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Abstract—The emerging resistive random-access memory
(RRAM) has been widely applied in accelerating the computing of
deep neural networks. However, it is challenging to achieve high-
precision computations based on RRAM due to the limits of the
resistance level and the interfaces. Low bit-width convolutional
neural networks (CNNs) provide promising solutions to intro-
duce low bit-width RRAM devices and low bit-width interfaces
in RRAM-based computing system (RCS). While open questions
still remain regarding: 1) how to make matrix splitting when
a single crossbar is not large enough to hold all parameters of
one weight matrix; 2) how to design a pipeline to accelerate the
inference based on line buffer structure; and 3) how to reduce
the accuracy drop due to the parameter splitting and data quan-
tization. In this paper, we propose an RRAM crossbar-based low
bit-width CNN (LB-CNN) accelerator. We make detailed discus-
sion on the system design, including the matrix splitting strategies
to enhance the scalability, and the pipelined implementation
based on line buffers to accelerate the inference. In addition,
we propose a splitting and quantizing while training method to
incorporate the actual hardware constraints with the training. In
our experiments, low bit-width LeNet-5 on RRAM show much
better robustness than multibit models with device variation. The
pipeline strategy achieves approximately 6.0× speedup to process
each image on ResNet-18. For low-bit VGG-8 on CIFAR-10, the
proposed accelerator saves 54.9% of the energy consumption and
48.3% of the area compared with the multibit VGG-8 structure.

Index Terms—Constrained training, low bit-width convolu-
tional neural network (LB-CNN), parameter splitting, pipeline,
resistive random-access memory (RRAM).

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have
achieved great performance in various computer vision
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applications [1]–[3]. With the CNNs going deeper, the comput-
ing of CNNs has increased the demand on the communication
bandwidth and hardware resources. Thus, efficiency is now
perceived to be a growing problem in neural network com-
puting systems. Many studies have made great efforts on
accelerating the neural network computing [4]–[6]. However,
conventional CMOS- and von Neumann architecture-based
processors are facing the memory wall, and Moore’s Law
is dying [7], which impedes further improvement of speed
and energy efficiency. Therefore, many researchers have
turned attention to the novel processing-in-memory (PIM)
architectures.

The emerging resistive random-access memory (RRAM)-
based computing system (RCS) has been proven to be one
of the most promising candidates for future CNN acceler-
ators [8]–[10], resulting from the outstanding attributes of
RRAM, such as high density, low power, etc. Moreover, the
RRAM crossbars not only can store the weight parameters
of CNN models, but also can implement the matrix-vector
multiplications (MVMs) located in memory [8], [10]–[12],
which is the so called PIM pattern. By combining RRAM
crossbars with CNN computing systems, the data movements
can be substantially reduced, and less bandwidth is required.
The time complexity of the MVM (with n × n matrix) can be
reduced from O(n2) to O(1), resulting from the crossbar-level
parallelism.

However, the RRAM-based CNN accelerators are not adept
for high-precision computing. On the one hand, the resis-
tance level of the RRAM device cannot support the available
storage of high-precision data [13]. Furthermore, as the bit
level increases, the impact of memory writing and reading
variation will be greatly enlarged because the margin of two
adjacent resistance states becomes quite smaller [14]. On the
other hand, because RRAM crossbar performs the MVMs
in analog mode, additional interfaces, including analog-to-
digital converters (ADCs) and digital-to-analog converters
(DACs), are required to implement the data conversions.
High-precision ADC/DACs consume considerable area and
power, which makes the entire RCS far less efficient than
expected [11]. Therefore, the precision limit in the RCS has
become the most challenging issue of RRAM-based CNN
accelerators.

Researchers have proposed methods to train low bit-
width CNNs (LB-CNNs), even with binary weights and
activations. Although the performance of binary CNNs
always drops rapidly, e.g., over a 10% accuracy drop in

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2020 at 00:18:40 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7731-7028
https://orcid.org/0000-0001-6108-5157
https://orcid.org/0000-0003-2421-353X


CAI et al.: LB-CNN ON RRAM 1415

ImageNet classification was observed in [15] and [16], low-
bit approaches have demonstrated impressive performance.
For example, INQ [17] outperforms the floating-point base-
line with the quantization of both the weights and activa-
tion to 5 bits; DoReFa-Net [18] also achieves comparable
performance with full-precision networks with only 1-bit
weight and 4-bit activation. Therefore, it is promising to over-
come the precision limits by reducing the bit-width of the data,
including all the weights and activations.

More challenges also appear when the scale of the CNN
increases. The RRAM crossbar can only be manufactured with
a limited size due to the IR-drop problem and other nonideal
factors. Therefore, a single crossbar may not be able to hold
the whole weight matrix of a large-scale convolution or a fully
connected (FC) layer. To address this, matrix splitting strate-
gies are required. While high-precision interfaces are required
to obtain partial intermediate activation (IA) and maintain the
computing precision. Then, the partial IA are accumulated to
get the merged activation (MA). To save additional energy, it is
also promising to introduce low bit-width interfaces in the par-
tial intermediate data conversions. However, these interfaces
will introduce more quantization error and cause decreasing
accuracy.

Meanwhile, a larger time consumption and energy over-
head will be introduced by the rapid growth of intermediate
data buffers between convolutional layers. Because sliding
operations exist to convolve the features, only a few reg-
isters are used in each cycle, so there exists a parallel
potential between layers to reduce the buffer size while boost-
ing the processing speed. As a result, a pipeline strategy
between layers can be designed for both CNN and LB-CNN
accelerators.

In this paper, we propose an RRAM crossbar-
based LB-CNN accelerator. The main contributions are
as follows.

1) An efficient structure is designed for the accelerator
system, including the computing circuits and buffers. A
detailed discussion on the parameter splitting is given.

2) We propose a pipeline strategy to reduce the process-
ing cycles. Our experiments show that the pipelined
implementation can achieve 6× speedup when pro-
cessing the ResNet-18 compared with layer-by-layer
implementation.

3) We introduce the splitting and quantizing during training
method to incorporate the hardware limitations with the
training, which achieves comparable performance with
floating-point, nonsplitting models.

4) We demonstrated the robustness with device variation
of the LB-CNNs on RRAM. Our experiments of LeNet
over the MNIST dataset validate that, binary CNN
achieves 0.75% error rate on 3-bit RRAM devices when
considering device variation.

5) We conduct simulations to evaluate the performance of
our design. Through introducing low-bitwidth interfaces,
more than 60% of the interface area and power can
be saved. Overall, when constructing the accelerator for
VGG-8, 54.9% of the energy overhead, and 48.3% of
the area consumption are saved.

II. PRELIMINARIES

A. CNN Fundamentals

Typically, a standard CNN is constructed by a number of
convolutional (Conv) layers and FC layers that run sequen-
tially. Conv layers are usually optionally followed by nonlinear
neuron layers, pooling layers, and normalization layers [1].

1) Conv Layer: The mathematical function of the Conv
layer can be expressed as in

�g(x, y, z) =
h−1∑

i=0

w−1∑

j=0

Cin−1∑

k=0

�f (x + i, y + j, k) · �cz(i, j, k) (1)

where the vector �f represents the 3-D input feature map with
the size of Hin × Win × Cin; the vector �g represents the 3-D
output feature map with the size of Hout × Wout × Cout; the
vector �cz is the zth convolution kernel with the size of h ×
w × Cin; Cout is the number of convolution kernels; and the
remaining variables are all spatial coordinates of the feature
maps and convolution kernels. In this way, a 4-D blob shaped
as Hout × Wout × Cin × Cout corresponds to a Conv layer.

2) Neuron Layer: This layer is a one-by-one mapping func-
tion that is attached after the Conv layer (y = f (x)). In our
LB-CNN design, the nonlinear neuron layer is set as the com-
monly used ReLU function. When quantizing the activations
to 1 bit, binary neurons, as proposed in BinaryNet [15], are
used. The forward function can be expressed in

y =
{

1, x > 0
−1, x ≤ 0.

(2)

3) Max Pooling Layer: This layer is cascaded after the
nonlinear neuron layer, which is a form of nonlinear down-
sampling. Max pooling partitions the input feature map into
rectangular regions and picks the maximum value of each
region as the corresponding element of the output feature map
to reduce the computation for the upper layers and maintain
the local invariance.

4) FC Layer: This layer is the final layer in which all inputs
and outputs are connected by weights as traditional neural
networks. The operation can be represented as in

fout(y) =
Lin−1∑

x=0

fin(x) · c(x, y) (3)

where x is the index of the 1-D input feature map vector fin
with the length of Lin; y is the index of output feature map
vector fout with the length of Lout; and the 2-D matrix c is the
weights with the size of Lin × Lout.

B. RRAM Device, Crossbar Array, and Interface

An RRAM device is a passive two-port nonvolatile memory
element whose resistance can be tuned within a certain range.
Therefore, a multibit number can be represented by dividing
the resistance range into multiple intervals. Moreover, multiple
RRAM devices can be used to build the crossbar structure.
If the weights are stored by the conductance of the RRAM
devices and the data are represented by the input voltage sig-
nals, then the RRAM crossbar is able to perform as an analog
convolution processing unit. When applying voltages in the
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(a) (b)

Fig. 1. Challenges and proposed solutions of RRAM-based neural network
computing. This figure also shows (a) CNN structure. (b) Structure of the
RRAM-based crossbar.

input interface, accumulated currents can be fetched on the
output port. Specifically, the relationship between the input
voltages and output currents can be expressed as in (4) [12]

iout(k) =
N−1∑

j=0

g(k, j) · vin(j) (4)

where �vin is the vector of input voltage (denoted by j =
0, 1, . . . , N − 1), �iout is the vector output current (denoted by
k = 0, 1, . . . , M − 1), and g is the conductivity matrix of the
RRAM device which represents the weights. Commonly in
the input interfaces, DACs are required to convert the digital
inputs into the voltages with multilevel amplitudes. In the out-
put interface, sensing amplifiers (SAs) or ADCs are required
to extract the calculation results, as shown in Fig. 1. Since
the equation shows the same pattern as MVMs, the RRAM
crossbars can implement MVMs with high parallelism and
efficiency.

As the dominant computations of Conv layers and FC lay-
ers are composed of MVMs, the crossbar can be utilized to
implement the Conv and FC operations in analog mode with
high speed, small area, and low power [12]. For FC lay-
ers, the weight matrices are directly mapped to the RRAM
crossbars [11]. As for Conv layers, the parameter tensors
with the shape of (Hout, Wout, Cin,Cout) are reshaped to 2-D
(Hout ×Wout ×Cin, Cout) matrices, then mapped to the RRAM
crossbars [12], as shown in Fig. 1.

III. MOTIVATION

The RRAM-based systems have shown great potential to
achieve incredible performance regarding CNN computation.
However, the RRAM device, crossbar manufacturing, and
peripheral interfaces have some limits, which derives a num-
ber of obstacles to RRAM-based CNN implementation and
makes the efficiency far less appealing than expected.

A. Limited Bit Level of RRAM Device

To the best of our knowledge, the state-of-the-art RRAM
devices [13] can at most represent 7-bit values due to the
limited conductance range and device variation. The situation

TABLE I
PERFORMANCE TABLE OF STATE-OF-THE-ART ADCS

will become even worse when constructing the crossbar struc-
ture. Thus, the quantized CNNs with 8-bit fixed-point weights
cannot be deployed directly. To tackle the precision problem,
previous work utilized multiple RRAM devices to represent a
single weight [8], [10], accompanied with much more times of
energy overhead. Moreover, multibit devices suffer from more
variation and reliability problems than single-bit devices [14].
Therefore, CNNs with low bit-width weights are preferred to
ensure the reliability and efficiency.

B. Limited Bit Level of Crossbar Interfaces

Currently, it is unavailable to directly operate on the analog
output signals, and stably store and send the analog data to
the next array for the follow-up calculations. Thus, the periph-
eral digital circuit and memories are required to implement
the processing, buffering, and transmission of the intermediate
results. In this scenario, interfaces are needed for the conver-
sion between the digital signals in the peripheral digital units
and the analog signals in the crossbar. A practical choice is
to use ADC/DACs as the interfaces to convert from and to
the digital signals, while large overheads are introduced by
the high-precision ADC/DACs. Li et al. [11] noted that only
8-bit ADC/DACs contribute to more than 85% of the area
and power consumption of the entire RCS. Previous work [9]
has proposed to use spike-based input and output to elimi-
nate the ADC/DACs. However, the drawback of such design
is requiring much more cycles. We investigate the performance
of recently reported ADCs as shown in Table I. It can be seen
that the power of ADCs explosively increases with the sam-
pling frequency and resolution. Therefore, it will contribute
significantly to the energy efficiency if achieving a well-trained
network model with lowest possible bit-width activation.

C. Limited Manufacturing Scale of the Crossbar

Reliable RRAM crossbars are usually manufactured with
a limited size, generally up to 1024 × 1024. However, tak-
ing VGG [1] as an example, the Conv layer usually has 512
convolutional kernels, all of which are 3 × 3 × 512, and will
be reshaped to 4096 × 512 matrices. To successfully map the
Conv layers onto the RRAM crossbars, the scale of parameter
matrices must be smaller than, or at most equal to, that of the
crossbar size. In this scenario, the crossbar size should also
approach 4096 × 512 at least, which is obviously unmanufac-
turable under current technology. Previous work [8], [10] has
proposed to handle the mapping problem by parameter matrix
splitting.
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Fig. 2. (a) Overall structure of the RRAM-based BCNN accelerator: “N Conv layers + M FC layers” with the input image and the output recognition result,
and each Conv layer optionally followed by the pooling layer. (b)–(d) Dataflow of the “Conv layer,” “pooling layer,” and “FC layer.” (e) Convolver circuit
for one Conv/FC layer on RRAM-based platform. (f) Conv line buffers. Each Conv layer requires ((h − 1) × (W + p) + w) × Cin registers.

The matrix splitting is equivalent to dividing the origi-
nal MVM into multiple sub-MVM blocks, then summing all
the intermediate results. Mathematically, high-precision ADCs
are needed to convert the partial IA to keep the final quan-
tized results consistent with the expectation. Otherwise, large
truncation errors will be introduced, and then the recognition
accuracy of CNNs will substantially decrease. However, since
the row-wise split block number is equal to the multiple of the
ADCs to be increased, the power consumption introduced by
matrix splitting will be unacceptable if high-precision ADCs
are used. Therefore, it is of great importance to incorporate
the splitting and quantization with training, to eliminate the
mismatch of hardware constraints and the CNN models, so
that the high-cost interfaces can be removed without causing
the accuracy drop.

IV. RRAM-BASED LB-CNN ACCELERATOR DESIGN

We propose an RRAM-based LB-CNN accelerator design.
In this section, we first introduce the overall structure of pro-
cessing circuits and buffer, including the computing circuit and
line buffer structure. Then we discuss the problem of matrix
splitting. In the final, we also propose a pipeline approach to
accelerate the inference computing.

A. Computing Circuits and Buffer Design

Fig. 2(a) shows the overview of the LB-CNN accelerator
structure. The entire accelerator is made up of a series of pro-
cessing elements (PEs). Each PE consists of the computing
circuit and buffers. The computing circuits contain two main
parts: 1) the RRAM-based convolver circuit and 2) additional
digital circuit. The digital computing circuit is also integrated
to process the operations other than MVMs, including the
element-wise adds, the (max) pooling layer, and the ReLU

layer. The line buffers are set to buffer the feature maps,
which are constructed by SRAM-based scratchpad memory.
Besides, The data paths for the Conv, pooling, and FC layer
are, respectively shown in Fig. 2(b)–(d).

1) Computing Circuit: As stated before, each PE contains
a convolver circuit and a digital computing circuit. For Conv
and FC layers, the convolver circuit is mainly constructed
by the RRAM crossbar-based MVM modules, as shown in
Fig. 2(e). For the pooling layer, we use the max pooling func-
tion for the downsampling operations. The pooling operations
are performed on a pure digital circuit. If the activations before
pooling operations are binarized, then the circuit of the pool-
ing layer can be simply implemented by the multi-input OR
gate in our design. As long as a partial rectangle contains at
least an “1,” the output result of pooling will also be “1,” oth-
erwise the output result will be “0.” For other low-bit cases,
the look-up-tables (LUTs) will be used to construct cascaded
comparators to finish the pooling operations. We only use the
typical implementation of LUTs because the pooling opera-
tions are not the bottleneck to improving system performance.
For k-bit inputs, (22k × k)-bit SRAMs are utilized to construct
an LUT for comparing two inputs. For the batch normaliza-
tion (BN) layer, since the function of BN is a kind of linear
transform, it can be merged into the former Conv layer when
processing the inference. For the ReLU layer, we put mul-
tiplexers to select the outputs from zero and original inputs
according to the sign bits.

2) Input Buffer: In the computing process of the Conv and
the pooling layers, a sliding window is applied to separate the
connections of the different pixels in the feature maps, with
a sliding stride s and zero padding being made at the edge.
The result of a sliding window will not be computed until all
the elements inside the window are fetched. For this reason,
the structure of the line buffer is introduced for intermediate
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Fig. 3. Matrix splitting. Split the Conv kernels into multiple groups through (a) row-wise, (b) column-wise, and (c) signal-wise, and map to corresponding
crossbars.

data buffering and fetching, as shown in Fig. 2(f). For the FC
layers, the regular buffers are used since the nearby layers are
fully connected.

B. Convolver Circuit: Problem of Matrix Splitting

The convolver circuit for one particular layer is shown in
Fig. 2(e), which is designed on the basis of RRAM crossbar-
based MVM described in Section II-B. The main structure of
the convolver circuit is constructed by groups of crossbars for
the Conv operations. Some digital peripheral units, including
the specific circuits for neurons, etc., are also placed in the
front of or at the back of the crossbar groups.

Considering both the large energy cost of the writing oper-
ation and the endurance limit of the RRAM device [25], it is
inpractical to reuse the RRAM crossbar by repeatedly write
operations. Because the high area density is one of the strong
points of RRAM, all Conv kernels can be mapped onto the
crossbars in the convolver circuit of the corresponding layer.
In this way, each output channel is able to obtain one output
element in one processing cycle, if enough data have been
fed into this layer’s line buffers by the former Conv layer.
However, if the size of the Conv kernels is larger than that of
the crossbar, then matrix splitting is necessary for the weight
mapping. For FC layers, the splitting strategies are similar to
those of the Conv layers.

1) Column Splitting: In most mapping methods, different
crossbar columns represent their corresponding convolution
output channels. Therefore, if the crossbar column count (W)
is smaller than the Conv output channel count (Cout) of this
layer, then the Cout Conv output channels need to be split
into X(Conv)

out groups of RRAM crossbars, as shown in (5) and
Fig. 3(a). The copies of the input feature maps with the same
channel out as one Conv kernel (h · w · Cin) are sent to each
group of crossbars

X(Conv)
out =

⌈
Cout

W

⌉
. (5)

2) Row Splitting: Fig. 3(b) shows the basic process of row
splitting. Our mapping method reshapes a Conv kernel to a col-
umn vector and maps it onto one crossbar column. Therefore,
if the cross-point count (H) in one RRAM column is smaller
than the vector size (h · w · Cin), then the elements of one
Conv kernel will be split into X(Conv)

in groups, as calculated

through (6). Each group will be mapped to one RRAM cross-
bar. Similar and necessarily, the input feature maps are also
split into X(Conv)

in groups, and are sent to corresponding cross-
bar input interfaces. The partial IAs are achieved from different
groups of crossbars, so adder trees need to be cascaded after
the crossbar groups to accumulate all the X(Conv)

in IA and obtain
the final MAs

X(Conv)
in =

⌈
h · w · Cin

H

⌉
. (6)

Generally, the IAs before adder trees should be high-
precision data. However, since the cascaded digital functions,
i.e., the nonlinear function and BN function, are monotone
increasing functions, the low-bit quantization can be merged
with these functions by changing the threshold and output data
range. Therefore, the results after addition can also be only
low precision. Based on this observation, we also attempted
to lower the requirements on the ADCs’ precision, which can
save a large amount of overhead, especially when the splitting
amount is large.

3) Signal Splitting: The resistance of the RRAM device
is definitely positive, so it is unable to store negative values.
Commonly seen methods to handle the negative weights repre-
sentation include the following: 1) using a column of reference
RRAMs to shift the weight range to a totally positive range,
i.e., add an offset to each weight W ′

i,j = Wi,j + Woffset, to
ensure that all weights larger than zero and 2) mapping one
weight matrix onto a crossbar pair, namely, one crossbar for
positive weights and the other for negative weights. Then, the
exact result will be achieved by a subtraction operation of
the two outputs, as shown in Fig. 3(c). Both methods have
advantages and disadvantages. The latter requires more hard-
ware resources because the crossbar pair is introduced, while
it provides a doubled conductance range; thus, one more bit
precision can be achieved. Moreover, this approach can allevi-
ate the pressure of input voltage drivers and the current density
of the bit lines since the inputs are distributed to two crossbars.
For these reasons, we adopt the latter method in our design.

C. Line Buffer and Pipeline Implementation

However, our accelerator is still challenged by an irreducible
buffer overhead. Because the RRAM crossbar uses multiple
inputs in the same cycle, the processed data between lay-
ers need to be buffered. Therefore, thousands of registers and
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corresponding multiplexers are required for large networks.
ISAAC [8] provides a rough design for pipelining the Conv
operations of different layers where weight duplication is
introduced for balancing the load of the pipeline, but a thor-
ough discussion on pipelined implementation is still lacking.
Because only a few registers are used in each cycle, there
exists parallel potential between layers to reduce the buffer size
while boosting the processing speed. As a result, a pipeline
design between layers is necessary for both CNN and LB-CNN
accelerators.

As mentioned previously, the sliding window exists in the
Conv layers. Data dependency analysis shows that the con-
volver circuit can awake (A) from sleep (S) mode once the
input data in a Conv kernel sliding window is fetched. In this
way, the structure of the line buffer is introduced for the fol-
lowing reasons. First, much fewer registers are required for
data buffering because there is no need to buffer the whole
input feature maps. Second, with line buffer introduced in
every Conv/pooling layer, a pipeline can be implemented,
which makes the inference process much faster than comput-
ing the Conv layers in one-by-one mode. This process is the
same for the pooling layers.

As the pooling layer is optionally followed by the Conv
layer, there exist Conv–Conv and Conv-Pooling-Conv two
modes for the nearby layer relationships. Here, we use
the dataflow behavior of CIFAR-10 on the VGG-8 experi-
ment as a case study to show the line buffer-based pipeline
implementation.

1) Conv–Conv: The Conv layers in VGG-Net filter the
input image with kernels of size 3 × 3 with a stride of 1,
and zero padding is introduced in order to keep the input and
output feature map as the same size. Here, we set the kernel
size to h · w, the feature map size to H · W and the padding
pixel count to p. When the feature map is fed in by follow-
ing the row-major order, the line buffer of each channel only
needs (h − 1) · (W + p) + w registers. In the initial periods of
a layer, zero padding in the length of (W + p) and the first
row of x(k)

1,: are sent sequentially into the kth Conv layer’s line
buffer before T0. And in these cycles, the convolver circuit of
the kth is in the sleep (S) mode. Finally, at the T0 cycle, x(k)

2,1
is sent into the line buffer, as the dataflow shown in Fig. 4. In
the next cycle, the input line buffer shown in Fig. 2(f) is ful-
filled by data, and therefore kth Conv layer starts at time T1.
Additionally, at the end of the layer’s computation, (W + p)

cycles are needed for computing the last row just like the
initial cycles.

A main challenge for the Conv–Conv pipeline design is the
sleep control for the “line feed” problem. When the compu-
tation of a row is accomplished, the input data need to be
changed from the end of current line to the front of the next
line, which means at least (w − 1) data (usually we have
w > 3) in the next layer need to be prepared. However, for
the line-buffer-based pipeline design, the input field shown
in Fig. 2(f) is invalid during the preparing cycles, e.g.,
(x(k)

i−3,1, 0, x(k)
i−2,W ; x(k)

i−2,1, 0, x(k)
i−1,W ; x(k)

i−1,1, 0, x(k)
i,W). In these

cycles, the Convolver of the kth layer is also in the S mode;
while for the line buffer of the (k + 1)th layer, there is no
valid input. Fortunately, we find that the zero padding of next

Fig. 4. Dataflow of Conv–Conv. The first line shows the line buffer’s input
data of previous Conv layer in each cycle, and the third line shows the
input data of next Conv layer. The second and forth line show whether the
Convolvers are awake (A) or sleep (S).

Conv layer can just exploit this cycle. And in the next cycle,
i.e., cycle Tm(W+1)+2 (m = 0, 1, . . .), the Convolver of the
kth layer recovers to awake (A); while the Convolver of the
(k + 1)th layer begins to sleep (S) for line feed. In this way,
the line feed problem is solved by utilizing the extra sleep
cycle in each layer for zero padding, and the works in fully
pipelined parallelism without waiting. Based on this structure,
we achieve the fewest possible cycles for Conv–Conv pipeline
connections.

2) Conv-Pooling-Conv: For the pooling layers in most neu-
ral networks, the “kernel size” is set as 2×2, and the “stride”
s is set as 2. As stride is larger than 1, the pooling circuit will
work for one row when every s rows are ready. In Conv-
Pooling pipeline, just as shown in Fig. 5, the kth pooling
circuit sleep from cycle TW+3 to T2W+1. For the awaken row,
the pooling circuit will work once every s data are sent into
the pooling line buffer. As shown in Fig. 5, the kth pool cir-
cuit awakens one cycle and sleeps one cycle from cycle T3
to TW+1. Although the problem of line feed also exists, the
sleep cycles can be hidden into with the “sleep row,” and zero
padding is not introduced in pooling layer, as shown in cycle
T1 and cycle TW+2. While for the Pooling-Conv line buffer of
the next layer, it is just the turn of zero padding in this cycle
like Conv–Conv pipeline.

Finally, in the pipeline implementation, the total cycle
amount for one complete forward process is shown as

Tpip =
(

W(1) + p
)

·
(

H(1) + 2p
)

+
i>1∑

i∈Conv

(
W(i) + p

)

+
∑

i∈Pool

1 +
∑

j∈FC

1 (7)

(W(1) + p) · (H(1) + 2p) is the computation cycle amount for
the first Conv layer. After that, once the cascaded layer is a
Conv layer, (W + p) cycles are needed for computing the last
row. Otherwise, only one extra cycle is needed for computing
the last pixel of next pooling layer, or to perform an FC layer.
The pipelined cycle amount is much fewer than the straight
forward layer-by-layer design whose cycle amount is

∑

i∈Conv

(
W(i) + p

)
·
(

H(i) + 2p
)

+
∑

i∈Pool

(
W(i+1)H(i+1)

)
+

∑

j∈FC

1.

(8)
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Fig. 5. Dataflow of Conv-Pooling. The first line shows the line buffer’s input data of previous Conv layer in each cycle; the third line shows the input data
of next pooling layer; the second and forth line show whether the convolvers are awake (A) or sleep (S).

Data dependency exists between the pooling operation and
the Conv operation. For the pooling operation, it has to get the
data in the window sized of the pooling kernel h(pool)×w(pool).
While for the convolver circuit ahead, it can only output
one element for each output channel in one processing cycle.
Therefore, the classic structure of line buffer proposed in [26]
is introduced as pooling line buffer to collect enough data for
pooling from the convolver circuit. When feature map goes
through the buffer in row-major layout, the line buffer releases
a window selection function on the input feature map. The
delay of each line is determined by the width W(pool) of the
feature map; the size of the selected window is determined by
the pooling kernel h(pool) × w(pool); and the size of the whole
pooling line buffer is h(pool) × W(pool) × C where C is the
channel count of the feature maps. The circuit of the “max”
function, which followed the selected window, makes the max
pooling operation.

Similar line buffer structure is also introduced as Conv line
buffer, as shown in Fig. 2(e), to fill the input feature map
buffer of the next Conv layer with the output of the max
pooling operation. For Conv line buffer, the delay of each
line is determined by the width of the input feature map of
the (i+1)th Conv layer W(i+1) (the same as that of the output
feature map of the pooling layer ahead); the size of the selected
window is the same as that of the Conv kernel h(i+1) ×w(i+1);
and the size of the whole pooling line buffer is h(pool) ×
W(pool) × C(i+1)

in where C(i+1)
in is the channel count of the

feature maps.
Besides, skip connections are frequently applied in state-of-

the-art neural architectures since ResNet [27] was presented.
Unlike the straightforward structures as Conv–Conv or Conv-
Pooling-Conv, additional buffers are introduced for the
element-wise addition operations. The buffer size is depen-
dent on the number of skip layers. The corresponding buffered
pixels can only be freed when the addition calculations are
completed. For example, the residual block in ResNet, which
usually skips two Conv layers to construct a shortcut path,
needs to put the same size of buffer as the first Conv layer for
the element-wise additions. This is because the data coming
from the shortcut-connected path need to wait for the output
results coming from the Conv path.

Fig. 6. Test accuracy of LeNet-5 on MNIST under different crossbar size
configurations: without size limit, with 10 × 10 crossbars, and with 20 × 20
crossbars. As can be seen, the accuracy substantially drops when directly
mapping the models onto the size-limited crossbars.

V. SPLITTING AND QUANTIZING WHILE TRAINING

As described in Section III, larger convolution kernels and
input feature maps should be split and mapped to multiple
crossbars. Correspondingly, the convolutional operations are
also divided into multiple sub-MVM blocks. In this sce-
nario, all the partial IAs of these blocks need to be merged
to get the final output feature maps. From the principle of
the numerical calculation, m-bit input activations multiplied
with n-bit weights and accumulated by k times will lead to
log2(k) + m + n-bit results. That is, the ADCs with the same
resolution are required to get the right results, as shown in
Fig. 7(a). Thus even in the simplest case with 1-bit activation,
1-bit weights, and 512 long crossbar columns, the bit-width
of IAs should approach log2(512)+ 1 + 1 = 11 bits. While as
the energy cost of ADCs is positively correlated with the res-
olution, as observed in Table I, such high-precision converters
will greatly degrade the energy efficiency.

However, the reduction of the bit-width will also lead to
the network information loss, thereby leading to the accu-
racy degradation, which is mainly caused by the mismatch of
algorithm and hardware. As shown in Fig. 6, our experiments
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Fig. 7. (a) Bit-width setup and requirements of deploying CNNs on ideal and nonideal scale-limited RRAM crossbars. Here, m represents the bit-width
of input feature maps, n represents the bit-width of weights, and k represents the column length of crossbars. (b) Splitting and quantizing while training
framework based on RRAM crossbars. W, IA, and MA are introduced to represents the bit-width of weights, IA, and MA, respectively.

have demonstrated that if the model parameters are directly
mapped onto the RCS, then using low-bit interfaces for the
intermediate data conversion will lead to a significant accuracy
decreasing. In the 1-bit case, the accuracy of the recognition
task decreases from approximately 99% to 50.29%. Therefore,
we propose a specific algorithm which incorporates the split-
ting and quantization with training, to constructing a bridge
for connecting the algorithm and hardware.

A. Training Algorithm

As shown in Fig. 7(a), the regular nonsplitting RRAM
crossbar-based convolution framework shifts data from high-
precision to low-bit fixed-point after the sums of all the IA are
obtained. In our convolution framework, as shown in Fig. 7(b),
the IA of all blocks will first be quantized to low bit-width
numbers, and then be accumulated by element-wise adders.
Then, the MA will be quantized again and sent to the next
layer. The forward pass will go through the quantized neu-
ral network models with low-bit weights and activation, and
the backward pass will propagate floating-point gradients. The
training flow is shown as the following steps.

Step 1: Analyze the defined model structure and decide the
number of blocks that need to be split.

Step 2: Generate a new model with multiple sub-Convs
in each convolutional layer. Add the quantization
function for the forward pass.

Step 3: Train the neural network based on the generated
model using a normal SGD optimizer.

B. Quantization Methodology

As stated above, quantizations are required since there exist
limits on the precision of RCSs. In this paper, the quan-
tization methodology can be decomposed as the following
components.

1) Scaling: We use linear scaling for normalizing the acti-
vation vectors with irregular values to vectors with values in
the range [−1, 1]. The quantizations are performed before the
ReLU function, so the normalized vectors can lie in a negative
range. For each quantization, we will first search the minimum
element α which is the power of 2 and able to cover the largest

absolute value in the vector vin. Then the scaling function can
be formulated as Scale(vin) = (vin/|α|).

2) Uniform Quantization: There are various methods for
quantizing numbers. To avoid complex quantizing operations,
we simply use uniform quantization in our training and infer-
ence process. The quantization function with k bits will be
defined as

Q̂(x) = round
((

2k−1 − 1
)
x
)

2k−1 − 1
. (9)

Then, the total quantization function can be defined as
below. Because the scaling factor α is the power of 2, the
multiplication with α can be simply implemented by shifting

vout = Q(vin) = αQ̂
(vin

α

)
. (10)

3) Gradient Backpropagation: Mathematically, the quan-
tization function with continuous inputs and discrete out-
puts would have zeros gradient. While the training requires
backward-propagated gradients to search the optimization
space. Therefore, we utilize the straight-through estimator
(STE, as also adopted in [18]) to generate the gradients

∂Cost

∂vin
= ∂Cost

∂vout
. (11)

In our accelerator system, there are three types of data that
need to be quantized by the above function, the weights, the
intermediate output data of split blocks, and the merged final
output (i.e., the activation of the corresponding layer). We note
them as W (weights), IA (intermediate activations), and MA
(merged activations), respectively.

VI. EXPERIMENTAL EVALUATION

In this section, we first introduce the setup of our experi-
ments, including the benchmark, configurations, and param-
eters of simulation. Then, we analyze the experimental
results from several concerned aspects, including the accu-
racy, speed, area, and energy efficiency, to evaluate the system
performance.
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A. Experimental Setup

1) Benchmark: We construct the accelerator designs for
three typical CNN models, namely, LeNet [28], ResNet [27],
and VGGNet [1]. LeNet is a simple yet efficient network for
the recognition of handwriting digits. ResNet is a powerful
network that has been widely utilized in many computer vision
applications. VGGNet is a relatively large neural network
whose Conv weight matrix can reach 3 × 3 × 512 × 1024. We
also selected two popular classification datasets to demonstrate
the accuracy, MNIST [29] for LeNet-5 and CIFAR-10 [30] for
ResNet-18 and VGG-8.

2) Modeling Hypothesis: For inference processing, the
multibit model is achieved by dynamically quantizing [4] the
well-trained floating-point model into 8 bits, and the LB-CNN
models are trained by our training algorithms. The crossbars
are set to different sizes to evaluate the effects of splitting.
If one crossbar pair is not large enough to store all param-
eters of one layer, then the matrix splitting strategies are
performed. In default, 8-bit RRAM devices and 8-bit interfaces
are introduced in multibit CNN (MB-CNN) models.

For the crossbar, the design of the RRAM cell can be sim-
pler if binary weights are chosen. For the multibit mode, the
1T1R RRAM cell is introduced. This is because we have to
tune each RRAM cell to a particular resistance before the
crossbar is used for computing. When tuning, the transistor of
the to-be-tuned RRAM-cell is on and others are off. In this
way, the decoder is able to support the RRAM cells opening
cell-by-cell. For the binary weights, only two values of the
RRAM resistance (the ON/OFF state) are used. In this way, the
0T1R RRAM cell, which each cell only takes up the area of
4F2, can be used. The one-by-one tuning method is introduced
as “half-selection” in [31].

3) Simulation Parameters: To estimate the area and energy
overhead, we used reliable data from relevant papers as a
basis [32]–[41]. For the RRAM crossbar part, NVSim [40]
is used to estimate the overhead because it provides complete
RRAM device data and key indicators. For the ADC part,
we refer to 2 work for 8-bit [31] and 4-bit [36] ADC designs
because the resolutions and frequencies satisfy the experimen-
tal demand. For the adders, [37] provides the power and area of
the adders. For the LUT and the SRAM part, [37] also provides
the power overhead of 32-bit SRAM. The power estimation
is based on the required size of the LUTs and line buffer. We
estimate the system performance by combining the costs of all
circuit elements. The simulation parameters of the power and
area cost for each circuit element are shown in Table II. Based
on the device data, we construct a spreadsheet, which works
in the similar way as MNSIM [41], to estimate and sum up
the overhead of all system parts.

B. Accuracy: Effects of Device Variation Under Different
Bit-Levels

Variation exists when mapping the weight parameters to
the RRAM devices since it is one conductance range (not
a specific conductance value) that represents one fixed-point
number. When one RRAM device is able to represent N bits,
i.e., 2N conductance ranges represent 2N fixed-point weights,

TABLE II
POWER AND AREA COST OF EACH CIRCUIT ELEMENT

respectively. For the kth conductance range, g(k) represents
the center conductance, and (g(k) − �g, g(k) + �g) represents
the conductance range, i.e., the device variation δg ranges
from (−�g,�g). In previous work [42], a typical model of
the RRAM resistance variation satisfies the distribution of
�R/R = 9%, which means that the variation varies at differ-
ent conductance levels. In our experiments, we simplify the
model and assume that the variation range �g is the same
for each conductance range. When the RRAM device is used
in the binary mode, only two conductance ranges are picked
from 2N ones. In this way, the expectation of (�g/g) can be
smaller than in the case that 2N ranges are all in use (we just
name it as full bit-level mode), thus introducing less comput-
ing error for MVMs. There are relative studies which have
made attempts to resolve the variation problem. For exam-
ple, in physical level by inserting a TiN buffer layer [43] or
in algorithm level by leveraging the self-healing capability of
CNNs [44], etc. Our experiments also demonstrate that the
of the low-bit neural networks has stronger variation-tolerant
ability.

LeNet on the MNIST dataset is demonstrated as a case study
to show the effects of device variation under different weight
bit-levels. Without considering device variation, a precise map-
ping is made from the quantized fixed-point weight parameters
to the RRAM conductances in the full bit-level mode. In this
way, the increasing recognition error rate mainly results from
the quantization error. While in the binary mode, the recog-
nition performance remains the same for RRAM of different
bit-levels when neglecting device variation, though the recog-
nition error is a bit higher than that of full bit-level mode in the
case of 7-bit and 5-bit RRAM, as listed in Table III. When con-
sidering device variation, the recognition performance in the
binary mode shows better robustness: in binary mode, device
variation introduces less than 0.01% error rate increase in the
case of 3 bit (or larger bit-level) RRAM, while in full bit-level
mode, the recognition performance in 3-bit RRAM becomes
worse than that in binary mode due to the larger effect of
device variation.

Meanwhile, the error rate rises to around 90% when quan-
tizing the full-bit weights into 2 bits, i.e., the model absolutely
fails for both with and without considering variation (since the
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TABLE III
ERROR RATE OF LENET ON MNIST: DEVICE VARIATION EFFECTS

UNDER DIFFERENT WEIGHT BIT-LEVELS

TABLE IV
CLASSIFICATION ACCURACY FOR MNIST AND CIFAR-10 TEST DATASET

WITH DIFFERENT COMBINATIONS OF BITWIDTH AND DIFFERENT

CROSSBAR SIZE LIMITS, TESTED ON LENET-5, RESNET-18,
AND VGG-8, RESPECTIVELY. W, IA, AND MA ARE

BIT-WIDTH OF WEIGHTS, IA, AND MA

MNIST dataset has only ten categories). The reason is that the
direct quantization of neural network will introduce large com-
putation error under extremely low-bit weights. Therefore, the
incorporation of quantization with training is also important
to enhance the recognition accuracy.

C. Accuracy: Effects of Matrix Splitting

As stated before, we propose the splitting-and-quantizing-
while-training algorithm to overcome the accuracy drop caused
by matrix splitting. To demonstrate feasibility, experiments are
constructed to evaluate the performance of different low-bit
CNNs with different crossbar sizes. As the LeNet model is
not a large network, we set the length of the RRAM crossbar
column to 10 and 20 to study the effect of matrix splitting.
For the larger CNN model, we choose ResNet-18 and VGG-8
to train on a more complex dataset CIFAR-10.

Table IV shows the test accuracy of the trained neural
network models. We first evaluate the simpler dataset MNIST,

Fig. 8. Processing cycle amount of pipelined processing and layer-by-layer
processing.

the accuracy can still maintain around 99% even under 1-bit
weight, 1-bit IA, and 1-bit merge activation. For the more
complex dataset CIFAR-10, the low-bitwidth models lose
some accuracy compared to the floating-point & nonsplit-
ting baseline. We can also conclude that VGG-8 shows much
better adaptability than ResNet-18. For example, with (W,
IA, MA) = (2, 4, 4) quantization and 128×128 crossbar size,
the accuracy of VGG-8 drops approximately 3.4% while the
ResNet-18 drops 8% accuracy. This is because there exists
more redundancy in VGG-8, thus it still has a strong feature
extraction ability at low bitwidth quantization.

There are also interesting trade-offs between the test accu-
racy and different bitwidth combinations. Because the low-bit
mode of the RRAM device and the low bit-width interfaces
can provide many benefits for circuits design and resistance
tuning, the weight and activation with lowest possible bitwidth
are preferred for the deployment. However, the accuracy is
positively correlated with the bitwidth of weights and activa-
tion. Taking ResNet-18 as an example, the accuracy decreases
significantly with the bitwidth reduction (from 89.12% to
81.22%). Therefore, the bitwidths need to be carefully adjusted
according to the application scenarios.

We have also explored the impact of different crossbar array
sizes. We train multiple models under the different crossbar
size configurations, ranging from 128 to 512. The experimental
results demonstrate that our training algorithm is robust and
performs well under various size configurations. As shown in
Table IV, with the crossbar size as a variable, there is almost
no fluctuation (up to approximately 1%) in the test accuracy.

D. Pipeline Evaluation

We evaluate the performance of the pipeline strategy.
Theoretically, the improvement in cycle amount is independent
on the input image but dependent on the network structure.
To quantitatively evaluate the cycle savings, we take several
datasets with different image sizes as examples. For LeNet-5,
we demonstrate the cycle amount on the MNIST dataset, with
a 28 × 28 input image to the neural network. For ResNet-18
and VGG-8, 32×32 CIFAR-10 images are fed into the neural
network.

The processing cycle amount can be obtained by 7 and 8
for pipeline implementation and layer-by-layer processing,
respectively. Fig. 8 shows the cycle amount comparisons.
The speedup ratio achieves approximately 1.16×, 2.23×, and

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2020 at 00:18:40 UTC from IEEE Xplore.  Restrictions apply. 



1424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 7, JULY 2020

TABLE V
AMOUNT AND PROCESSING COUNT OF COMPUTING UNITS,

INTERFACES, AND BUFFERS

TABLE VI
ENERGY AND AREA ESTIMATION OF DIFFERENT

RRAM-BASED CROSSBAR PES

6.01× on LeNet-5, VGG-8, and ResNet-18, respectively. The
improvement varies among the different types of CNNs when
applying the proposed pipeline method. For the LeNet-like
neural networks, the feature map size reduced quickly through
layers, so the system spends many cycles in the first layer and
the speed will not be greatly improved. While for ResNet or
VGG-like CNNs, the feature map size halves in two adja-
cent convolution stages, so the forward process can obtain
more benefits by applying the pipeline because the parallelism
between layers will be fully utilized. It is also worth mention-
ing that deeper neural networks (e.g., ResNet-18) are expected
to achieve more speedup.

E. Area and Energy Estimation Under Different Bit-Levels

Network models of LeNet, ResNet-18, and VGG-8 are
demonstrated in the area and energy estimation. Moreover,
we also profile the area and energy distribution among differ-
ent system parts and among different layers on VGG-8. In our
estimation, the crossbar-based computing units and the buffers
are considered, while the consumption of interconnections
(routers) is neglected. The amount and processing count of
each module are listed as in Table V. Because of the sliding
window operation, modules in Conv layers process Hout ·Wout
times in one forward process. The area and power consumption
of each system part are listed in Table II.

The area and energy estimation is shown in Table VI.
On the overall system performance, the LB-CNN on RRAM
saves 54.9% of the energy and 48.3% of the area consump-
tion for VGG-8 on CIFAR-10 compared with the MB-CNN.

Significant enhancement can also be achieved on the ResNet-
18. The area and energy distribution is shown in Fig. 9. Either
for low-bit or MB-CNNs, the input and output interface still
takes up dominant part of the energy and area consumption.
In terms of energy consumption, the Conv layers consume
most because the sliding window of each Conv layer has to
sweep through the whole feature map in multiple cycles, but
FC layers only process once. Comparing the area and energy
distribution between the LB-CNN and MB-CNN, the overhead
of the input and output interfaces is massively saved (≥60%)
due to the reduction of bitwidth.

F. Comparison to Related Studies

The throughput and power efficiency are also evaluated,
as shown in Table VII. We make comparisons with sev-
eral advanced related accelerators, including pure CMOS-
based DaDianNao and RRAM-based ISAAC and PipeLayer.
Our system constructed for VGG-8 achieves 51.68 TOPS/s
throughput, higher than DaDianNao and ISAAC. The power
efficiency of our system is 301.7 GOPS/s/W, lower than
ISAAC while higher than PipeLayer and DaDianNao. Most
importantly, the contributions presented in this paper are
orthogonal to the related studies. Whether in ISAAC or
PipeLayer, the weights and activation used are with relatively
high bitwidth, and the matrix splitting problems are not fully
discussed. Therefore, it is valuable to combine our approaches
with other RRAM-based accelerator designs.

VII. RELATED WORK

A. Low-Precision CNNs

The researchers have found that lowering the bit-width of
weights and neurons have little impact on the performance.
Meanwhile, reducing the precision of CNN models can boost
the efficiency of inference computations. The methodologies
of approaching low-precision CNNs have been well discussed.
Previous studies, such as INQ[17], etc., have aimed to reduce
the precision of the weights in neural networks. Furthermore,
investigations of XNOR-Net [16], BNN [15], etc., have targeted
in the quantization of both weights and activations in CNNs.
The DoReFa-Net [18] approach introduces the quantization
of gradients while training. In industry, NVIDIA has also
launched TensorRT [45], which can automatically quantize the
neural networks from FP32 to INT8 without accuracy loss. All
the above algorithms provide guidance for training LB-CNNs,
but they are not fully adept to the RCS, since the quantization
mechanism of RCS differs from that of conventional digital
systems.

B. Divide and Conquer

With the scale of NN models growing rapidly, divide and
conquer-type methods are frequently used to extend the scal-
ability of computing systems. Generally, dividing applied in
large-scale networks can bring the following two benefits. On
the one hand, it can increase the scalability of neural network
computing systems. For example, Krizhevsky et al. [46] intro-
duced group convolution, splitting the whole AlexNet onto
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(a) (b)

Fig. 9. (a) Energy and area overhead distribution of processing VGG-8 with 32 × 32 input images. Left: multibit VGG-8 with (W, IA, MA) = (8, 8, 8).
Right: low-bit VGG-8 with (W, IA, MA) = (2, 4, 4). The cost of RRAMs (1T1R) is assumed as the same under full-bit mode and low-bit mode. (b) Structure
of the VGG-8 network.

TABLE VII
COMPARISON TO ISAAC, PIPELAYER, AND DADIANNAO IN TERMS OF THROUGHPUT AND POWER EFFICIENCY

two GPUs while training due to the limited graphical memory
of the GTX 580 device that they used. In a finer-grained
level, Li et al. also applied a blocking strategy in their
design focusing on FPGA-based sparse MVM (SpMV) accel-
eration. The authors regularized a sparse matrix into small
matrix blocks and then mapped these blocks into highly par-
allel PEs that enable simultaneous multiplication-accumulation
computations. On the other hand, some variables are highly
correlated, showing similar computing patterns and impacting
the network performance in similar ways. Therefore, pro-
cessing these variables as a group will not compromise the
network performance but will simultaneously reduce the com-
putation complexity. For example, Wen et al. [47] divided the
weight parameters into groups, implementing structured spar-
sity learning to obtain regularized network structures. They
proposed a group lasso-based approach that tended to remove
less important parameter groups so as to obtain structured spar-
sity. It aggregated parameters with high correlation into same
groups. However, such methods have high complexity, which
limits the usefulness of the RCS.

C. RRAM-Based Neural Network Accelerators

In previous studies, designs were proposed to accelerate
neural network computing based on RRAM, ranging from

the circuit designs to the high-level architecture designs. The
researchers focused their attention on the efficient mapping and
scheduling of deep learning algorithms. PRIME [10] enables
in-memory neural network computing based on RRAM-based
main memory, achieving 895× the energy efficiency across the
benchmarks. ISAAC [8] was also proposed as a full-fledged
NN accelerator design, accompanied by a pipeline architec-
ture, encoding techniques, and supporting digital circuits to
improve the efficiency. PipeLayer [9] also demonstrated the
feasibility of efficient neural computing based on RRAM.
However, all of these studies did not fully discuss the lim-
itations of the RCS as stated in Section III, which limits the
applicability in real world scenarios.

VIII. CONCLUSION

This paper aims to improve the speed, the energy efficiency,
and the area efficiency of RRAM-based neural network infer-
ence system. We observe that the high-precision interfaces take
up the dominant overhead of the entire system, and the bit-
width of weights is also limited due to the variation and limited
conductance intervals of the RRAM devices. Therefore, we
design an LB-CNN accelerator based on RRAM with all
the weights and activations quantized. By introducing low-bit
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activations, more than 60% of the interface power and area
overhead can be saved. For the overall system constructed
for accelerating VGG-8, 54.9% of the energy consumption
and 48.3% of the area can be saved. A pipeline strategy is
also designed to accelerate the process and reduce the buffer
demands. Deeper neural networks are expected to gain more
speedup from the pipeline processing, e.g., 6.0× speedup for
ResNet-18. Furthermore, to tackle the limited crossbar size
problem, we fully discuss the matrix splitting and introduce a
training method to incorporate the quantization and splitting
with training.

In future work, it is foreseeable that low bit-width quantiza-
tion will become a key technique in the accelerator designing.
Moreover, further exploration on the hardware-aware training
algorithms is crucial and valuable for the optimization of RCS.
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