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Abstract—In recent years, Convolutional Neural Network
(CNN) has been widely used in robotics, which has dramatically
improved the perception and decision-making ability of robots.
A series of CNN accelerators have been designed to implement
energy-efficient CNN on embedded systems. However, despite
the high energy efficiency on CNN accelerators, it is difficult
for robotics developers to use it. Since the various functions on
the robot are usually implemented independently by different
developers, simultaneous access to the CNN accelerator by these
multiple independent processes will result in hardware resources
conflicts.

To handle the above problem, we propose an INterruptible
CNN Accelerator (INCA) to enable multi-tasking on CNN
accelerators. In INCA, we propose a Virtual-Instruction-based
interrupt method (VI method) to support multi-task on CNN
accelerators. Based on INCA, we deploy the Distributed Simul-
taneously Localization and Mapping (DSLAM) on an embedded
FPGA platform. We use CNN to implement two key components
in DSLAM, Feature-point Extraction (FE) and Place Recognition
(PR), so that they can both be accelerated on the same CNN
accelerator. Experimental results show that, compared to the
layer-by-layer interrupt method, our VI method reduces the
interrupt respond latency to 1%.

I. INTRODUCTION

With the development of algorithms and hardware plat-
forms, Convolutional Neural Network (CNN) has dramatically
improved the perception and decision-making ability of un-
manned platforms.

Distributed Simultaneously Localization and Mapping
(DSLAM) is a basic task for many multi-robot applications,
and is a hot topic in robotics. Two key modules consume
most of the computation: Feature-point Extraction (FE) and
Place Recognition (PR). FE provides the feature-points for the
Visual Odometry (VO) to calculate the relative pose between
two adjacent frames. PR generates compact image representa-
tion, which produces the candidate place recognition matches
between different robots. Recent works use CNN to extract
feature-points [1], [2] and generate the place representation
code [3], [4]. The CNN-based feature-point extraction method,
SuperPoint [1], achieves 10%-30% higher matching accuracy
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compared with the popular handcrafted extraction method,
ORB [5]. The accuracy of the place recognition code from
another CNN-based method, GeM [4], is also about 20% better
than the handcrafted method, rootSIFT [6].

However, CNN is computation consuming. A single in-
ference forward of the CNN-based GeM place recognition
consumes 192G operations [4]. Thus, specific hardware archi-
tectures on FPGA [7]–[11] are designed to deploy CNN on
the embedded system. With the help of network quantization
and on-chip data reuse, the speed of CNN accelerators on
embedded FPGA achieves 3TOP/s [11], which can support
the real-time execution of CNN-based FE [1]. However, these
CNN accelerators are designed and optimized to accelerate a
single CNN. They can not automatically schedule two or more
tasks simultaneously.

In order to facilitate robotic researchers to run different
CNN tasks simultaneously on the FPGA accelerator, the
accelerator should support the following features:

Multi-thread: Because different components in a robot
are from different developers, thus, Robot Operating System
(ROS) [12] is proposed as a middleware to fuse these indepen-
dent components, and is widely used by robotic researchers.
Each component is considered as an independent thread in
ROS. Different threads should have independent access to the
accelerator without knowing the status of others.

Finishing before deadline: In a robot, some tasks must
be completed within the specified hard deadlines, such as
FE. The moving robot’s perception, including estimation of
itself’s location and the obstacles’ position, is based on the
feature-points. If FE is not completed before the deadline, the
robot can not estimate the surrounding environment, causing
collisions or even damage. Those critical tasks with a more
stringent headline need to be performed prior to the non-
critical tasks [13]. In DSLAM, the priority of feature-point
extraction (FE) is higher than that of place recognition (PR).
Because PR is only related to efficiency, yet FE ensures system
safety.

To address the above challenges, we propose an INter-
ruptible CNN Accelerator (INCA) for the rapid deployment
of robot applications onto embedded FPGA. The workflow
of INCA is illustrated in Figure 1(b). The first step is the
task decomposition, which decomposes the computation of
different tasks into CNN tasks and other CPU tasks. The
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Fig. 1. INCA framework. Fig(a) shows the diagram of scheduling feature-point based VO and place recognition (PR). The feature-point extraction (FE) and
the PR are based on CNN and accelerated on the FPGA side. The VO backend to calculate the relative pose from feature-points and the PR backend to
match the image representation are running at the CPU side. Fig(b),(c),(d) illustrate the workflow of INCA to deploy robot applications to embedded hardware
platform with a CNN accelerator on it.

second step is to deploy the computation onto the FPGA.
The CNN backbones of different tasks, such as the VGG
model [14] in SupoerPoint feature-point extraction [1] and
the ResNet101 model [15] in GeM place recognition [4],
are compiled to the interruptible Virtual-Instruction Instruction
Set Architecture (VI-ISA). With the help of the VI-ISA, the
accelerator can be time-multiplexed with different tasks.

INCA facilitates robotic researchers to run different CNN
tasks simultaneously on the FPGA with the following contri-
butions:

• We propose a virtual-instruction-based interrupt method
(VI method) to make the CNN accelerator support dy-
namic multi-task scheduling by priority. The method
solves the hardware resources conflicts when accelerating
different CNN tasks on ROS [12].

• We propose a CNN-based DSLAM system based on
INCA. CNN-based methods for FE and PR are accel-
erated with FPGA on ROS. With the help of the unified
interface in ROS, these CNN-based methods can be easily
used by other developers in different applications.

II. RELATED WORK

To accelerate CNN, some previous works design frame-
works to generate a specific hardware architecture for a target
CNN, based on RTL [9] or HLS [11]. These works need
to reconfigure the FPGA to switch between different CNN
models. The reconfiguration consumes seconds [16], which
is unacceptable for the real-time system. Some other works
design instruction-driven accelerators [7], [8], [10], [17], mak-
ing rapid switching possible by providing different instruction
sequences. However, the CNN tasks on previous instruction-
driven CNN accelerators are not interruptible, resulting in the
latency-sensitive high-priority task waiting for the low-priority

task to finish. This inability of CNN accelerators to support
multi-task makes it difficult for robotic researchers to use
embedded FPGA.

III. INCA FRAME WORK

Although ROS is becoming the fundamental software plat-
form for robotics, the independence between different ROS
tasks brings hardware resources conflicts to access the
hardware accelerator. Figure 1(a) shows the time diagram
of scheduling feature-point based visual odometry (VO) and
Place Recognition in DSLAM system. The feature-point ex-
traction (FE) and Place Recognition (PR) are implemented in
CNN and deployed to the accelerator. In the native accelerator
(the shadow part in Figure 1(a)), the threads of FE and PR
may need to process CNN at the same time, and it leads to
hardware resources conflicts.

Figure 1(a) also illustrates the idea of interrupt to schedule
two CNN tasks. In the process of running a low-priority
network (PR), the software may send an execution request
for the high-priority task (FE). The interrupt enables the CNN
accelerator to backup the running state of the low-priority PR
network. Then the accelerator switches to the high-priority FE
network. After the high-priority task (FE) completes, the low-
priority task (PR) is restored to the accelerator and continues
to execute.

Figure 1(c) details the INCA compilation step. Caffe [18]
is a popular software framework for CNN, and the *.caf-
femodel/*.prototxt files define the network parameters and
structure in Caffe. The previous deployment process, such
as Angel-Eye [7] and DPU [17], quantizes the weights, and
analyze the network topology. The original compiler translates
the network topology and the quantization information into the
original ISA sequence. INCA goes further than previous CNN



TABLE I
DESCRIPTION FOR THE INSTRUCTIONS

Type Description Backups Recovery
LOAD W Load weights/bias from DDR

to on chip weight buffer.
- Weight /

Inputdata
LOAD D Load input featuremaps from

DDR to on chip weight
buffer.

- Weight /
Inputdata

CALC I Calculate intermediate results
for some output channels
from partial input channels.

Intermediate
data

Weight / In-
putdata / inter-
mediate data

CALC F Calculate the results for some
output channels from all input
channels.

Final results Weight /
Inputdata

SAVE Save the results from on-chip
data buffer to DDR.

- Weight /
Inputdata

compilers. It selects the optimized interrupt positions in the
original instruction sequence, and adds virtual instructions at
these positions to enable accelerator interrupt. After that, the
original instruction sequence and the added virtual instructions
are wrapped to the new interruptible VI-ISA. The wrapped VI-
ISA instructions are dumped into a file (instruction.bin), and
can be loaded into the instruction spaces on FPGA’s DDR.

As illustrated in Figure 1(d), at runtime, an Instruction
Arrangement Unit (IAU) in hardware listens to the interrupt
request from ROS software, fetches the corresponding VI-ISA
interruptible instructions and translates them to the original
ISA executed on the CNN accelerator. Although we implement
and evaluate INCA based on Angel-Eye [7], it can be applied
to various instruction-based CNN accelerators.

IV. VIRTUAL-INSTRUCTION-BASED ACCELERATOR
INTERRUPT

A. Instruction Driven Accelerator

There are three categories of instruction in the instruction-
driven accelerator: LOAD (LOAD W / LOAD D), CALC
(CALC I / CALC F), and SAVE [7], [8], [10]. The instruction
description of each kind of instruction is listed in Table I.

Each CALC instruction, including CALC I and CALC F,
processes the convolution according to the hardware paral-
lelism with Paraheight lines from Parain input channels to
Paraout output channels. Paraheight, Parain, and Paraout
are the parallelism along the height, input channel and output
channel dimensions, which is determined by the hardware and
the original ISA. The convolution of the last Parain input
channels is CALC F, and the convolutions for the former
input channels are CALC I, as illustrated in Figure 2(a). The
CALC F and the CALC I instructions for the same output
channels, as well as the LOAD instructions for corresponding
input featuremaps and weights, are considered as a CalcBlob.

B. How To Interrupt: Virtual Instruction Inside Layer

There are four stages to handle interrupt. For the instruction
flow illustrated in Figure 2(b), the interrupt stages are shown
in Figure 2(c), including: (1) Time for finishing the current
operation, t1. (2) Time to backup, t2. (3) Time for the high-
priority task, t3. (4) Time to restore the low-priority task ,t4.
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Fig. 2. Scheduling and interrupt for the instruction-driven accelerator.

The latency to respond the interrupt is tlatency = t1 + t2. The
extra cost for interrupt is tcost = t2 + t4. There are different
methods to implement interrupt in CNN accelerators.

CPU-Like. When an interrupt request occurs in CPU, CPU
backs up all the on-chip registers to DDR. However, there are
only tens of registers in CPU, and the volume of the backed-
up data is less than 1 KB [19]. In CNN accelerators, there are
several MB of on-chip caches [7], [10] for input featuremaps
and weights. Thus, the extra data transfer increases both the
interrupt response latency(tlatency) and the additional cost
(tcost). CPU-Like interrupt needs a lot of extra memory space
on DDR.

Layer-by-layer. Most accelerators run the CNN layer by
layer [7], [10]. There is no extra data transfer for the accel-
erator to switch between different tasks after each layer, thus,
tcost = 0. However, the position of the interrupt request is
irregular and unpredictable. When an interrupt occurs inside a
CNN layer, the CNN accelerator needs to finish the whole
layer before switching, which leads to the high response
latency(tlatency).

We propose the virtual-instruction-based method (VI
method) to enable low-latency interrupt. Our VI method is
interruptible inside each layer. Virtual instructions are some
special instructions in the original instruction sequences. If
an interrupt occurs, virtual instructions are executed to back
up and restore the running state. If no interrupt occurs, the
virtual instructions will not be executed. We add some virtual
instructions to the original instruction sequence to enable
the interrupt, which contain the vitrual SAVE (Vir SAVE)
and vitrual LOAD (Vir LOAD) instructions. Vir SAVE and
Vir LOAD are responsible for backing up and restoring on-
chip caches respectively.

C. Where To Interrupt: After CALC F/SAVE

We analyze the interrupt cost and select the positions of
adding the virtual instructions. The backup/recovery data for
different interrupt positions at each kind of instruction are
listed in the Backup/Recovery columns of Table I.



When an interruption occurs at LOAD, the newly loaded
data are immediately flushed when running the high-level
CNN, leading to bandwidth waste.

Compared with CALC I, when an interrupt occurs at
CALC F, there are no intermediate results. Although it is nec-
essary to back up the unsaved final results immediately, these
results will be stored in DDR through the subsequent normal
non-virtual SAVE instruction. If the accelerator can record the
interrupt status, we can modify the address and workload when
executing subsequent normal non-virtual SAVE instruction.
Thus, we can avoid the repetitive transmission of the final
output results. The extra data transfer is only to recovery input
data without any extra backup data, tcost = t4.

There is no data that need to be backed up when interrupt
after SAVE. The overhead of interrupt after SAVE is also only
to restore input data from DDR to the on-chip caches, tcost =
t4.

In order to minimize the cost of interrupt, we make the
CNN interruptible after the SAVE or CALC F. This method
only introduces extra data transfer to recovery input data
without any extra backup data. Thus, tcost = t4, in our virtual-
instruction-based interrupt.

Compared with layer-by-layer interrupt, our method, which
is interruptible after CALC F and SAVE, significantly reduces
tlatency. In the worst case, the interrupt request occurs at the
beginning of the layer. In this case, the accelerator will wait
until finishing the whole layer. The wait time is t1 layer:

t1 layer =
Chin × Chout ×H

Parain × Paraout × Paraheight
× tinstr(W )

Where tinstr(W ) is calculation time of a single CALC.
The W of the input featuremaps is larger, the time of a single
CALC is longer.

The worst wait of our VI method is t1 V I :

t1 V I =
Chin × Paraout × Paraheight
Parain × Paraout × Paraheight

× tinstr(W )

Compared with the layer-by-layer method, the worst latency
of our method is reduced to Rl.

Rl =
t1 V I

t1 layer
=

Paraout × Paraheight
Chout ×H

(1)

The effect of latency reduction of the VI method is related
to the number of output channels (Chout) and featuremap
height (H). The larger the featuremaps output channels and
the height, the better latency reduction result can be achieved.

Since usually Chin � Paraout, compared with the time of
finishing current calculation (need to read data from all Chin),
the time of backing up the final result (only save data for a
Paraout) can be ignored. So that in both VI and layer-by-
layer methods, the interrupt respond latency tlatency is mainly
determined by waiting for current calculation t1. Experimental
results of VI method in Section V-B include the backup time
(t2), yet the acceleration ratio is similar to the theoretical result
of Equation (1).
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D. Instruction Arrangement Unit (IAU)

Instruction Arrangement Unit (IAU) is the hardware to
handle the interrupts from the tasks with different priorities.
IAU is shown in Figure 3, supporting 3 tasks with different
priorities (priority 0,1,2). Task 0 has the highest priority and
is not interruptible. Status Pool records the running status of
the task at each priority. The Instruction Fetcher reads the VI-
ISA instruction sequences from DDR according to the running
state (Run State) and the DDR address of instructions (Instr
Addr). Virtual Instr FIFO decides whether a virtual instruction
needs to be executed according to the running state.

SAVE Instruction Controller writes the status of the executed
virtual SAVE instructions to Status Pool, including ID of its
corresponding normal non-virtual SAVE (SaveID), and the
address (Save Addr) and length (Save Length) of the backed-up
final output results. SAVE Instruction Controller also modifies
the normal non-virtual SAVE instructions according to the
recorded ID, Addr, Length to avoid duplicate data transfer
for the final output results.

Instructions are translated from VI-ISA to the original ISA
via Instruction Translator and Output Instruction Controller.
The translated instructions are directly executed on the CNN
accelerator. The CNN accelerator does not need to know the
interrupt status, and only operates the instructions provided by
IAU.

A simple example is given in Figure 4. Figure 4(a) is the
instruction sequence from DDR with VI-ISA. The instructions
are generated for the scheduling shown in Figure 2. The
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Vir SAVE instruction is responsible for backing up executing
status, i.e., saving the output results of the first CALC F.
The Vir LOAD instruction restores the input featuremaps
from DDR to on-chip memory. The Vir LOAD. The SAVE
instruction in Figure 4(a) saves all the output results for the
two CALC F. Figure 4(b) is the original ISA instructions
translated by the IAU without interrupt. The virtual instruc-
tions (Vir SAVE and Vir LOAD) are skipped and discarded
by the IAU. Thus the accelerator receives the original ISA
sequence without backup/restore instructions. When an inter-
rupt occurs at the first CalcBlob, Figure 4(c) illustrates the
backup/recovery instructions (Blue) and the modified SAVE
instruction (Red). Because the output results of the first
CALC F are stored to DDR with the first SAVE, which

is translated from the Vir SAVE in fig(a), the last SAVE
instruction is modified to only store the output results of the
second CALC F.

V. EVALUATION AND RESULTS

A. Experiment Setup

The hardware-in-loop evaluate environment is illustrated in
Figure 6(a). There is a simulation server providing the sim-
ulation environment based on AirSim simulator [20], which
provides the camera data for the two agents. Two Xilinx
ZCU102 boards [21], with ZU9 MPSoC, are responsible for
the calculation of each agent. SuperPoint [1] is used for
extracting feature-points. GeM [4] is used for the PR module.

The CNN is calculated by the Angel-Eye CNN accelerator
[7] on the FPGA side of ZU9 MPSoC, and other operations are
on the CPU side. For a precise evaluation of the CNN running
time, we record the clock cycles of the beginning and end of
each instruction. The time of the interrupt response latency and
the total cost in the following evaluation is calculated from the
clock cycles and the clock frequency. The CNN accelerator
and the IAU are running at 300MHz.

B. Evaluation of Virtual-Instruction Interrupt

In DSLAM, only the low-priority PR task is interruptible,
and the interrupt position is unpredictable. GeM [4] is used
to implement the PR module in the experiment. The CNN
backbone of the GeM is ResNet101 [15], which contains 101
convolution layers. The input shape of the CNN is 480 ×
640×3. The parallelism of the Angel-Eye is Paraheight = 8,
Parain = 16, Paraout = 16. We randomly sample 12 posi-
tions of the ResNet101 CNN backbone. The interrupt response
latency and the extra time cost for different implementation of
interrupt at the positions are listed in Figure 5(a). The CPU-
like interrupt consumes the most extra cost (tcost). Though the
layer-by-layer interrupt consumes no extra time, the latency is
much higher than our virtual-instruction-based interrupt. This
is because the layer-by-layer interrupt needs to wait for the



completion of a layer. The performance at the same interrupt
position in our proposed virtual interrupt can interrupt inside
a layer, with lower latency.

Furthermore, though the network structures differ between
different CNNs, the convolutional layers, which are the basic
component in CNN, are similar between different CNNs.
INCA monitors the running status inside each layer, and the
interrupt respond latency and extra cost are only relevant
to the currently operating layer. We compare the interrupt
respond latency of our VI method with layer-by-layer method
at different layers from different networks, including ResNet
[15], VGG [22], and MobileNet [23]. The results are illus-
trated in Figure 5(b). We evaluate our method on both the
big accelerator with large hardware parallelism and small
accelerator with small parallelism. In the ResNet and VGG,
the average interrupt respond latency of the layer-by-layer
method is ms to tens of ms, which makes the high priority
task with hard deadline in the embedded system unable to
be completed on time. With our VI method, the latency
can be reduced to ∼100 us, so that the high priority task
can be started immediately and completed on time. For the
lightweight network (MobileNet), although the latency of the
layer-by-layer method is ∼1 ms, we can still reduce the
latency by 2-3 orders of magnitude with VI method. This result
also matches the theoretical analysis in Equation (1).

C. DSLAM with INCA

The result of the DSLAM based on INCA is shown in
Figure 6. The space in the AirSim [20] for the robots to explore
is shown in Figure 6(a). It is a simple rectangle area with four
different pillars, and some chairs at the center (in the white
box). Figure 6(b) shows how PR works for map merging. The
VO based on feature-points on each agent produces the local
map and trajectory. When the PR threads find out a similar
scene, and the maps and the trajectories are merged via the
similar scene, as shown in Figure 6(c).

In this example, the CNN-based feature-point extraction
(FE) and place recognition (PR) are both executed on the
same Angel-Eye [7] accelerator. The frequency of the input
camera is 20fps, and each input frame is fed to the FE, and
the FE module would take up the accelerator. While the CPU
process VO with the feature-points from FE, the accelerator
can switch to process the low-priority PR task, as illustrated
in Figure 1(a). Thus, the PR process one frame every 7∼10
input frames. However, the scene between adjacent frames is
similar, so it is not necessary to do place recognition for each
input picture. Place recognition every 10 frames can meet the
task requirements of DSLAM.

VI. CONCLUSION

In this paper, we propose an interruptible CNN accelerator
and a deployment framework, INCA. With the help of the
virtual-instruction-based interrupt method (VI method), the
CNN accelerator can switch between different CNN tasks
with low interrupt response latency and low extra cost. INCA

currently focuses on interrupt support for single-core multi-
tasking. We plan to investigate the multi-core multi-tasking
for CNN accelerators as part of future work.
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