 4F? 0T1R

Xbar_Area= 3)

where 1T1R and 0T'1R represent MOSFET-accessed and cross-point
structure, W/L is the transistor technology parameter, and F is
memristor technology node. Similarly, for the latency estimation,
users can directly provide the crossbar-level latency or give the
device read latency. For the latter one, we model the crossbar latency
by introducing the RC delay caused by interconnection wires. In
the power consumption model, MNSIM 2.0 uses the percentage of
each value in feature map and weights to estimate the equivalent
resistance and voltage (pulse number or amplitude). For example,
Equation 9 shows the calculation of equivalent resistance:

YReg = [ |12 ai/Rs ©)

where L is the number of resistance level, ¢; is the value percentage,
and R; is the resistance of each level. If the device precision is 1-bit,
then Ry is the low/high resistance state and ay/ is the percentage
of bit-0/bit-1.

5.3.2  Analog and Digital Conversion Interface. In MNSIM 2.0, the
design of ADCs/DACs is mainly customized by users. The user
needs to provide the converter performance parameters shown in
Table 1. Besides, MNSIM 2.0 also includes some state-of-the-art DAC
and ADC designs with different resolutions as default values.

5.3.3 Digital Circuits. In PIM systems, many digital modules
are responsible for the CNN computations except the MVM part.
MNSIM 2.0 synthesizes the digital circuits modules at TSMC 65nm
technology node by Synopsys® Design Compiler. The digital cir-
cuits modules include address decoders, adder trees, pooling mod-
ules, data forwarding units, etc. For other technology nodes, we get
the modeling results converted from 65nm simulation results using
the scaling down estimation method.

5.3.4 Buffer Design. As shown in Figure 2, we use on-chip buffer
to store the intermediate data. MNSIM 2.0 use CACTI [18] and NVSIM
[4] to get reference data (area, power, bandwidth, etc.) of different

memory technologies (i.e., SRAM, DRAM, Non-Volatile Memories).

After users give the buffer configurations (e.g., buffer size), MNSIM 2.0
uses the method of fitting and looking up table through reference
data to estimate the buffer read-write overhead.

5.3.5 NoC Simulation. Because the data flow in memristor bank
is static and fixed during CNN computation, the tile interconnection
graph model of MNSIM 2.0 is constructed in terms of the mapping
strategy and the tile allocation result. For each layer, we specify one
tile for merging other tiles’ results. Then, the NoC communication
is divided into two parts: from each tile to its merging tile in the
same layer and from one merging tile to tiles in the next layer. We
use Manhattan distance to describe these two parts and estimate
the NoC latency. For the power and area estimation, we refer to the
method used in [9, 13].

Crossbar
Size

1 [5ub Matrix] 1
! [Weight Wl 1
1 [Sub Matrix
1 [Weight w| 1
i
1
1
I,

ub Matri
Update
Module

Weight
Matrix Spli
Module

Device
Precision

Sub Matrix
eight Wiy

Weight
Matrix W

ADC
Resolution

Crossbar
Size

I
1

e
Vector, |1
1

Sub Input | !
Vector, |1
T i

3 i
Subinput | |
Vectory |
J

[ Layer N ]
Accurac;

Figure 5: Accuracy evaluation of PIM-based CNN inference

Qu

DAC
Resolution

Feature Map

Split Module Module

CONV
Results

6 ACCURACY ESTIMATION AND CNN
MODEL OPTIMIZATION

6.1 CNN Accuracy Estimation Flow

The accuracy evaluation flow of PIM systems is illustrated in Fig-
ure 5, which is implemented within the PyTorch framework. Firstly,
considering the crossbar size, memristor precision, and DAC resolu-
tion, we split the weight matrix and feature data into sub-matrices
and sub-vectors, as mentioned in Section 5.1. Secondly, for each sub
matrices, non-ideal factors are introduced to update the sub-matrix
values. MNSIM 2.0 takes two major non-ideal factors of memristors
in to consideration, ie., Stuck-At-Faults (SAFs) and resistance vari-
ations, other non-ideal factors will be updated in the the future.
Thirdly, MVMs are performed between updated sub-matrices and
sub vectors. Then, the MVMs results are quantized according to the
ADC resolution. Finally, the quantized MVM results are merged
into the CONV results and propagated to the later layers to get the
final classification accuracy.

6.2 Hardware-Aware CNN Optimization

In MNSIM 2.0, we integrate two hardware-aware CNN optimiza-
tion methods: mixed-precision CNN quantization method [22] and
non-uniform quantization method [17].

6.2.1 Mixed-Precision CNN Quantization. In CNN algorithms,
different layers have different quantization sensitives [22]. In order
to maintain the accuracy, some layers’ weights and activation must
be kept in high precision (e.g., 8-bit) while others can be quantized
into low bit width. In PIM systems, the precision of weights and
activation will affect the storage usage and latency according to
Equation 3,4,7. Therefore, layer-wise quantization gives the oppor-
tunity to reduce storage burden and latency with little accuracy
loss. MNSIM 2.0 uses greedy quantization strategy, which sets higher
accuracy loss threshold for layers with more weights and sliding
windows, to achieve greater performance improvement.

6.2.2  Non-Uniform Activation Quantization. Existing work has
demonstrated that high resolution ADCs occupy the major energy
consumption of PIM systems and their resolution has a crucial
impact on computing accuracy [17]. In order to reduce the ADC en-
ergy consumption, MNSIM 2.0 integrates a PIM-based non-uniform
activation method, which contains the quantization range optimiza-
tion, high-precision scale implementation, and non-uniform ADC
quantization. Compared with traditional uniform quantization, non-
uniform quantization considers the data distribution and pays more
attention to the interval with more data. As a result, ADC resolution
can be reduced by 2-bit with lower power consumption.



Table 2: Latency (L, ms), power (P, W), and accuracy (A, %)
under different ADC resolutions (R). B is algorithm baseline.

LeNet VGG-8 ResNet18

L[ P] A L [ PT AJL]P]A

- - 76.27 - - 91.64 - - 91.18
026 034 10.81 | 1045 9.67 10.81 | 2.82 11.97 10.81
0.28 054 4945 | 11.56 1544 5391 | 3.06 1933 10.81
029 1.55 7272 | 1232 43.67 90.18 | 3.22 5532 87.81
10 | 0.28 2.62 76.63 | 12.29 7376 9145 | 3.20 93.68 8891
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7 CASE STUDIES
7.1 Experiment Setup

In our experiments, we use three typical CNNs as benchmarks,
i.e., LeNet [11], modified VGG-8 [8], and ResNet18 [5]. All ex-
periments are evaluated on the Cifar-10 dataset [7]. The mem-
ristor we used refers to [19]. The ADC and DAC data come from
[1,3, 10, 14, 16]. The digital parts are modeled at 65nm with 500MHz.

7.2 Trade-off between Accuracy and Hardware

Performance

The mainly computing error in memristor based CNN acceler-
ators is caused by the quantization error of ADCs. Table 2 shows
the CNN accuracy and hardware performance under different ADC
configurations. The results demonstrate that the CNN comput-
ing power drops dramatically when the ADC resolution becomes
lower. However, ADCs with lower resolution also bring higher
quantization error, which will destroy the CNN function. Besides,
experiment results show that different network models have dif-
ferent tolerance to the quantization error. Therefore, architecture
designers should analyze the trade-off and select the appropriate
ADC resolution according to the algorithm models and hardware
performance constraints concurrently.
7.3 Trade-off among Latency, Area, and Power

Due to the place and routing limitations, multiple WLs/BLs usu-
ally share one DAC/ADC in crossbars. The area and power can be
reduced by sharing interfaces but the latency increases. Figure 6
shows the latency, area and power changing trend w.r.t readout
parallelism (i.e., the number of ADCs that can be activated simulta-
neously in one crossbar). The higher the parallelism is, the more
ADC:s are activated at the same time, which reduces the computing
latency at the cost of high area and power. We can extract two
optimal points from the results. One is the power and area optimal
point, which can reduces the latency by 70% with little additional
overhead. And the other is the latency optimal point. It achieves
more aggressive optimized latency results (~ 80%), but the overhead
(e.g., power increased by 25W) is not negligible in some cases.
8 CONCLUSION AND FUTURE WORK

In this paper, we propose MNSIM 2.0, a behavior-level modeling
tool for memristor-based PIM systems, which consists of the CNN
model optimization flow and the accuracy and hardware perfor-
mance modeling flow. The proposed tool can help architecture
and algorithm designers to fast evaluate the performance of PIM
systems and realize an early-stage design space exploration. In
the future, we will integrate MNSIM 2.0 with other circuits-level
simulators to achieve more accurate simulation results.
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