
Binary Convolutional Neural Network on RRAM
Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang

Dept. of E.E., Tsinghua National Laboratory for Information Science and Technology (TNList),

Tsinghua University, Beijing, China

e-mail: yu-wang@mail.tsinghua.edu.cn

Abstract—Recent progress in the machine learning field makes low
bit-level Convolutional Neural Networks (CNNs), even CNNs with binary
weights and binary neurons, achieve satisfying recognition accuracy on
ImageNet dataset. Binary CNNs (BCNNs) make it possible for introducing
low bit-level RRAM devices and low bit-level ADC/DAC interfaces in
RRAM-based Computing System (RCS) design, which leads to faster
read-and-write operations and better energy efficiency than before.
However, some design challenges still exist: (1) how to make matrix
splitting when one crossbar is not large enough to hold all parameters
of one layer; (2) how to design the pipeline to accelerate the whole CNN
forward process.
In this paper, an RRAM crossbar-based accelerator is proposed for

BCNN forward process. Moreover, the special design for BCNN is
well discussed, especially the matrix splitting problem and the pipeline
implementation. In our experiment, BCNNs on RRAM show much
smaller accuracy loss than multi-bit CNNs for LeNet on MNIST when
considering device variation. For AlexNet on ImageNet, the RRAM-based
BCNN accelerator saves 58.2% energy consumption and 56.8% area
compared with multi-bit CNN structure.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved great per-

formance in various recognition tasks, including image classification

[1], video tracking [2] and natural language processing [3]. At the

same time, larger computational intensity and higher bandwidth are

required than traditional non-CNN models [4]. The emerging RRAM-

based Computing System (RCS) has been considered as a promising

solution for future CNN accelerators [5]–[8], where the RRAM-based

crossbar can not only store the weight parameters of CNN models

but also be used as the matrix-vector multiplier. In this way, the

energy cost for data transfer is reduced and less bandwidth is required.

Moreover, thanks to the crossbar-level parallelism, it also reduces the

running time complexity from O(n2) to O(1).
However, the current resistance precision of RRAM device is

limited [9], and the impact of writing variation and reliability problem

increases with the bit-level amounts of RRAM device [10]. On

the other hand, the interfaces between the analog RRAM-based

crossbars and the digital peripheral units take up most of the area and

power consumption, which makes the whole RRAM-based computing

system not so efficient as expected [5]. Therefore, the high precision

of data and weights in state-of-the-art CNNs becomes the main

challenge for RRAM-based implementation.

Recently, researchers in the field of machine learning have demon-

strated that Binary CNNs (BCNNs) achieve satisfying recognition

accuracy on ImageNet dataset [11], [12]. BCNNs use binary weights

and data when processing the forward propagation. It provides a

promising solution to break the high precision limits in current

RRAM-based CNN accelerator design. Faster read-and-write oper-

ations and better energy efficiency can be achieved by exploiting the

binary characteristics of BCNN.

Some challenges still exist in the RRAM-based BCNN accelerator

design when the network scale increases. First, the length of crossbar

This work was supported by 973 Project 2013CB329000, National Natural
Science Foundation of China (No. 61622403, 61373026, 61261160501), Brain
Inspired Computing Research, Tsinghua University. And we gratefully thank
Dr. Xudong Fei from Huawei Co. for the discussion.

column is not large enough to hold all the weight parameters of one

Convolution (Conv) kernel in large BCNNs like VGG [1]. Therefore,

the operation of matrix splitting is inevitable, and the high-cost

interfaces are still required for the intermediate data in splitting.

Second, the size of intermediate data between layers increases rapidly

with the network scale and introduces large overhead.

In this paper, an RRAM crossbar-based BCNN accelerator is

proposed. The contributions of this paper include:

• In our BCNN accelerator design, the matrix splitting problem

is well discussed when mapping weight parameters to RRAM.

Thanks to the line buffer introduced for intermediate data

buffering, a pipeline strategy is proposed for system efficiency.

• The robustness under device variation of BCNN on RRAM

is demonstrated. For LeNet on MNIST, binary CNN achieves

0.75% on 3bit RRAM devices in the case of device variation.

• Experimental results show that BCNN saves 58.2% of energy

and 56.8% of area consumption are saved when using BCNN

for AlexNet on ImageNet.

The rest of this paper is organized as follows: Section II introduces

the related background and the motivation of our work; Section III

proposes the RRAM-based BCNN accelerator design, especially the

pipeline design; Section IV uses the case studies of LeNet on MNIST,

and AlexNet on ImageNet to analyze recognition accuracy, area and

energy efficiency; and Section V shows the conclusion.

II. PRELIMINARIES AND MOTIVATION

A. CNN

A typical CNN consists of a number of different kinds of layers that

run sequentially, i.e. the output of the previous layer is the input of

the next layer. The input/output of one layer is named “feature map”

while the parameters of one layer are called “weights”. In a standard

CNN structure, cascaded Convolutional (Conv) layers (optionally fol-

lowed by Neuron layers, Max Pooling layers, Normalization layers)

are followed by one or more Fully-Connected Layers [1].

Conv Layer can be expressed as in Eq. 1:

fout(x, y, z) =

h−1∑
i=0

w−1∑
j=0

Cin−1∑
k=0

fin(x+ i, y + j, k) · cz(i, j, k) (1)

where i, j, and k are the spatial coordinate of three-dimensional (3-
D) matrix input feature map Fin with the size of Hin ×Win ×Cin;

x, y, and z are the coordinate of output feature map Fout with the

size of Hout × Wout × Cout; Cz is the z
th Conv kernel with the

size of h×w×Cin; and there are Cout kernels in one Conv Layer.

In this way, all the Conv kernel parameters in one layer form a 4-D

blob with the size of (h,w,Cin, Cout). Sliding stride s is used for
jumping some pixels and reduce the computation amount, while zero

padding is introduced when the convolution is processed at the edge

of feature maps and the pixels are not enough for one whole Conv

kernel.

Neuron Layer is attached after the Conv Layer which makes a
nonlinear one-by-one mapping (y = f(x)). Binary Neurons are used

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

9C-2

782

���

�����	
�

�	
��
�����

�����	
�

�
�
��	

�����

�����	
� �����	
����

���

���
���

���

Fig. 1: Structure of the RRAM-based Crossbar.

in our BCNN system as proposed in BinaryNet [11]. The forward

function can be expressed in Eq. 2:

y =

{
1, x > 0

−1, x ≤ 0 (2)

Max Pooling Layer is cascaded after the non-linear neurons. It
picks the largest element among the neighboring area of input feature

map in order to reduce the data amount and keep the local invariance.

Fully-Connected (FC) Layer can be expressed as in Eq. 3:

fout(y) =

Cin−1∑
x=0

fin(x) · c(x, y) (3)

where x is the index of the 1-D input feature map vector Fin with

the length of Cin; y is the index of output feature map vector Fout

with the length of Cout; and the 2-D weight matrix C is in the size

of Cin × Cout.

Batch Normalization (BN) Layer [13], which solves the problem
of internal covariate shift, has been introduced in most state-of-

art network models, especially the binary network models, e.g.

BinaryNet [11], XNOR-Net [12]. The operation of BN Layer can

be abstracted into a linear one-to-one mapping. The parameters are

well-trained in the training process.

B. RRAM Device, Crossbar Array and Crossbar Interface

An RRAM device is a passive two-port element with multiple re-

sistance states, and multiple devices can be used to build the crossbar

structure. When the “matrix” is represented by the conductivity of the

RRAM devices and the “vector” is represented by the input voltage

signals, the RRAM crossbar is able to perform as the analog matrix-

vector multiplier (MVM). Specifically, the relationship between the

input and output signals can be expressed as in Eq. 4 [6]:

iout(k) =

N−1∑
j=0

g(k, j) · vin(j) (4)

whereVin is the vector of input voltage (denoted by j = 0, 1, ..., N−
1), Iout is the the vector output current (denoted by k = 0, 1, ...,M−
1), and G is the conductivity matrix of the RRAM device. Taking

advantage of the natural “multiplication and merging” function of

the crossbar structure, the RRAM crossbar can implement the Conv

kernels and FC Layers in analog mode with high speed, small area,

and low power [6].

For FC Layers, the weight matrices are directly mapped to the

RRAM crossbars [5]. While for Conv Layers, one Conv kernel is

mapped to one RRAM column, and different columns in one crossbar

correspond to different Conv kernels [6], as shown in Fig. 1.

C. Motivation

Compared with the well-trained network which uses floating-point

weight parameters and feature maps on CPU/GPU platforms, the

RRAM devices and the crossbar interfaces can only support limited

bit levels.

1) Limited Bit Levels of RRAM Devices: To the best of our

knowledge, only 7-bit weights [9] are currently available for the

single RRAM device. However, state-of-the-art fixed-point CNNs

require 8 or 16 bit precision weights [4], [14]. As a result, multiple

RRAM devices have to be used for representing one number [7],

[8] and large energy overhead are introduced. Moreover, the multi-

bit devices suffer from more variation and reliability problems than

single-bit devices [10], which decreases the recognition accuracy of

computing accelerator. Therefore, the precision of RRAM resistance

levels limits both the energy efficiency and the accuracy of RRAM-

based computational system.

2) Limited Bit Levels of Crossbar Interfaces: Since the crossbars
work in the analog mode, interfaces are needed for the transformation

between the digital signals in the nearby computing units and the

analog signals in the crossbar-based MVM. There are two kinds

of interfaces in RRAM-based computational system. On the one

hand, the interfaces between RRAM crossbar and CPU, i.e. the input

interface in the first layer and the output interface in the final layer, are

required. On the other hand, the interfaces between RRAM crossbars

in different layers are required in CNNs. This is because CNNs are

not full-connected networks. Therefore, each RRAM crossbar need

to process multiple cycles with different inputs, and the temporary

results of each cycle need to be buffered until all the neighboring

results are obtained. The detailed function will be illustrated in

Section III. An intuitive choice is to use DAC/ADCs as the interfaces,

but huge overheads are introduced by high-precision ADC/DACs. Li

[5] pointed out that 8-bit ADC/DACs contribute to more than 85%
of the area and power consumption of the whole RCS.

Therefore, it will contribute a lot to energy efficiency if achieving

a well-trained network model with low bit-level weight parameters

and feature maps, especially the binary ones.

D. Challenges of RRAM-based BCNN

Some recent papers have already shown that completely binary

CNNs (BCNNs) are achievable if the 1-bit quantization is processed

in training. Courbariaux [11] proposes a sampling method which

trains the binary network together with the floating-point network;

while Rastegari [12] proposes the BinaryWeight by minimizing the

binary quantization loss while training. Moreover, the weights and

the feature maps are also binarized.

Based on these results, in this paper, we propose an RRAM
crossbar-based BCNN accelerator, achieving higher energy effi-
ciency compared with multi-bit CNNs. However, when the network
scale increases, two main challenges limit the energy efficiency of

the accelerator.

1) Splitting Interface Overhead: Splitting is required when the
size of the Conv kernels is larger than the length of crossbar column.

State-of-the-art RRAM crossbars only achieve the column length of

512 [6]. Crossbar of such size is not able to hold some large Conv

kernels, e.g. Conv kernel with the size 4608 (= 3×3×512) in VGG16
model. Therefore, the high-cost interfaces are still required because

the intermediate data in splitting need high precision. PRIME [7]

and ISAAC [8] discussed matrix splitting method for full-precision

CNNs by using high-precision ADC/DACs, so the energy efficiency

is still limited. Considering that BCNN provides the potential for low-

precision crossbar interfaces, a BCNN-specific low-precision splitting

structure is in demand.

2) Buffer Overhead: Since RRAM crossbar uses multiple inputs

in the same cycle, the processed data between layers can only

be buffered by registers instead of RAMs. Therefore, thousands

of registers and corresponding multiplexers are required for large

networks. ISAAC [8] gives a rough design for pipelining the Conv

9C-2

783

��������	
��
�������������
�
�����������
��

	�
��������

�

������

������

�����	
���

�����	
���

�

��������������������������� �

� � � � ���

	�
��������

�

�����������

�����������

����������	
���

����������	
���

�

��������������������������� �

� � � � ���

	�
��������

�

������

������

�����	
���

�����	
���

�

��������������������������� �

� � � � ���

�

��������	
��
�������������
�
�����������
��

�

�������

 ��
����
��
���
���� ���� ���

���
������� ���
 ����

��

�
����� ����� !� � " � # ����

�
�

	����������
�����

�
�
������ � $%%& ! � " � # �

�$%%&� �

	���������
����
��
���
���� 	����������

���

���

�!�"�����

�
��
������ ��'()� � ��'()� � ���

�'()��

�������

 ��
�����
��
���
��� # *��� �����

�#����

���� ���

�$

	����������

�$

 �����

���%$�

 �����

���%!�

&
����������&
����

'�"���'���

�

�

���� ���

��

	����������

��

�(�

���

���
��� ���
�(���

�

�

�

��

��

"

�
��

)

��

�*�+,-� ��	

���

���

�!�"

�����
�	

������
�������

 ��
����

���
���

���

�!�"
.����
��
/��

�������

 ��
����

� � � � ���
���

��%���0�

���

Fig. 2: (a) Overall Structure of the RRAM-based BCNN Accelerator: “N Conv Layers + M FC Layers” with the Input Image and the

Output Recognition Result, and each Conv Layer Optionally Followed by the Pooling Layer; (b)-(d) The Dataflow of the “Conv Layer”,

“Pooling Layer”, and “FC Layer”; (e) The Convolver Circuit for one Conv/FC Layer on RRAM-based Platform; (f) The Conv Line Buffers.

operation of different layers where weight duplication is introduced

for balance the load of the pipeline, but a throughout discussion on

pipeline implementation is still in lack. Since only a few registers are

used in each cycle, there exists the parallel potential between layers

to reduce the buffer size while boosting the processing speed. As a

result, a pipeline design between layers is necessary for both CNN

and BCNN accelerators.

III. RRAM-BASED BCNN ACCELERATOR DESIGN

As shown in Fig. 2 (a), the whole accelerator is made up of a series

of Conv Layers cascaded by a series of FC Layers. The Pooling
Layer module optionally follows the Conv Layer. The data paths for
the Conv, Pooling, and FC Layer are respectively shown in Fig. 2 (b)-

(d). Each layer consists of its own Input Buffer, and the Computing
Circuit.

• Computing Circuit: For Conv and FC Layers, the Convolver
Circuit is made up of the RRAM crossbar-based MVMs, as

shown in Fig. 2 (e). Some digital peripheral units, including

circuits for neurons and batch normalization, are also placed in

front of or at back of the crossbar groups. For Pooling Layers,

the computing circuit can be easily implemented as the multi-

input “OR” gate in the BCNN design.

• Input Buffer: For Conv and Pooling Layers, the operation of
sliding window exists. In this way, the structure of Line Buffer
(LB) is introduced for intermediate data buffering and fetching,

as shown in Fig. 2 (f). For FC Layers, the regular buffers are

used since nearby layers are fully connected.

In this section, we first discuss the design of the Convovler circuit

and matrix splitting in III-A; then discuss the design of intermediate

data buffering and the implementation of pipeline in III-B.

A. Convolver Circuit: The Problem of Matrix Splitting

Considering both the large energy cost of writing operation and

the endurance limit of RRAM device [15], reusing RRAM crossbar

by repeatedly R&W operation is not available. Since the high area

density is an important advantage of RRAM, all the Conv kernels

can be mapped onto the crossbars in the Convolver Circuit of the

corresponding layer. In this way, each output channel is able to get

one output element in one processing cycle if enough data have been

fed into this layer’s Line Buffers by the former Conv Layer. However,

matrix splitting is necessary for large Conv kernels, as discussed in

Section II-D, which is the same for large FC matrices.

1) Column Splitting: If the crossbar column count (M) is smaller

than the Conv kernel count (Cout, the same with the output channel

count) of this layer, then Cout Conv kernels are split into X
(Conv)
out

groups of RRAM crossbars, as shown in Eq. 5. Copies of the input

feature maps with the size of one Conv kernel (h ·w ·Cin) are sent
to each groups of crossbars.

X
(Conv)
in = �h · w · Cin

N
�, X(Conv)

out = �Cout

M
� (5)

2) Row Splitting: If the cross-point count (N) in one RRAM

column is smaller than the Conv kernel size (h · w · Cin), then the

elements of one Conv kernel are split into X(Conv)in groups of RRAM

crossbars, also as shown in Eq. 5. Moreover, the input feature map

is also split into X(Conv)in groups and the partial sum is achieved from

each group of crossbars. An adder tree needs to be cascaded after

the crossbar groups in order to merge the X(Conv)in partial sums.

The intermediate data before adder tree still use high precision.

However, since the cascaded digital functions, i.e. non-linear function

and BN, are monotone increasing functions, the 1-bit quantization

can be merged with these functions by changing the threshold and

output data range. Therefore, the result after addition can also be

only 1 bit, which provide the potential for using lower-precision

intermediate data for addition. Based on this observation, we reduce

the ADC precision into 4 bit, which can save large amount of

overhead especially when the splitting amount is large.

3) Signal Splitting: The resistance of RRAM device is positive, i.e.

it is unable to represent negative values. In this way, it is necessary to

9C-2

784

map one weight matrix onto a crossbar pair: one crossbar for positive

weights (+1), the other for negative ones (−1).

B. Line Buffer & Pipeline Implementation

The sliding window exists in the Conv Layers. Data dependency

analysis shows that the convolver circuit can awake (A) from sleep

(S) once the input data of the Conv kernel size is achieved. In this

way, the structure of the Line Buffer is introduced for the following

reasons: First, much fewer registers are used for data buffering since

it is unnecessary to buffer the whole input feature maps; second, with

Line Buffer introduced in every Conv/Pooling Layer, a pipeline can

be implemented, which makes the forward process much faster than

computing the Conv Layers in the one-by-one mode. And it is the

same for the Pooling Layers.

As the Pooling Layer is optionally followed by the Conv Layer,

there exist “Conv-Conv” and “Conv-Pooling-Conv” two modes for

nearby layer relationship. Here, we use the dataflow behavior our

experiment of CIFAR-10 on VGG11 as case study to show the line-

buffer-based pipeline implementation.

1) Conv-Conv: For the Conv Layers in VGG11, the “kernel size”
is set as 3×3; the “stride” is set as 1, and zero padding is introduced
in order to keep the input and output feature map as the same size.

When the feature map feeds in following the row-major order, the

Line Buffer of each channel only needs (h − 1) · (W + p) + w
registers. In the initial periods of a layer, zero padding in the length

of (W + p) and the first row of x
(k)
1,: are sent sequentially into the

kth Conv Layer’s Line Buffer before T0. And in these cycles, the
Convolver Circuit of the kth is in the sleep (S) mode. Finally at the
T0 cycle, x

(k)
2,1 is sent into the Line Buffer, as the dataflow shown in

Fig. 3. In the next cycle, the input Line Buffer shown in Fig. 2(f)

is fulfilled by data, and therefore kth Conv Layer starts at time T1.
Additionally, at the end of the layer’s computation, (W + p) cycles
are needed for computing the last row just like the initial cycles.

A main challenge for the Conv-Conv pipeline design is the sleep

control for the “line feed” problem. When the computation of a row

is accomplished, the input data need to be changed from the end

of current line to the front of the next line, which means at least

(w − 1) data (usually we have w > 3) in the next layer need to
be prepared. However, for the line-buffer-based pipeline design, the

input field shown in Fig. 2(f) is invalid during the preparing cycles,

e.g. (x
(k)
i−3,1, 0, x

(k)
i−2,W ;x

(k)
i−2,1, 0, x

(k)
i−1,W ;x

(k)
i−1,1, 0, x

(k)
i,W). In these

cycles, the Convolvor of the kth layer is also in the S mode; while
for the Line Buffer of the (k + 1)th layer, there is no valid input.
Fortunately, we find that the zero padding of next Conv Layer can

just exploit this cycle. And in the next cycle, i.e. Cycle Tm(W+1)+2

(m = 0, 1, ...), the Convolver of the kth layer recovers to awake (A);
while the Convolver of the (k + 1)th layer begins to sleep (S) for
line feed. In this way, the “line feed” problem is solved by utilizing

the extra sleep cycle in each layer for zero padding, and the works in

fully pipelined parallelism without waiting. Based on this structure,

we achieve the theoretical fewest cycle amount for Conv-Conv
pipeline connections.
2) Conv-Pooling-Conv: For the Pooling Layers in VGG11, the

“kernel size” is set as 2×2; the “stride” is set as 2, and zero padding
does not exist. As stride is larger than 1, the pooling circuit will work
for one row when every s rows are ready. In Conv-Pooling pipeline,
just as shown in Fig. 4, the kth Pool Circuit sleep from Cycle TW+3

to T2W+1. For the awaken row, the pooling circuit will work once

every s data are sent into the pooling Line Buffer. As shown in Fig. 4,
the kth Pool Circuit awakens one cycle and sleeps one cycle from
Cycle T3 to TW+1. Although the problem of “line feed” also exists,

the sleep cycles can be hidden into with the “sleep row”, and zero

��� ��� ��� � �� ����� ����� �����
	
��
����

���	
�
����
���� ����

���� ����
���� � ����

��� � � ����
���� ����

���� �
	
��
�

�
���
� �� �� � �� �� �� �� ��

	
��
������

���	
�
�� ����

�����
����
����� � ������

����� � ����
����� � ����

����� �
	
��
���

�
���
� �� �� � �� �� �� �� ��

Fig. 3: The Dataflow of Conv-Conv. The first line shows the Line

Buffer’s input data of previous Conv Layer in each cycle, and the

third line shows the input data of next Conv Layer. The second and

forth line show whether the Convolvers are Awake (A) or Sleep (S).

��� ��� ��� � �� ����� ���� ����� �� ������
	
��
����

���	
�
� ����

���� ����
���� ����

���� ����
���� � ����

��� � � ����
���� ����

���� � ����
��� �

	
��
�

�
���
�� �� �� �� �� � �� �� �� �� �� ��

�

�
����

���	
�
����
��� � � ����

���
����
���

����
��� � ������

��� � ����
��� � � ����

��� � ������

���

�

�
�

����	�
�
� �� �� �� �� � �� �� ��

������	�
���������
��

������

	
��
������

���	
�
� � � ����

����� � � � �
��
�
�

�����

� �

Fig. 4: The Dataflow of Conv-Pooling. The first line shows the Line

Buffer’s input data of previous Conv Layer in each cycle; the third

line shows the input data of next Pooling Layer; the second and

forth line show whether the Convolvers are Awake (A) or Sleep (S).

padding is not introduced in Pooling Layer, as shown in Cycle T1
and Cycle TW+2. While for the Pooling-Conv Line Buffer of the next

layer, it is just the turn of zero padding in this cycle like Conv-Conv

pipeline.

Finally, in the pipeline implementation, the total cycle amount for

one complete forward process is shown as in Eq. 6.

Tpip = (W
(1)+p) · (H(1)+2p)+

i>1∑
i∈Conv

(W (i)+p)+
∑
i∈Pool

1+
∑
j∈FC

1

(6)

(W (1) + p) · (H(1) + 2p) is the computation cycle amount for the
first Conv Layer. After that, once the cascaded layer is a Conv Layer,

(W + p) cycles are needed for computing the last row. Otherwise,
only one extra cycle is needed for computing the last pixel of next

Pooling Layer, or to perform a FC Layer. The pipelined cycle amount

is much fewer than the straight forward layer-by-layer design whose

cycle amount is:∑
i∈Conv

(W (i)+p) · (H(i)+2p)+
∑
i∈Pool

(W (i+1)H(i+1))+
∑
j∈FC

1 (7)

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, the models of LeNet and AlexNet are respectively

used on the dataset of MNIST and ImageNet. The multi-bit model is

achieved by dynamically quantizing [4] the well-trained floating-point

model into 8 bits; while the BCNN model is achieved by following

the training algorithm of BinaryNet [11]. Single crossbar size is set

as (M,N) = (128, 128). If one crossbar pair is not large enough
to store all parameters of one layer, parameter splitting is done as

shown in III-A. For the multi-bit CNN RRAM-based accelerator, 8-

bit RRAM devices and 8-bit interfaces are introduced. While the

BCNN system is implemented as proposed in Sec. III: The same bit-

level RRAM devices are used as in multi-bit CNN system; and the

9C-2

785

TABLE I: Error Rate of LeNet on MNIST: Device Variation Effects

Under Different Weight Bit-Levels

Weight RRAM
RRAM Used in

Full Bit-level Mode
RRAM Used in
Binary Mode

Bit Level Bit Levela
No

Variation
With

Variation
No

Variation
With

Variation
8 bit 7 bit 0.58% 0.58%

0.73%

0.74%
6 bit 5 bit 0.60% 0.59% 0.75%
4 bit 3 bit 0.80% 1.21% 0.75%
2 bit 1 bit 90.67% 89.10% 0.86%

a The bit-level of RRAM devices is 1bit less than that of the weight
parameters because of the signal splitting.

TABLE II: Amount and Processing Count of

Computing Units, Interfaces and Buffers

Module Layer Amount
Processing
Count

RRAM cell Conv (h · w · Cin) · Cout · Xout · Xout Hout · Wout

DAC Conv (h · w · Cin) · Xout Hout · Wout

SA&ADC Conv Cout · Xin Hout · Wout

Feature Map Buffer Conv h · w · Cin Hout · Wout

Line Buffer Conv h · Win · Cin Hout · Wout

Line Buffer Pooling h · Win · Cin Hout · Wout

RRAM Cell FC Cin · Cout · Xout · Xout 1

DAC FC Cin · Xout 1

SA&ADC FC Cout · Xin 1

Feature Map Buffer FC Cin 1

interface is binary when matrix splitting is not necessary, 4 bits when

necessary.

In this section, we first explore the effect of variation under

different weight bit levels; then a comparison on system efficiency is

made between BCNNs on RRAM and multi-bit CNNs on RRAM.

B. Accuracy: Effects of Device Variation Under Different Bit-Levels

Variation exists when mapping weight parameters to RRAM de-

vices since it is one conductance range (not a specific conductance

value) that represents one fixed-point number. When one RRAM de-

vice is able to represent N bits, i.e. 2N conductance ranges represent

2N fixed-point weights respectively. For the kth conductance range,

g(k) represents the center conductance, and (g(k) −Δg, g(k) +Δg)
represents the conductance range, i.e. the device variation δg ranges
from (−Δg,Δg). According to previous physical measurement re-
sults [25], we assume that the variation range Δg is the same for each
conductance range. When the RRAM device is used in the binary
mode, only two conductance ranges are picked from 2N ones. In this

way, the expectation of (δg/g) can be smaller than in the case that
2N ranges are all in use (we just name it as full bit-level mode), thus
introducing less computing error for matrix-vector multiplication.

LeNet on the MNIST dataset is demonstrated as case study to

show the effects of device variation under different weight bit-levels.

Without considering device variation, a precise mapping is made from

quantized fixed-point weight parameters to RRAM conductances

in the full bit-level mode. In this way, the increasing recognition

error rate mainly results from the quantization error. While in the

binary mode, the recognition performance keeps the same for RRAM

of different bit-levels when neglecting device variation, though the

recognition error is a bit higher than that of full bit-level mode in the

case of 7bit and 5bit RRAM, as listed in Table. I.

When considering device variation, the recognition performance

in the binary mode shows better robustness: In binary mode, device

variation introduces less than 0.01% error rate increase in case of

3bit (or larger bit-level) RRAM; while in full bit-level mode, the

recognition performance in 3bit RRAM becomes worse than that in

binary mode due to larger effect of device variation.

TABLE III: Area and Power Cost of Circuit Elements
Area Power(mW)

1T1R RRAM device (1 + W
L

) · 3F 2 0.052b

0T1R RRAM device 4F 2 0.06b

8bit DAC 3096Ta [16] 30 [17]
Sense Amplifier 244T [16] 0.25 [18]
8bit ADC 2550T+1kΩ(≈450T) [16] 35 [19]
4bit ADC 72T [20] 12 [20]

8bit SUB 256T 2.5×10−6(c)

1bit ADC 244T 1.73 [21]
32bit SRAM Cache - 0.064c

a T = W/L · F 2, where W/L =3, and the technology node F =45nm.
b The power consumption of RRAM cell is estimated by V 2

avggavg, where
gavg =

√
gongoff [22]

c The energy consumption of digital arithmetic logics and memory access
refer to the energy table under 45nm CMOS technology node [23]. The
system clock is assumed to be 100MHz, which is determined by the speed
of ADC/DACs and the latency of RRAM crossbar [24].

TABLE IV: Energy and Area Estimation

of Different RRAM-based Crossbar PEs
Database Performance CNN BCNN Saving

MNIST
Energy(uJ/img) 18.39 13.55 26.3%

Area (mm2) 0.054 0.060 -11.1%

ImageNet
Energy(uJ/img) 5444.85 2275.34 58.2%

Area (mm2) 21.25 9.19 56.8%

C. Area and Energy Estimation Under Different Bit-Levels

Network models of LeNet on MNIST and AlexNet on ImageNet

are demonstrated in the area and energy estimation. Moreover, we

also profile the area and energy distribution among different circuit

elements and among different layers on AlexNet. In our estimation,

the crossbar-based computing units and the buffers are considered;

while the consumption of interconnections are neglected. The amount

and the processing count of each module are listed as in Table. II.

Because of the sliding window operation, modules in Conv layers

process Hout ·Wout times in one forward process. The area and power

consumption of each circuit elements are listed in Table. III.

The area and energy estimation is shown in Table. IV. The

experimental results show that BCNN on RRAN saves 58.2% of

energy and 56.8% of area consumption for AlexNet on ImageNet

compared with multi-bit CNN. Whether for binary or multi-bit CNNs,

the output interface takes up the most part on energy and area

consumption. The area and energy distribution is shown in Fig. 5. In

terms of area distribution among all layers, the FC layers take up the

most part since the FC layers take up most of the the weight parameter

of the whole CNN. While in terms of energy distribution, the Conv

layers take up the most part. This is because the sliding window

of each Conv layer has to sweep through the whole featue map in

multiple process counts; but FC layers only process once. Comparing

the area and energy distribution between BCNN and multi-bit CNN,

the overhead of input interface is mostly saved; meanwhile, the

overhead of output interface is saved when the bit level of the partial

sum decreases in the case of matrix splitting.

V. CONCLUSION

In this paper, an RRAM crossbar-based accelerator is proposed

for BCNN forward process. Moreover, the special design for BCNN

is well discussed, especially the matrix splitting problem and the

pipeline implementation. The robustness of BCNN on RRAM under

device variation are demonstrated. Experimental results show that

BCNN introduces negligible recognition accuracy loss for LeNet on

MNIST. For AlexNet on ImageNet, the RRAM-based BCNN accel-

erator saves 58.2% energy consumption and 56.8% area compared

with multi-bit CNN structure.

9C-2

786

)

1

2

3

$4

$5

����$ ����4 ����1 ����6 ����5 �2 �7 �8

9

������
�(�����
���&&9!0(��
#������0(����������9�
/�
�

9

��&&9!� 9

����"������

���
� 9

�����"������

���
�8(��� 9

��
��
�

)

1

2

3

$4

$5

����$ ����4 ����1 ����6 ����5 �2 �7 �8

9

������
�(������
���&&9!0(��
#���������9�
/�
�

9

��&&9!� 9

����"������

���
� 9

�����"������

���
�6(��� 9

��
��
�

)

2))

$4))

$8))

����$ ����4 ����1 ����6 ����5 ��2 ��7 ��8

-�

�������
�(������
���&&9!0(��
#������0(����������9�
/�
�

-�8(����
�� -�$.$&� -�8(����9� -��9%8(���9�� -�
��
�

)

2))

$4))

$8))

����$ ����4 ����1 ����6 ����5 ��2 ��7 ��8

-�

�������
�(������
���&&9!0(��
#���������9�
/�
�

-�$(����
�� -�$.$&� -���"������

���
� -����"������

���
� -�
��
�

Fig. 5: Power and Area Distribution on AlexNet

REFERENCES

[1] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] J. Fan et al., “Human tracking using convolutional neural networks.”
IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1610–1623,
2010.

[3] A. Karpathy et al., “Deep visual-semantic alignments for generating
image descriptions,” in Computer Vision and Pattern Recognition, 2015.

[4] J. Qiu et al., “Going deeper with embedded fpga platform for convolu-
tional neural network,” in FPGA, 2016, pp. 26–35.

[5] B. Li et al., “Merging the interface: Power, area and accuracy co-
optimization for rram crossbar-based mixed-signal computing system,”
in DAC, 2015, p. 13.

[6] L. Xia et al., “Selected by input: Energy efficient structure for rram-
based convolutional neural network,” in DAC, 2016.

[7] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA,
vol. 43, 2016.

[8] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ISCA, 2016.

[9] F. Alibart et al., “High precision tuning of state for memristive devices by
adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23, no. 7,
p. 075201, 2012.

[10] R. Degraeve et al., “Causes and consequences of the stochastic aspect of
filamentary rram,” Microelectronic Engineering, vol. 147, pp. 171–175,
2015.

[11] M. Courbariaux et al., “Binarized neural network: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[12] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” arXiv preprint arXiv:1603.05279, 2016.

[13] S. Ioffe et al., “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[14] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in ACM Sigplan Notices, vol. 49, no. 4,
2014, pp. 269–284.

[15] Y. Y. Chen et al., “Understanding of the endurance failure in scaled

hfo 2-based 1t1r rram through vacancy mobility degradation,” in IEDM,
2012, pp. 20–3.

[16] R. St. Amant et al., “General-purpose code acceleration with limited-
precision analog computation,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 3, pp. 505–516, 2014.

[17] J. Proesel et al., “An 8-bit 1.5 gs/s flash adc using post-manufacturing
statistical selection,” in CICC, 2010, pp. 1–4.

[18] S. Gupta et al., “Simulation and analysis of sense amplifier in submicron
technology.”

[19] S. Y.-S. Chen et al., “A 10b 600ms/s multi-mode cmos dac for multiple
nyquist zone operation,” in 2011 Symposium on VLSI Circuits-Digest of
Technical Papers, 2011.

[20] S. S. Chauhan, S. Manabala, S. Bose, and R. Chandel, “A new approach
to design low power cmos flash a/d converter,” International Journal
of VLSI design & Communication Systems (VLSICS), vol. 2, no. 2, p.
10C108, 2011.

[21] Siddharth et al., “Comparative study of cmos op-amp in 45nm and
180 nm technology,” Journal of Engineering Research and Applications,
vol. 4, pp. 64–67, 2014.

[22] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” TCAD, vol. 31, no. 7, pp.
994–1007, 2012.

[23] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Advances in Neural Information Processing Systems, 2015,
pp. 1135–1143.

[24] S.-S. Sheu et al., “A 4mb embedded slc resistive-ram macro with 7.2
ns read-write random access time and 160ns mlc-access capability,” in
ISSCC, 2011.

[25] S. R. Lee et al., “Multi-level switching of triple-layered taox rram
with excellent reliability for storage class memory,” Digest of Technical
Papers - Symposium on VLSI Technology, pp. 71–72, 2012.

9C-2

787

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

