ECCV20 ONLINE 23-28 AUGUST 2020

16TH EUROPEAN CONFERENCE ON COMPUTER VISION WWW.ECCV2020.EU

A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS

Xuefei Ning (宁雪妃)¹, Yin Zheng², Tianchen Zhao¹³, Yu Wang¹, Huazhong Yang¹

NICS-EFC Lab, Department of Electronic Engineering, Tsinghua University¹

Weixin Group, Tencent²

Department of Electronic Engineering, Beihang University³

Xuefei Ning foxdoraame@gmail.com, Prof. Yu Wang yu-wang@tsinghua.edu.cn

RECTRONMENTS OF STREET

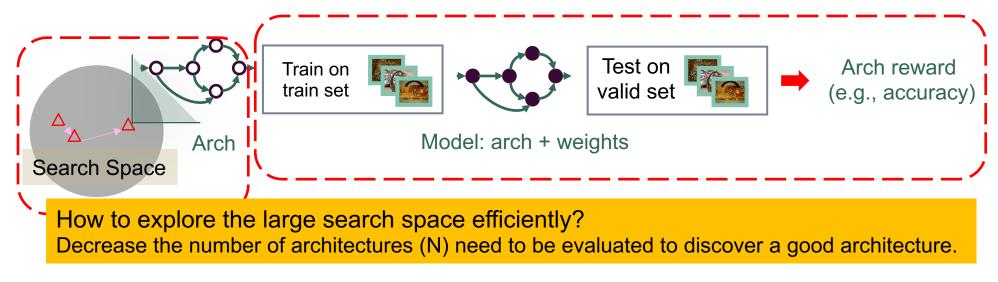
2020/8/29

Background

Computational challenge of Neural Architecture Search (NAS)

Total time cost for NAS algorithm: N x T

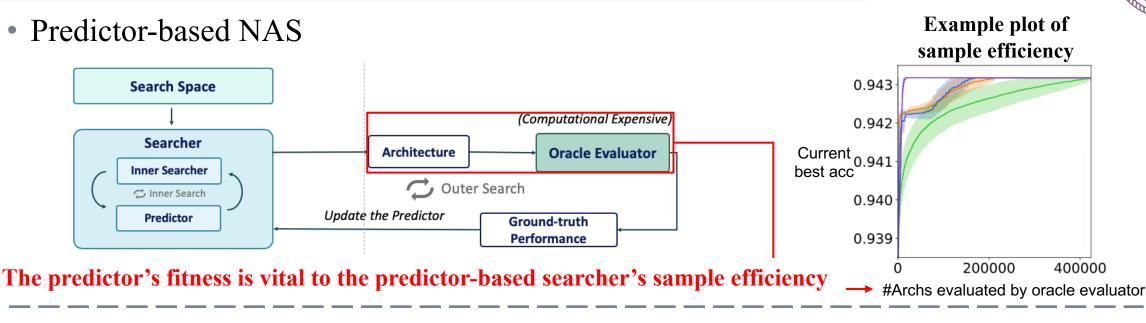
- N architectures in the search space are actually evaluated
- T for evaluating each architecture on average



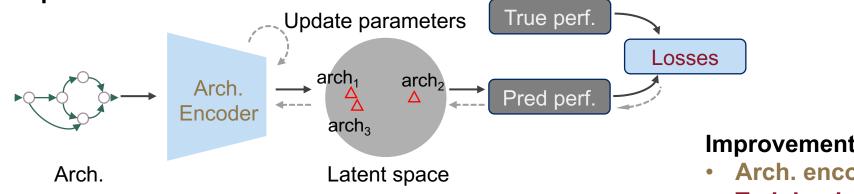
Predictor-based NAS

Use a predictor that predict the arch's performance (optionally with uncertainty) to guide the sampling/searching

Background



Typical parametric predictor construction



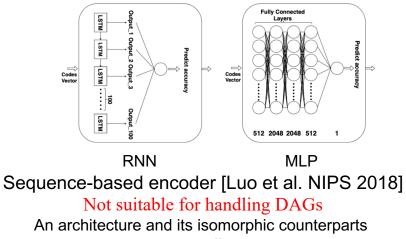
Can we use less true perf. data to learn better representation of archs (better latent space)?

Improvements from 2 aspects

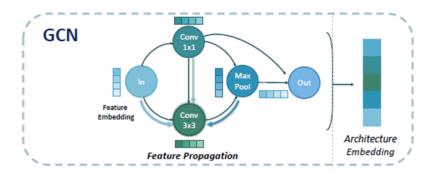
- Arch. encoder
- Training loss

Motivation

Arch. Encoder

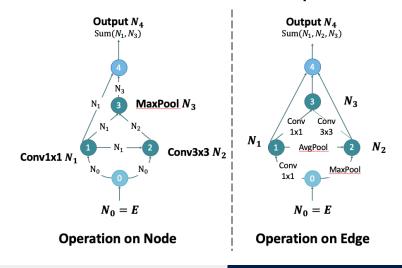


can have multiple different encodings



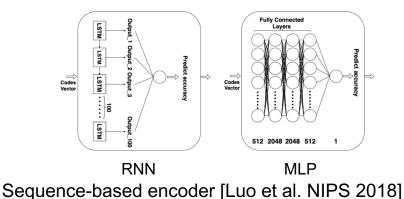
GCN-based encoder [Guo et al. NIPS 2019, Shi et al. 2019] Not suitable for handling **data-processing DAG** (NN architecture)

 Existing GCN encoder models the operation (Conv, Pooling) as the information to propagate on the graph, which is not intuitive for data-processing DAG
Existing GCN encoder cannot encode architectures from "operation-on-edge" search spaces



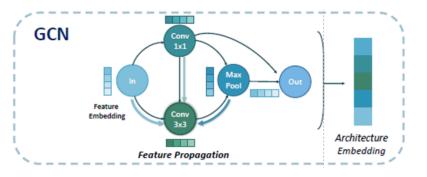
Motivation

Arch. Encoder



Not suitable for handling DAGs An architecture and its isomorphic counterparts can have multiple different encodings

Training loss



GCN-based encoder [Guo et al. NIPS 2019, Shi et al. 2019] Not suitable for handling **data-processing DAG** (NN architecture)

 Existing GCN encoder models the operation (Conv, Pooling) as the information to propagate on the graph, which is not intuitive for data-processing DAG
Existing GCN encoder cannot encode architectures from "operation-on-edge" search spaces

What is important in NAS is the relative ranking order of architectures, not the absolute score

• Regression loss: make predicted score $P(a_j)$ close to true performance y_j

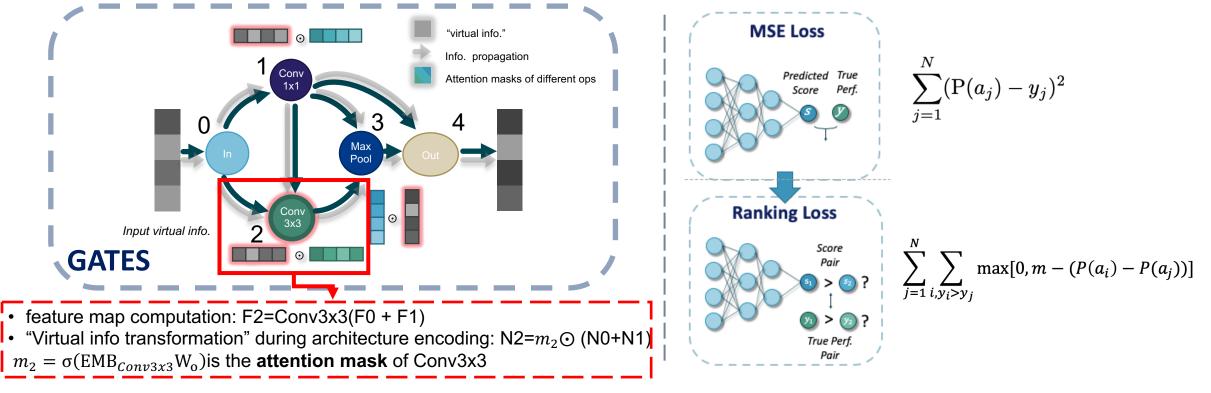
$$L(\{a_j, y_j\}_{j=1, \cdots, N}) = \sum_{j=1}^N (P(a_j) - y_j)^2$$

L is not a good surrogate of the ranking measures

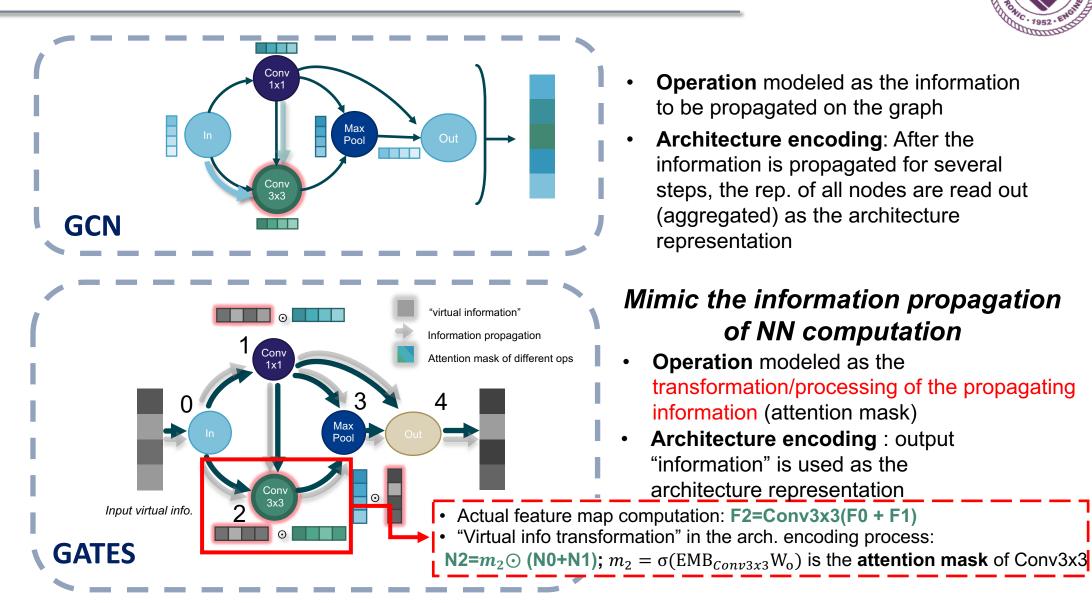
GATES

Improve <u>Encoder</u> and <u>Training losses</u>

- A more generic Graph-based neural ArchiTecture Encoding Scheme (GATES)
 - Mimic the information propagation in the architecture to encode it
- Learning to Rank (LtR) losses (Relative order matters rather than absolute perf.)
 - Ranking Losses are better surrogate of ranking measures than regression losses

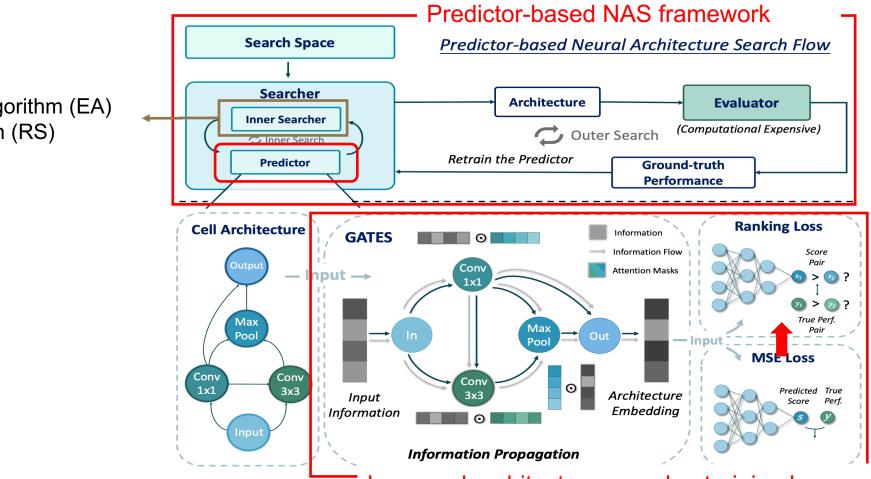


GATES



Overall framework

• The overall framework of predictor-based NAS with GATES and LtR



Improved architecture encoder, training losses

- Evolutionary Algorithm (EA)
- Random Search (RS)

Results on NAS-Bench-101

- Ranking correlation (Kendall' s Tau) of the predictors Sample efficiency
 - Encoder comparison

Encoder	Proportions of 381262 training samples							
Lincodor	0.05%	0.1%	0.5%	1%	5%	10%	50%	100%
MLP [21]	0.3971	0.5272	0.6463	0.7312	0.8592	0.8718	0.8893	0.8955
LSTM [21]	0.5509	0.5993	0.7112	0.7747	0.8440	0.8576	0.8859	0.8931
GCN (w.o. global node)	0.3992	0.4628	0.6963	0.8243	0.8626	0.8721	0.8910	0.8952
GCN (global node) [20]	0.5343	0.5790	0.7915	0.8277	0.8641	0.8747	0.8918	0.8950
GATES	0.7634	0.7789	0.8434	0.8594	0.8841	0.8922	0.9001	0.9030

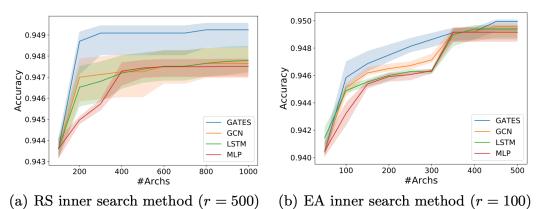
GATES outperform other encoders consistently, especially when there are few training samples

- Loss function comparison

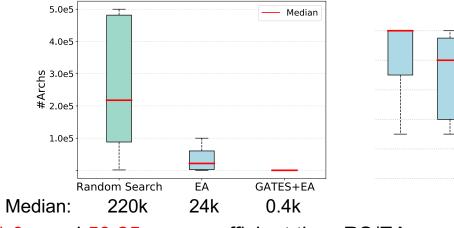
Loss	Proportions of 381262 training samples							
1000	0.05%	0.1%	0.5%	1%	5%	10%	50%	100%
Regression (MSE) + GCN^{\dagger}	0.4536	0.5058	0.5587	0.5699	0.5846	0.5871	0.5901	0.5941
Regression (MSE) + $GATES^{\dagger}$	0.4935	0.5425	0.5739	0.6323	0.7439	0.7849	0.8247	0.8352
Pairwise (BCE)	0.7460	0.7696	0.8352	0.8550	0.8828	0.8913	0.9006	0.9042
Pairwise (Comparator)	0.7250	0.7622	0.8367	0.8540	0.8793	0.8891	0.8987	0.9011
Pairwise (Hinge)	0.7634	0.7789	0.8434	0.8594	0.8841	0.8922	0.9001	0.9030
Listwise (ListMLE)	0.7359	0.7604	0.8312	0.8558	0.8852	0.8897	0.9003	0.9009

Ranking losses are better surrogate to ranking measures than regression losses

– Encoder comparison



- Comparison with baseline search strategies



 $551.0 \times$ and $59.25 \times$ more efficient than RS/EA

Results on NAS-Bench-101/201

- Two ranking measures for NAS application
 - The Kendall' s Tau treats all the discordant pairs equally
 - The ranking order among the poorly performed architectures is not important for NAS application

N@K

the best true ranking of the top K predicted architectures

NAS-Bench-101

Encoder	Rankir	ng Loss	Regression Loss		
Lincodor	N@5	N@10	N@5	N@10	
MLP [21]	57~(0.13%)	58 (0.13%)	1397 (3.30%)	552 (1.30%)	
LSTM $[21]$	1715 (4.05%)	1715 (4.05%)	1080(2.54%)	312(0.73%)	
GCN [19]		1362 (3.21%)			
GATES	$22 \ (0.05\%)$	22 (0.05%)	27~(0.05%)	27 (0.05%)	

NAS-Bench-201

Encoder	Rankii	ng Loss	Regression Loss		
Lincouti	N@5	N@10	N@5	N@10	
MLP [21]	7~(0.09%)	7~(0.09%)	1538 (19.7%)	224 (3.87%)	
LSTM $[21]$			250~(6.65%)		
GATES	1 (0.00%)	$1 \ (0.00\%)$	$1 \ (0.00\%)$	1 (0.00%)	

Precision@K

the proportion of true top-K architectures among the top-K predicted architectures

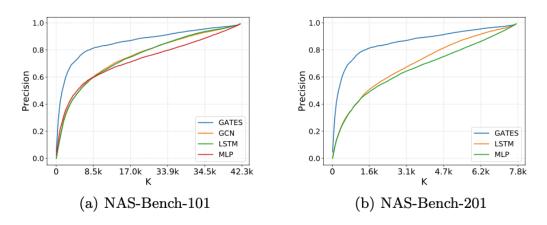
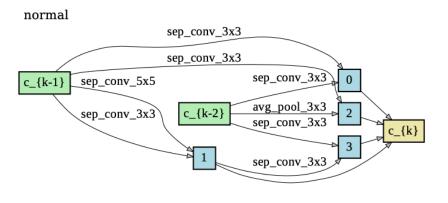


Fig. 3. Precision@K

Results on ENAS search space

• Search on large open search space (ENAS)

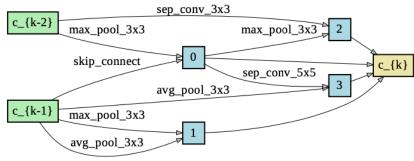


(a) Normal cell

CIFAR-10 results

Method	Test Error (%)	#Params (M)	#Archs Evaluated
NASNet-A + cutout [25]	2.65	3.3	20000
AmoebaNet-B $+$ cutout [16]	2.55	2.8	27000
NAONet [13]	2.98	28.6	1000
PNAS [8]	3.41	3.2	1160
NAONet-WS ^{\dagger} [13]	3.53	2.5	-
$DARTS+cutout^{\dagger}$ [10]	2.76	3.3	-
$ENAS + cutout^{\dagger}$ [15]	2.89	4.6	-
Ours + cutout	2.58	4.1	800

reduce



(b) Reduction cell

Transferring to ImageNet

Method	Top-1 Test Error	(%) #Params (M)
NASNet-A [16]	26.0	5.3
AmoebaNet-B [9]	27.2	5.3
PNAS [6]	25.8	5.1
DARTS [7]	26.9	4.9
GHN [15]	27.0	6.1
Ours	24.1	5.6

Conclusion & Future work

- RECTRATIC : 1952 : ENGLAND
- Knowledge: Ranking measures N@K, Precision@k other than the Kendall' s Tau ranking correlation are meaningful for NAS application
- Use GATES to encode topological architecture
 - An intuitive encoding method that is more suitable for data-processing DAGs
 - Correct handling of architecture isomorphism (map isomorphic architectures to the same rep.)
 - Encode both operation-on-edge and operation-on-node architectures
- Use learning-to-rank losses to train the architecture predictor
 - Correspond better with the ranking measures
- Future work
 - Employing GATES to larger or hierarchical search spaces with more complex topologies

Thanks for listening!

Contact us at: Xuefei Ning foxdoraame@gmail.com, Prof. Yu Wang yu-wang@tsinghua.edu.cn

Paper

https://arxiv.org/abs/2004.02164

Code

https://github.com/walkerning/aw_nas Contributions, suggestions and discussions are all welcome!