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Abstract— Nonvolatile flip-flops (nvFFs) enable frequent-off
processors to achieve fast power-off and wake-up time while
maintaining critical local computing states through parallel data
movement between volatile FFs and local nonvolatile mem-
ory (NVM) devices. However, current nvFFs face challenges in
large store energy (Eg) and long voltage stress time on the device
(TsTRESS), due to wide distribution in the write time of NVM
device as well as unnecessary writes. Moreover, heavy parasitic
load on the power rail cause long wake-up time for restoring
data from NVM to FFs. This paper proposes the resistive RAM
(ReRAM)-based nvFF with self-write termination (SWT) and
reduced loading on power rail to: 1) reduce 93+% waste of Eg
from fast switching or matched cells; 2) suppress endurance and
reliability degradation resulted from overprogramming and long
TsTRESS; and 3) achieve reliable and 26+ times faster restore
operation compared with previous nvFFs. We have fabricated
a nonvolatile processor and a test chip with SWT-nvFFs using
logic-process ReRAM in a 65-nm CMOS process. Measured
results show sub-2-ns termination response time and sub-20-ns
chip-level restore time.

Index Terms—Flip-flop (FF), nonvolatile logic, nonvolatile
processor (nv-Processor), resistive RAM (ReRAM).

I. INTRODUCTION

ESPITE the ever-increasing demand for energy effi-

ciency, standby power continues to increase as dimen-
sions scale. Long operational lifetime and rapid, reliable
recovery are essential in ultra-low energy applications, such
as smart mobile devices, wearable devices, wireless sensor
networks, and the Internet of Things. Employing nonvolatile
memory (NVM) to retain system states and using power-OFF
is a common approach for extending the lifetime of a device
through eliminating standby power. During this period, data
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Fig. 1. Conceptual view of conventional two-macro solution versus non-
volatile logics.

in on-chip SRAM and flip-flops (FFs) are moved to the NVM
macros to ensure system stability after power interruption
[1]-[5]. However, this MCU 4+ NVM two-macro approach
results in great overhead in delay, energy, as well as system
complexity during the store (power-OFF) and restore (wake
up) operations, especially from registers distributed across the
processors that do not allow random access. These overheads
greatly degrade the standby-power reduction of the two-macro
approach and thus result in long break-even time (BET).

Recent advances in CMOS-compatible NVM devices have
led to the development of nonvolatile logics [2], [6]-[16],
which merges NVM into CMOS circuitry in FFs, SRAMs,
or TCAMs to enable parallel data movement between NVM
devices and volatile storage elements for fast, local, and low-
energy store/restore operations. Fig. 1 shows the comparison
of an energy-efficient system using the two-macro approach
and a system employing nonvolatile logic.

The application of each different emerging NVM has trade-
offs. Ferroelectric RAM (FeRAM) [6], [7], [17], [18] has the
advantage of low write energy, but suffers from small restore
margins and large device area. Magnetic RAM (MRAM) [8],
[19], [20] has high endurance, fast write time, but suffers
from small tunneling magnetoresistance ratios (TMRs) and
extremely low resistances. Phase change memory [21]-[23]
has a large resistive ratio (R-ratio), yet high programming
current density and heating issues limit its usage inside
processors. Resistive RAM (ReRAM) [24]-[27], [37] has a
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low manufacturing cost, acceptable write power, and high
resistance (R)-ratio (R-ratio = Ryrs/RLRrs) between high-R
(HRS, Ryrs) and low-R (LRS, Rrrs) states. However, its
physical mechanisms results in slightly worse endurance and
variation.

Nonvolatile FFs (nvFFs) [6]-[8] have been proposed to
store critical local computing states with faster power-OFF
and wake-up time than conventional two-macro approach for
frequent-OFF processors. Previous nvFFs employ the worst
case programming conditions (Write Time—7STORE MAX,
Voltage— VsTore_MAX, and Current—IsTORE MAX) tO ensure
switching of the tail NVM devices. Unfortunately, many NVM
devices have wide distribution in write time. Moreover, small
signal ratio (C-ratio, TMR, and R-ratio) requires assist scheme
for restore operations. Thus, previous nvFFs have faced the

following challenges:
1) excessive waste of store energy in fast-switching, over-

programmed, and matched cells, where a “matched cell”
refers to a cell with NVM devices already in the same
state as the to-be-written data;

2) degraded resistance ratio, endurance, and reliability as
well as low Rprs (RLrs—MmiIN)-induced write failure
due to long TsrrEss and overwrite of fast-switch and
matched cells;

3) long wake-up time and large wake-up power due to
excessive capacitive loading [6], [7] or dc-current [8]

on the power rail in order to achieve high restore yield.
Details of the above-mentioned challenges will be discussed

in Section II.

The remainder of this paper is organized as follows.
Section II provides background information related to nvFF.
Section III describes the proposed self-write-termination
(SWT)-nvFF circuit and operations. Section IV analyzes the
energy performance of the SWT-nvFF cell and addresses
concerns regarding reliability and overhead. The full-system
implementation, measured results, and comparison to previous
works are also given in this section. Finally, the conclusions
are drawn in Section V.

II. BACKGROUND
A. Operation of Employed ReRAM Device

To prevent excessive waste of energy, nonvolatile processors
(nv-Processors) only execute store and power-OFF during
long standby periods, whereas dynamic voltage scaling and
multiple-power domains [4], [5] are more efficient for short
standby periods. Most normally OFF devices are activated only
a few times every few hours or one time per day. On the
other hand, the restore operation must be fast and reliable for
event-driven computing. The endurance requirements of the
NVM device are not particularly strict; however, a sufficient
ON—OFF ratio is required to overcome offset in the CMOS
latches caused by process variation. ReRAM devices are
promising candidates for nv-Processors, due to their high R-
ratio, relatively low write current, sufficient endurance, and
low manufacturing cost.

To achieve high density and reduce the cost of manu-
facturing, this paper employed a TiN-TiON-based contact-
ReRAM sandwiched between the first metal and n+ diffusion
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Fig. 2. Characteristics of employed RRAM device. (a) Operation conditions.
(b) Device structure. (c) Resistance distribution. (d) Programming time
distribution.

region inside a contact hole [24]. Contact ReRAM eliminates
the need for an additional connection from the top metal
to the lower metal circuitry, as required for conventional
ReRAM placed between high metal layers. Fig. 2 presents
the characteristics of the unipolar ReRAM device employed in
this paper. The endurance of the employed ReRAM device can
exceed 10° cycles without a significant shift in resistance, and
the minimum R-ratio exceeds 4. The ReRAM device stores
data in two resistive states: low resistive state (LRS) and high
resistive state (HRS). The SET operation switches the ReRAM
resistance to Ry rs by applying voltage of Vsgr for the duration
of Tspr. The RESET operation switches the device back to
Rurs by applying voltage of Vrgsgr for the duration of
Treser. As with most NVM devices, the Tsgr/Treser and
Rurs/Rirs of the ReRAM vary considerably [28]-[30] due
to process variations.

B. Challenges in Application of Nonvolatile Flip-Flop

1) Energy and Reliability Concerns: In NVM macros, error-
correction code (ECC) blocks are used to deal with write
failure caused by insufficient TsTorg in slow-switch cells.
However, due to the data path and the area of FFs, nvFF cannot
afford the overhead of using ECC and must, therefore, employ
the worst case TsTore(7Tser_Max and TRESET MaX) to ensure
successful write of all NVM cells.

For fast-switching cells that switch before TsTORE MAX
(shorter Tstorg) or match cells that do not need switch-
ing, the SET/RESET biases are continuously applied to the
cell despite the cell already being in the LRS/HRS states.
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Fig. 3. Voltage and current waveforms across the RRAM device during store
operations.

Applying the longest Tstorg to these cells wastes power
and the long TsTress results in over-SET/over-RESET. The
over-SET [31], [32] behavior makes HRS cells switch to
LRS with ultra-low Rprs, resulting in subsequent RESET
failure due to insufficient bias across the ReRAM device
under given RESET conditions. The over-RESET [33], [34]
behavior makes an HRS cell suffer degraded reliability and
subsequent SET failure. These issues, as shown in Fig. 3, have
become increasingly severe as variations increase with device
dimension scaling.

By terminating the NVM-write biases when an NVM cell
reaches its target Ryrs/RLRs, write termination (WT) provides
an effective way to overcome challenge (1) in a memory macro
[25], [26], [35]. However, the large area overhead for the
conventional operational amplifier-based WT [26] scheme for
memory application prevents it from being applied to nvFFs.
Thus, there is a need of efficient self-WT (SWT) scheme with
reduced area overhead for nvFFs.

2) Restore Performance Concerns: An insufficient differ-
ence (or ratio) between the ON- and OFF-states of the NVM
device may lead to restore failure when this margin fails
to overcome the mismatch of the latch pair due to process
variations in transistors.

To achieve higher restore yield, FeRAM-capacitor-based
nvFFs need to increase restore margins through assist methods.
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Charge-dump-nvFF [6] dump charges from large-capacitance
FeRAM cells (~380 fJ/cell) into small-capacitance storage
nodes (~10 fJ) of a CMOS latch, which increases the voltage
difference of Q and QOB. Differential-cap-nvFF [7] uses two
FeRAMs on each storage node (i.e., four FeRAM/Cell) to
increasing the restore margin by 2x through capacitance
division. In equalization-nvFF (EQ_nvFF) [8], the slave latch
is equalized during restore to decrease the effect of PMOS
mismatch. Thus, previous nvFFs suffered from long power-rail
(Vpp_FF) ramp-up times (Tyvpprr_rRmP), due to a large capaci-
tive or current load (dc-short caused by the latch-equalization)
on Vpp_FF. Table I shows an overview of previous silicon
verified nvFFs.

III. PROPOSED SELF-WRITE-TERMINATION
NONVOLAILTE FLIP-FLOP

This paper presents an SWT-nvFF using the intrinsic pos-
itive feedback of the slave latch to achieve fast and reliable
termination at a compact area. To shorten the system wake-
up time and restore energy when the number of nvFF in a
chip is large, the NVM devices are decoupled from the power
rail.

A. Structure of the SWT-nvFF

Fig. 4 presents the schematic and operation of the proposed
SWT-nvFF, comprising a master latch (M-Latch), a dual-
mode slave latch (M0-M1 and M2-M3), and an NVM-control
unit (NVMCU). The NVMCU comprises two NVM devices
(RL and RR), two isolation transistors (M6 and M7), two dual-
mode switches (SW1 and SW2), store/restore polarity selec-
tors (M10 and M11), a self-termination circuit for RESET
(M8-M9 and M12-M14), and a self-termination bias circuit
for SET (M4-M5). The SWT-nvFF has three modes: FF,
store (NVM-write), and restore (wake up). In the FF mode,
the dual-mode switches SW1 and SW2 are ON to connect
MO0-M3 to form a cross-coupled latch, as in a typical FF.
Under RESET = 0, a lack of voltage stress on RL/RR
enhances the reliability of NVM devices. Store operations
(including RESET and SET phases) move data from the slave
latch into the NVMs before power-OFF, and restore operation
loads the data from the NVMs back into the slave latch at
power-ON.

B. Store Operation—RESET

Fig. 5 presents the Store-RESET operation. At the start
of the RESET operation (STOREB = 0 and RESET = 1),
RST_FB is high to form a resistive division path between
M10, M14, and RL-M8/RR-M9. The selection of RL-M8
or RR-M9 path is determined by the data at Q/QB.
M12-M13 then detects the voltage at node NX (Vnx) and
generates feedback bias (RST_FB) for the write driver (M 14).
RR is selected when Q = 0. If RR is LRS (mismatch), then
the drop in Vnx turns ON M 12, such that RST_FB = 1 and
M 14 remains ON to provide RESET current (Irgsgr). When
the RR switches from an LRS to HRS, an increase in Vnx
lowers RST_FB, which further raises Vnx. Positive feedback
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between M 12, M 13, and M 14 leads to RST_FB = 0 and the
switching OFF of M 14 and Irgsgr. When the selected RL/RR
is already in HRS (match), a high Vnx ensures that M 12 is

(b)

Store-RESET

' Store-SET
(c)

(a) Full schematic of the SWT-nvFF, (b) operation control table, and (c) functional waveforms for a full power-OFF-ON cycle.
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OFF and RST_FB = 0, thereby turning OFF the M 14/IRgsET
and ensuring that the RESET operation does not occur. Note
that for the RESET operation, the feedback circuit (M 12-M 14)
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uses a voltage input, since the RESET operation is a current-
based operation.

C. Store Operation—SET
Fig. 6 presents the Store-SET operation. When the RESET
operation ends, SET = RSWL = 1, which turns OFF the

SW1/SW2 and turns ON M4/MS5 to produce two SET-feedback
(SFB1) circuits (MO0-M3-M4 and M1-M2-M5). When
Q0 =0, SFB1 (M0-M3-M4) is selected and SFB2 is disabled
(OB =1, 01 = 0, and M1 = M2 = OFF), while the
M10-RR (HRS)-M7 path weakly charges OB to prevent
OB from residing in a floating state. When the RL is in
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D. Restore of the SWT-nvFF

In restore mode, the application of RSWL = Restore = 1
enables nodes Q and QOB to have differential discharge currents
flowing through RL (/) and RR (Ipp), respectively. The
LRS (HRS) discharge path provides a larger (smaller) Ip/Ipp,
resulting in a lower (higher) voltage at node Q/QB (Vo/Vgg),
whereupon the slave latch pulls the higher (lower) voltage
at Q/OB to logic-1 (logic-0). The active circuits during this
restore period are shown in Fig. 7.

In contrast to FeERAMs and MRAMs, the suitable resistance
ranges and sufficient R-ratio of our ReRAMs eliminates the
need of additional assist schemes to increase restore margin

and achieve high restore yield. This avoids the excess
capacitance/dc-current loading on the power rail, which
allows our ReRAM-based nvFFs to achieve fast wake up and
low restore energy.

IV. ANALYSIS AND MEASUREMENT RESULTS

In this section, we perform analysis on the energy, speed,
yield, and area of the SWT-nvFF. We then present the
implementation in an nv-Processor and the measured results
of a test chip.
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A. Performance

Fig. 8 presents the store energy (Es) when writing cells with
different Tstore. Without the SWT scheme, the write biases
are supplied throughout TsTorRE—MAX, and nearly 80% of E; is
wasted as dc current even for an average slow-switching cell
(TstorE—MaX/Tstore = 10). As the cell switches faster,
an increased amount of energy is wasted during the store
cycle.

With a small bias current, the SWT scheme efficiently cuts
off the store conditions within picoseconds after switching,
eliminating the dc current, and achieving a 76% reduction in
Eg for slow-switching cells. For cells with typical switching
time (Tstore—MAX/TsTore = 40) and fast-switching cells
(Tstore—MAX/Tstore = 100), a 93% and 97% reduction in
Eg can be achieved, respectively.

Fig. 9 presents the store energy consumption under different
percentages of match cells. When 0% of the data is match, all
cells need to be written and the SWT-nvFF saves 86% energy,
mainly due to termination of fast-switching cells. On the other
hand, for a 100% match, all cells keep its previous value and
no write operation is required. Under this condition, the SWT
saves more than 99.9% energy by terminating match cells. It
is worth noting that embedded benchmarks have an average
of above 78% match [36].

Fig. 10 presents a comparison of total energy con-
sumption in standby and power-OFF-ON operations. During
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standby, the FFs consume constant leakage current, which
increases the total energy consumption over time. Current
leakage can largely be eliminated using power-OFF-ON
operations, albeit at the cost of additional energy to store
data in NVM during power-OFF operations and restore data
back to the FF during power-ON operations. The BET is
defined as the standby time in which the total leakage
energy is equal to the store and restore energy. In this
paper, the BET was 700 us. For standby periods exceeding
BET, the use of power-OFF-ON operations is more energy
efficient.

Fig. 11 shows the restore delay of this paper compared
with the previous nvFFs. Due to the need to charge excess
capacitive loading during power-up, FeRAM-based nvFFs
require a 17+ times larger Typpgmp compared with resistive-
type nvFFs with 100 nvFFs on the power rail. EQ_nvFF has
fast rise time, but fails at large FF-count (i.e., 2500 or 4000)
as a result of large dc current drawn from the supply, which
causes Vpp_FF unable to reach Vpp. As a result of our higher
R-ratio, a decoupling of NVM devices from Vpp_FF, and the
elimination of the latch equalization, the SWT-nvFF achieves
27+ times faster Typprr rmMp for nvFF count sufficient to
ensure system stability (i.e., 2500 nvFF).



LEE et al.: ReRAM-BASED nvFF WITH SWT SCHEME

VDD_FF & VDD_HV

2201

I—) NV-Control (—I

Dummy

ReRAM
Slave Latch 3 -
Nonvolatile Master Latch stvi\t/ch sronsa-"! a-nsm w u: ReRAM
EF [RV-switch! Doy
OO E— ——"  rrr rrrrrH H R s RESET-——RST-FB-—0B————— i
VDD_FF | < I
_ Area overhead
Coan:l;tlonal Master Latch Slave Latch
GND|
0 Diffusion  HV Diffusion [JReRAM [JDunmy ReRAM
H Poly [ Contact [1] Metal
(@)
(B)
(A) (€) (D)
0, -
: 5% 4.50%
4% |
("} g 3.17%
£3%
Master Slave q>>
MCU © 2% | 1.68%
o
L ) nvFF <49 |
 Em—
NVM 0%
Analog 10% 20% 30%
\ J J
= Usage rate of nvFF

Nonvolatile Processor
(b)

Fig. 13.

Along with the R-ratio, the absolute resistance of the NVM
devices also plays a critical role in the restore performance.
When both Ryrs and Ryrs are low (<5k), both states are
equivalently “fully turned-ON transistors,” which makes it
difficult for a transistor-comprised latch to distinguish the two
states. Likewise, if both Ryrs and Rprs are high, the latch
sees two “OFF transistors,” which also leads to reduced yield.
Therefore, nonvolatile logics have the best performance when
the employed NVM devices have resistances comparable to
that of the latch, in which the latch will see Ryrs as an
“OFF transistor” and Rprs as an “ON transistor.” Fig. 12
presents the restore yield obtained from a 10 000 point Monte
Carlo simulation. Current state-of-the art MRAM has an

©

(a) Layout of a single nvFF cell, (b) placement approaches of the nvFFs in the MCU, and (c) area overhead for different application rates of nvFF.

R-ratio of 2-3, and still require restore assist techniques to
overcome variation. Variations in the resistance of our ReRAM
device are based on measurement results obtained from pre-
vious work using the same devices [37]. As a result of larger
R-ratio (>5) and suitable device resistance, the RRAM-based
nvFF achieves a 22+% improvement in restore-yield compared
with MRAM-based nvFFs.

Fig. 13(a) shows the layout of a single nvFF. IO devices are
included as a part of the transistors to ensure device reliability,
to account the fact that current ReRAM devices require more
than 2 V for store operations. We made the height of the
nvFF the same as that of the conventional FF in order to fit
the track height of standard cells for auto place and route
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operations. The layout of the master latch is the same as that
of conventional FF. The additional switches and nv-control
circuit make the slave stage of our nvFF wider than that of
conventional FF, resulting in area overhead 39% greater than
that of conventional FF. Dummy ReRAM devices are placed
around regular ReRAM devices to increase the yield against
proximity effects.

For the sake of uniformity in the placement of nvFFs,
the devices were clustered into groups. This also reduced
the proximity effect of the ReRAM devices, decreased the
area overhead of the high-voltage transistors, and enabled a
more relaxed routing path for the high-voltage supply and

nonvolatile control signals. The various blocks differed with
regard to the grouping of nvFFs clusters. Fig. 13(b) presents
four possible approaches to the placement of each nvFF group
in a sub-bock. In case-A, nvFFs are placed along top or
bottom tracks. These tracks are not the same as those used
for input/output logic cells of nvFFs. In case-B, a central
group of nvFFs is added to blocks with high volumes of
tracks for standard cells. In case-C, each nvFF group is
placed at the left or right edge of the tracks used for the
input/output logic cells of nvFFs. In case-D, for blocks with a
long track, additional groups are added at the center of each
track.
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Fig. 13(c) presents the area overhead for different usage
rates of nvFF (number of nvFFs/total FFs) in an nv-Processor.
To avoid excessive overhead in area, only FFs storing critical
data require the nonvolatile function. The overall area overhead
of applying the SWT-nvFF to 10% and 30% of the total FFs
in the MCU is 1.68% and 4.50%, respectively.

B. Implementation and Measurement Results

An nv-Processor and a test chip were fabricated using 65-nm
CMOS process and logic-compatible ReRAM. Fig. 14 presents
the die photo, structure, and performance of the 8-bit
nv-Processor, which consists of an adaptive nonvolatile con-
troller, 8-kB code ReRAM, 1422 adaptive nvFFs, and a
configurable 4-kB nvSRAM. The test chip includes three nvFF
arrays, each 1 kb in size.

Captured waveforms confirm the functionality of the FF,
store, power-OFF, and restore modes of the nv-Processor. All
measured delays include the path delay due to I/O drivers, pad

1,200
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=
E 800
8 700
> 60
500
400
300
5 6 7 8 9 10 11 12 13 14 15
Access Time [ns] (at257C)
Fig. 18. Measured Shmoo plot of the SWT-nvFF.

delays, as well as test-board parasitic load. Fig. 15 presents
the power-ON-OFF cycle for the two possible data conditions.
Note that when SET termination occurs, both Q and QOB rise
to 1, which can be observed in a switching of Q when Q = 0.
Fig. 16 presents the detailed waveforms of the SET/RESET
termination for matched cells and slow-switching cells. We can
observe that a matched nvFF clearly undergoes early switching
on RST_FB (falling edge) with sub-2-ns response time, while
slow-switching cells show late switching in RST_FB. The
measured Eg of a matched-nvFF is 99+% smaller than that
of a slow-switch nvFF. In Fig. 17, the measured TrsTr and
Tvpprr rvp for a 1-K nvFF array are shown. The measured
restore time is less than 20 ns with additional ~100-pF test-
board parasitic load. Fig. 18 presents the measured Shmoo
plot. All measured delays include the test-path-delay due to
I/O drivers, pad delays of test chip, and test-board parasitic
load. The nvFF access time (including test-path-delay) was
126 ns at Vpp = 1.1 V and 1297 ns at Vpp = 0.4 V. In
simulations, the nvFF presented a 20-ps penalty in CLK-Q
delay; however, this was difficult to measure the access time
overhead due to the minimum resolution of the measurement
system and test-mode implementation.
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Fig. 19 presents the performance results averaged across
five dies. The store energy (SET + RESET) averaged 46.2
pJ/bit with distribution ranging from 39.3 to 53.2 pJ/bit. The
worst case access times in FF mode at nominal Vpp =1 V
and low Vpp = 0.5 V were 1.97 and 8 ns, respectively. The
minimum operating voltage (Vpin) ranged from 0.24 to 0.3 V.

V. CONCLUSION

Non-volatile logic combining emerging NVMs with
CMOS is a promising candidate to enable processors with
high performance and ultra-low power. In this paper, an
SWT-nvFF using logic-compatible ReRAM process has been
proposed to address the challenges of previous nvFFs in
terms of area, store energy, restore time/energy, as well as
reliability. The SWT-nvFF achieves a 93+% reduction in store
energy (Es) and 274 times in restore time (TrsTR) compared
with the previous nvFFs. The fabricated nv-Processor and test
chips confirmed the nonvolatile functions, energy savings, and
sub-20-ns restore times.
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