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Abstract—Brain-inspired Hyperdimensional Computing
(HDC) is a fast and robust classification algorithm, which
works by mapping low-dimensional features to high-dimensional
vectors and comparing distance in a high dimensional space.
However, in traditional Von Neumann architecture, HDC causes
high energy consumption because of large data movements
between processor and memory. In this paper, we propose HDC-
IM, a Hyperdimensional Computing-In-Memory architecture
based on Resistive Random-Access Memory (RRAM), to boost
the energy efficiency of HDC. HDC-IM puts computations in
or near memory, which eliminates most of the data movements,
providing a solution to reduce the energy consumption.
In addition, to improve the computing parallelism, we use
in-crossbar RRAM-based logic design to process encoding
operation in HDC. The experimental results show that HDC-IM
provides more than 100× speedup and higher energy efficiency
compared with HDC on CPU. Moreover, in comparison with
existing RRAM-based Neural Network accelerators, HDC-IM
is more fault-tolerant taking into account RRAM device faults,
achieving 20% higher accuracy than RRAM-based DNN
on ISOLET dataset when 20% RRAM devices suffer from
Stuck-At-Faults (SAFs).

I. INTRODUCTION

In recent years, machine learning algorithms have played
an increasingly important role in life. Convolutional Neural
Network (CNN) has a good performance in various fields such
as image recognition, target detection, and semantic analysis.
However, the current trend of edge computing requires low
delay and energy cost, while CNN has a great consumption
of time and energy.

There are two key factors in achieving low-energy calcula-
tions at the edge. One is to propose algorithms with lower
energy consumption and faster speed, and the other is to
design devices with high energy efficiency and small area.
For the former problem, the Hyperdimensional Computing
(HDC) [1] proposed in recent years is a possible solution,
for the latter problem, the computational framework based on
Resistive Random Access Memory (RRAM) is a good choice.

In this work we propose an RRAM-based Hyperdimensional
Computing-In-Memory Architecture: HDC-IM, which puts
computations in memory to eliminate most of the data move-
ments. We use in-crossbar RRAM computation to achieve
high parallelism in data processing. In addition, we can
effectively tackle the challenge of processing very-long vectors
by proposing block encoding and mapping method. Finally, we
prove HDC-IM to be robust taking into account RRAM device
faults.

II. PRELIMINARY

A. Hyperdimensional Computing
The main idea of Hyperdimensional Computing is mapping

the features into hyperdimensional vectors, called Hypervec-

tors (HVs), and making inference by comparing distance in
high-dimensional space. HDC is applied in many classification
problems [5] [6] [7]. The HDC algorithm for classification
problem is shown in Fig. 1. In the train phase, we encode
the entire training dataset into hyperdimensional space and
get HV that represent every specific class. In the inference
phase, we first encode the input data into HVs by using the
same encoding method in the training phase, then compare the
Hamming distance of the encoding result and every HV that
represents a class. In this way we can get the classification
result only using simple operations: bitwise XOR, addition
and Hamming distance comparison.
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Fig. 1. HDC algorithm for classification problem

The main problem in HDC is the huge energy consumption
caused by data movements between processors and memory,
which makes it challenging to perform HDC at the edge. Thus,
there are urgent needs for developing new computer architec-
tures to improve the energy efficiency of Hyperdimensional
Computing.

B. RRAM: computation, logic and problems

RRAM is an emerging device that stores data through
variable resistance. RRAM devices are non-volatile and can
support in-memory computing architecture design with high
integration density, high access speed, and low power con-
sumption. [2]

The RRAM crossbar can reduce the complexity of matrix
vector multiplication from O(n2) to O(1), which makes it easy
to implement the bitwise addition of multiple vectors in HDC.
Besides, in recent years, there have been a lot of work on the
logical design of RRAM, such as MAGIC [3], IMPLY [4], etc.
These methods can perform logical operations in parallel on
the whole line, which can realize bitwise XOR in HDC. With
these operations, it is possible to use RRAM for in-memory
and high-parallelism HDC.

However, due to manufacturing process problems, RRAM
has a high probability of device faults. Researchers have
found that the probability of Stuck-At-Faults (SAFs) in RRAM



devices can reach 10%-20% [13]. In this case, the accuracy
of the general NN algorithm will be greatly reduced, if the
device’s SAFs reach 20%, the error rate of CNN on the MNIST
dataset will rise by more than 80% [13]. Compared with NN,
the redundancy of HDC is higher, which is more conducive
to overcome the accuracy loss caused by device faults.

III. ENCODING METHOD ADAPTED TO RRAM

When encoding the input data, we need Hypervectors
that represent feature IDs and corresponding values. For
each feature ID we use an HV to represent it, these HVs
(ID1, ID2, . . . , IDN ) are randomly generated to maintain
orthogonality and stored in Item Memory (IM). For input
values, we first quantize the value into several intervals. To
generate M D-dimensional HVs (L1, L2, . . . , LM ) represent-
ing M intervals, we have to ensure that the HVs corresponding
to the adjacent quantization intervals are similar. The original
generation method is that we generate the first D-dimensional
random vector (L1) representing the first interval, and for
Ln+1 we randomly flip D

M−1 bits of Ln. We store these HVs in
Continuous Item Memory (CIM). When we get IM and CIM,
we can encode any input data into hyperdimensional space.
When data is input, for each feature we select the HV that
represents the corresponding value from CIM, and we denote
these HVs as (v1, v2, . . . , vN ). Then we can get the encoding
result Hv of the input data using (1),

Hv =

N∑
i=1

IDi ∗ vi, vi ∈ {L1, L2, . . . , LM} (1)

where the operator ’∗’ here means bitwise XOR operation.
Fig. 2 shows the encoding process in HDC.
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Fig. 2. The encode process of Hyperdimensional Computing

However, in the above encoding method, the operation
between Hypervectors must be processed by blocks, but only
one block can be processed at the same time. Whenever the
group changes, new data needs to be re-selected from IM
and CIM, which causes lots of data movements. Besides, in
order to store a large number of random patterns, we need a
dedicated memory, which makes us unable to implement the
in-memory computing architecture.

Considering the characteristics of RRAM crossbar opera-
tions, we propose a block generation mode for IM and CIM.
For a D-dimensional Hypervector (D = 8192 for example),
suppose we can only process d dimensions (d = 256 for ex-
ample) at a time. For (ID1, ID2, . . . , IDN ), we first generate
N d-dimensional random vectors for N ID. After that, we

only need to change the mapping method to make continuous
shifting and splice the entire Hypervectors. Since the result
obtained by shifting a random vector is substantially orthog-
onal to the original vector, (ID1, ID2, . . . , IDN ) obtained in
this way can maintain approximate orthogonal characteristics
to each other. For (L1, L2, . . . , LM ), we use the original flip
method to generate M d-dimensional vectors, and then we
continue to replicate and catenate the d-dimensional vectors
to get the whole CIM. The original generating algorithm and
our block generating algorithm are shown in Fig. 3.
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Fig. 3. The original and our new algorithm of generating IM and CIM

By using the proposed block generating algorithm, we
only need to generate and store (M + N)d bits, instead of
(M +N)D bits in original generating method for N features
and M quantization intervals. In this way, the required random
patterns are greatly reduced. At the same time, this grouping
mode is well suited for RRAM in-crossbar processing. We
only need to put these d-dimensional vectors into the pro-
cessing units. By constantly changing the mapping method,
we can complete the D-dimensional operations using the d-
dimensional processing unit with almost no data movement.
Table. I compares the group generation method with the
traditional method on the ISOLET dataset [8]. It can be
seen that the group generation method does not cause the
classification accuracy loss.

TABLE I
THE PERFORMANCE OF ORIGINAL AND BLOCK ENCODING METHOD ON

ISOLET DATASET

Original Encoding Method Block Encoding Method
Accuracy 86.0% 86.8%

IV. HDC-IM: HYPERDIMENSIONAL COMPUTING
IN-MEMORY ARCHITECTURE

A. HDC-IM Overview

The overall architecture is shown in Fig. 4(a), CIM and
IM are distributed in multiple parallel processing units. When
we get the input data, different input features are mapped to
different operation units to complete the combination of the
feature ID and the corresponding value. Then we sum these



vectors to complete encoding. The encoded result either enters
the HV Memory (In the training phase) or the Classifier (In
the inference phase). By changing the mapping between the
input and each arithmetic unit, we can complete the entire
HDC algorithm without data movements of IM and CIM.
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Fig. 4. (a): HDC-IM overview (b):Encoding Module (c):HV Memory Module

B. Encoding

In the encoding module we need to perform bitwise XOR
and vector summation. For bitwise XOR operations, RRAM
has a number of different ways to implement logic operations,
and we choose Scouting Logic in our design [14]. In this
method, we activate two wordlines concurrently and compare
the current on the bitline with two thresholds. If the current is
between the two thresholds, the result of XOR is 1, otherwise
the result is 0. Compared with other methods such as IMPLY
and MAGIC, the advantage of this method is that XOR
operation can be realized in only one step, saving area and
time, and reducing the number of RRAM writing operations.
For the summation operation, we use the RRAM matrix-
vector-multiplication design, which activates the correspond-
ing wordlines that need to participate in the summation. Then
we can directly get the result of the summation. In one
single crossbar, only two rows of logic operations can be
implemented at the same time. We can change the degree of
parallelism by changing the number of encoding units used.

C. Classifying

We still use the RRAM matrix-vector-multiplication method
to sum Hypervectors from the same class, but there exist two
problems. The first one is that the dataset is too large to store
in some cases, and the second problem is that we need to
support the subtraction operation in retraining.

In order to solve the first problem we add the buffer module,
which receives the results of the partial summation after they
are obtained. The experiment proves that we only need to use
1 bit buffer here. Table. II shows the precision changes under
different buffer bitumber on the ISOLET dataset (We shuffle
the dataset and process 512 pieces of data at a time). From
the results we know that the 1 bit buffer only causes a small
loss of accuracy.

For the second problem, we need to add crossbars that stores
negative numbers in the memory module and subtract the two

parts of the current to get the final result. The structures of
HV memory module is shown in Fig. 4. In the classifying
module, we use multiple Winner-Takes-All (WTA) blocks in a
tree structure which can easily compare the Hamming distance
by choosing the maximum current.

TABLE II
THE PERFORMANCE OF HDC-IM WITH DIFFERENT BUFFER BITNUMBER

(ON ISOLET DATASET)

Buffer Bitnumber Accuracy
1 86.4%
2 86.4%
4 86.4%
8 86.7%

Full Precision 86.8%

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We use behavioral level simulation to simulate the process
in HDC-IM. The parameters we used refer to [9] [10] [11] [12]
[14]. In order to analyze the performance of HDC-IM, we first
consider the HDC running on the CPU as a baseline, we also
compare the speed and power consumption of this architecture
with a simple DNN after GPU acceleration. In addition, to test
the robustness of HDC-IM, we compare this architecture with
the DNN based on the RRAM neural network accelerator to
analyze their performance differences in fault tolerance.

B. Performance Analysis

We first compare the performance of HDC-IM, CPU-based
HDC, and GPU-based DNN. In terms of the parameter settings
of HDC-IM, We set M = 12, D = 8192 and d = 256, using
32 encode units to process parallel HDC encoding. The results
are shown in Table. III. The DNN model we use has 5 layers
with (617, 512, 1024, 1024, 26) parameters for each layer and
the dataset we used is ISOLET.

It can be seen that HDC-IM has a low time and energy con-
sumption of 0.19s and 0.12J, respectively, without retraining,
which is 500 times faster than HDC on the CPU and exceeds
104 improvement on energy efficiency, but the accuracy is
lower than the DNN algorithm. When considering retraining,
HDC has similar accuracy with the GPU-accelerated simple
DNN, and has a speed increase of 2 times and a power
consumption reduction of 104 times.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS AND

ARCHITECTURES ON ISOLET DATASET

Accuracy Delay(s) Energy(J)
HDC-IM(without Retrain) 86.4% 0.19 0.12

HDC-IM(with Retrain) 92.1% 3.86 2.28
HDC on CPU(without Retrain) 86.4% 93 2760

HDC on CPU(with Retrain) 92.1% 132 3960
DNN on GPU 94.5% 7.9 239

C. Robustness Analysis

We consider Stuck-At-Faults (SAFs) in RRAM devices,
which mean that the RRAM cell stucks at HRS or LRS. Since
each step in HDC-IM is done on the RRAM, errors can occur
from read, write, XOR and addition operations. We add SAFs



with a certain probability in every step by behavioral level
simulation. We use the 4-bit quantized DNN (the structure
is the same as we used before) as baseline, which can still
achieve an accuracy of 92.5% on ISOLET dataset without
considering SAFs. We add randomly generated SAFs to the
weights. We suppose the SAFs in RRAM crossbars follows
an uniform spatial distribution.

Fig. 5. shows the accuracy change of two algorithms when
the probability of SAFs changes from 0 to 20%. In each
case we performed 100 experiments and obtained the mean,
maximum and minimum values. The error bars in the graph
indicate the fluctuation range of the results. It can be seen that
the DNN is slightly more accurate than HDC when the device
has no obvious error, but when the probability of the SAFs
reaches 0.1 or more, the performance of the DNN algorithm
will be significantly reduced. In the case of a SAFs probability
of 0.2, DNN can only achieve an average correct rate of 35%,
while HDC can still achieve an average correct rate of 55%.
When considering the variance of performance in each case,
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HDC is obviously a relatively stable algorithm, while the DNN
algorithm is very unstable in the case of large SAFs. That’s
because only a few weights have a big impact on the results.
That is to say, the importance of the weights of different
positions of the DNN is different. However, for HDC, since
each position is equally important, its accuracy has little to
do with the error distribution, and always maintains a normal
performance.

VI. CONCLUSION

In this paper we present a RRAM-based Hyperdimen-
sional Computing architecture, HDC-IM. Considering the
processing-in-memory characteristics of RRAM, we propose
block encoding method, so that the very-long vector opera-
tions in HDC can be efficiently processed in groups with-
out huge overhead caused by data movements. In terms of
architecture design, we propose an encoding implementation
based on Scouting logic method and RRAM matrix-vector-
multiplication to improve the parallelism of the encoding
process. We also add a 1-bit buffer module and crossbars
representing negative numbers to solve the problem of over-
sized datasets and support the operation of retraining. Ex-

periments show that this architecture has superior speed
and energy efficiency in processing HDC, and can even be
compared with simple neural networks on GPUs. HDC-IM’s
fault-tolerant performance comes from the redundancy of the
Hyperdimensional Computing itself, which makes it possible
to compensate for the problems caused by RRAM device
errors in some degree. Experiments also show that HDC-IM
has a significant advantage over RRAM-based DNN in the
performance considering high probability of RRAM device
faults. We expect Hyperdimensional Computing to have a
wider range of uses in the future.

VII. ACKNOWLEDGEMENTS
This work was supported by National Key Research and

Development Program of China (No. 2017YFA0207600),
National Natural Science Foundation of China (No.
61720106013, 61832007, 61622403, 61621091), Beijing
National Research Center for Information Science and
Technology (BNRist), and Beijing Innovation Center for
Future Chips.

REFERENCES

[1] Rahimi, P. Kanerva, L. Benini and J. M. Rabaey, “Efficient Bio signal
Processing Using Hyperdimensional Computing: Network Templates for
Combined Learning and Classification of ExG Signals,” in Proceedings
of the IEEE, vol. 107, no. 1, pp. 123-143, Jan. 2019.

[2] Gu P, Li B, Tang T, et al., “Technological exploration of rram crossbar
array for matrix-vector multiplication”. The 20th Asia and South Pacic
Design Automation Conference (ASPDAC), 2015. 106-111.

[3] S. Kvatinsky et al., “MAGIC-Memristor-Aided Logic” in IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp.
895-899, Nov. 2014.

[4] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny and U. C.
Weiser, “Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies” in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054-2066, Oct.
2014.

[5] Rahimi et al., “A robust and energy efcient classifier using brain-inspired
hyperdimensional computing,” in ISLPED, August 2016.

[6] M. Imani, D. Kong, A. Rahimi and T. Rosing, “VoiceHD: Hyperdi-
mensional Computing for Efficient Speech Recognition,” 2017 IEEE
International Conference on Rebooting Computing (ICRC), Washington,
DC, 2017, pp. 1-8.

[7] M. Imani, Y. Kim, T. Worley, S. Gupta and T. Rosing, “HDCluster: An
Accurate Clustering Using Brain-Inspired High-Dimensional Comput-
ing,” 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), Florence, Italy, 2019, pp. 1591-1594.

[8] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets
/ISOLET.

[9] R. Dlugosz, A. Rydlewski and T. Talaska, “Low power nonlinear
Min/Max filters implemented in the CMOS technology” 2014 29th
International Conference on Microelectronics Proceedings - MIEL 2014,
Belgrade, 2014, pp. 397-400.

[10] Khorami, M. B. Dastjerdi and A. F. Ahmadi, “A low-power high-speed
comparator for analog to digital converters,” 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp.
2010-2013.

[11] Shimeng Yu, “Resistive Random Access Memory (RRAM),” in Resistive
Random Access Memory (RRAM) , Morgan Claypool, 2016, pp.

[12] H. -. P. Wong et al., “Metal-Oxide RRAM,” in Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951-1970, June 2012.

[13] L. Xia et al., “Stuck-at Fault Tolerance in RRAM Computing Systems,”
in IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, no. 1, pp. 102-115, March 2018.

[14] L. Xie et al.,“Scouting Logic: A Novel Memristor-Based Logic Design
for Resistive Computing,” 2017 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), Bochum, 2017, pp. 176-181.


