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Abstract—Following technology scaling, on-chip heterogeneous
architecture emerges as a promising solution to combat the power
wall of microprocessors. This work presents Harmonica—a frame-
work of heterogeneous computing system enhanced by memristor-
based neuromorphic computing accelerators (NCAs).In Harmonica,
a conventional pipeline is augmented with a NCA which is designed
to speedup artificial neural network (ANN) relevant executions by
leveraging the extremely efficient mixed-signal computation capa-
bility of nanoscale memristor-based crossbar (MBC) arrays. With
the help of a mixed-signal interconnection network (M-Net), the
hierarchically arranged MBC arrays can accelerate the computa-
tion of a variety of ANNs. Moreover, an inline calibration scheme
is proposed to ensure the computation accuracy degradation
incurred by the memristor resistance shifting within an acceptable
range during NCA executions. Compared to general-purpose pro-
cessor, Harmonica can achieve on average 27.06× performance
speedup and 25.23× energy savings when the NCA is configured
with auto-associative memory (AAM) implementation. If the NCA
is configured with multilayer perception (MLP) implementation,
the performance speedup and energy savings can be boosted to
178.41× and 184.24×, respectively, with slightly degraded compu-
tation accuracy. Moreover, the performance and power efficiency
of Harmonica are superior to the designs with either digital neural
processing units (D-NPUs) or MBC arrays cooperating with a
digital interconnection network. Compared to the baseline of
general-purpose processor, the classification rate degradation of
Harmonica in MLP or AAM is less than 8% or 4%, respectively.

Index Terms—Heterogeneous system, memristor, neuromorphic
computing.
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I. INTRODUCTION

R ECENTLY, heterogeneous architecture has become a
promising solution to conquer the challenges of supply

voltage scaling, off-chip communication bandwidth, and appli-
cation parallelism in homogeneous multi-core system [1]. Sev-
eral off-chip accelerators, including traditional ASIC, FPGA,
and GPU, have been well studied for cooperating with general-
purpose processors [2]–[4]. Generally, ASIC provides the high-
est computation efficiency and FPGA offers the most flexible
reconfigurability. GPU is a balanced solution between these
two metrics though its applications are often associated with
complex control flows and special programming models.

Besides off-chip accelerators, many practices [5]–[8] were
also conducted to integrate general-purpose CPU cores with
processing elements that are designed to accelerate the execu-
tion of some special codes (called target codes), e.g., the codes
producing approximated results. Many target codes of approx-
imate computing (e.g., approximated calculation, rendering
methodology, and statistical representation) have been identi-
fied in a large variety of applications such as pattern recogni-
tion, computer vision, data mining, signal processing etc. [9],
[10]. Artificial neural network (ANN) can be also considered
as one kind of approximate computing with high adaptivity
to many high-performance applications [9]. The inherent re-
silience to soft and hard errors in computation makes ANN a
promising solution to conquer the aggravated system reliability
issue under the highly scaled technology nodes [11]. Software-
based ANN realizations, however, are often associated with ex-
tremely high hardware cost required by emulating the complex
connections in the neural network.

The rediscovery of memristor [12] motivates an exciting
approach of implementing neuromorphic systems, which de-
notes the VLSI realization of ANN computation. Compared
to the design of traditional CMOS-based digital and analog
neuromorphic accelerators [10], [13], the similarity between the
programmable resistance state of memristors and the variable
synaptic strengths of biological synapses dramatically simpli-
fies the structure of neural network circuits [14].

In this work, we propose Harmonica—a novel framework
of heterogeneous computing systems with on-chip memristor-
based neuromorphic computing accelerators (NCAs), aim-
ing at the acceleration of ANNs and learning computations.
Nanoscale memristor-based crossbar (MBC) arrays [15] are
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utilized to represent perceptron network in NCA development.
Unlike the spike-based computations where the data is rep-
resented by the pulse signals with different frequencies and
amplitudes [16], our design adopts a hybrid data presentation:
the computation within MBCs and the signal transmission
among MBCs are conducted in analog form while the control
information is maintained in digital form. In this work, we
assume the training process of MBC arrays is performed offline.
However, to suppress the accuracy degradation incurred by
memristor resistance shifting during executions, a low-cost
inline calibration scheme [17] is applied.

Harmonica offers a fast, cost-efficient and fault-tolerant
ANN computation platform complementing the computations
of CPU cores. Compared to the existing works of approximate
computing units and digital ANN accelerators, the key differ-
entiation of Harmonica can be summarized as:

• A novel mixed-signal NCA is built based on the emerg-
ing memristor technology, offering orders of magnitude
performance and power efficiency improvement w.r.t.
general-purpose microprocessors;

• A hierarchical MBC array structure that can be easily
configured to different ANN topologies is designed;

• A mixed-signal interconnection network (M-Net) is pro-
posed to conduct the data migration in analog form among
the MBC arrays. The attempt is to minimize the signal
conversion between digital and analog forms, and there-
fore reduce the performance and power overheads;

• An inline calibration scheme is also developed to ensure
the computation accuracy degradation incurred by the
memristor resistance shifting within an acceptable range;

• The performance and accuracy of NCA are thoroughly
analyzed by examining various design parameters.

A set of prevailing ANN benchmarks is adopted in the eval-
uation of Harmonica. Multilayer perception (MLP) and auto-
associative memory (AAM) are used to represent two typical
tradeoffs between the computation accuracy and performance.
As shown in experimental results, Harmonica with AAM (MLP)
implementation can achieve on average 27.06× (178.41×) per-
formance speedup and 25.23× (184.24×) energy saving over
the seven selected ANN applications, compared to the base-
line CPU. Furthermore, the comparisons with a digital neural
processing unit (D-NPU) [13] and a conventional mixed-signal
accelerator design show Harmonica performs the best bal-
ance among performance, power consumption and computing
accuracy. Besides, the inline calibration scheme successfully
suppresses the influence of memristor resistance shifting on
the NCA computation accuracy with less than 0.41% (0.86%)
performance overhead in MLP (AAM) implementation.

II. PRELIMINARY

A. Artificial Neural Network (ANN)

There are two canonical ANNs are considered in this
work, including 1) MLP with high computation efficiency and
2) AAM with high computation accuracy.

Fig. 1. (a) A 3-layer MLP. (b) A 1-layer AAM with 4 neurons.

MLP is a type of feedforward ANNs that have been widely
studied in the research of approximate computing [18]. MLP
maps a set of input data to its outputs through multiple layers
of nodes in a directed graph. Every layer in the MLP is fully
connected to the next layer. An example of 3-layer MLP is
shown in Fig. 1(a): The input nodes collect and convey the
input bits to the next layer through many weighted connections.
A weighted connection (or synapse) is associated with a pre-
set weight by which the carried signal can be modulated.
Except for the input nodes, each of other nodes in the network
represents a neuron with a nonlinear activation function, e.g., a
sigmoid function f(x) = 1/1 + ex on the sum of all the signals
that the node receives.

AAM is often utilized for pattern recognition and completion
[19]. A Hopfield network acting as an AAM is illustrated
in Fig. 1(b). Each pair of neurons in the network are linked
through a weighted connection. An input vector will go through
the network iteratively and converge to the closest version of the
vector pattern, offering good immunity to noises or other ran-
domness in the computation. Generally, the non-iterative MLP
executes faster than the iterative AAM; but AAM is much more
dependable because of its inherent fault tolerance characteristic.

As a major function of ANN, training decides the weight
of each connection and makes the ANN able to properly
respond to unseen data with desired outputs. In this work, back-
propagation and delta rule [20] are adopted to perform the
training of MLP and AAM. Our architecture-level contributions
aims at the ANN testing/computation process by assuming the
NCA has been trained by supervised algorithms for specific
applications. The configuration of NCAs does not require fur-
ther modification during the computation except for the inline
calibration, which will be discussed in Section IV-C.

B. Memristor and Memristor-Based Crossbar (MBC)

As defined and predicted by Professor Leon Chua, memristor
is regarded as the 4th fundamental electrical element [21]. The
resistance (memristance) of a memristor is uniquely determined
by the electric charge/flux through the device. Theoretically, the
resistance of a memristor can be tuned to any state between the
lowest and highest conductance limits by applying voltages
with different strength and/or duration [22], [23]. Compared to
other popular nonvolatile memory devices, e.g., phase change
memory [24] and spin-transfer-toque magnetic-tunneling-
junction [25], memristor offers the highest integration density
(only 4F 2), the largest Rh/RL ratio (≈ 800 based on [26]),



LIU et al.: HARMONICA: A FRAMEWORK OF HETEROGENEOUS COMPUTING SYSTEMS 619

Fig. 2. (a) A 4 × 4 MBC array. (b) The neuron logic.

and bipolar programmability that greatly improve the training
efficiency of the NCA. A promising multi resistance state
memristor device has been recently demonstrated to perform
7-bit programming resolution with a carefully designed tuning
mechanism [27].

The unique property of recording historical profile of electric
excitation makes memristor behave similar to the biological
synapse [12], [28]. This similarity inspired many studies on
realization of synapse with memristor device. For example,
the capability of being programmed by spike timing dependent
plasticity (STDP) learning rule allow researchers to use mem-
ristor to implement a spiking networks [12].

Fig. 2 shows the structure of an MBC that fully connects two
adjacent layers of neurons in an MLP. The relationship between
input voltages (Vi) and output voltages (Vo) are define by the
resistances of all memristors in an MBC, and can be can be
described by

Vo = C×Vi. (1)

Here C is the conductances of all memristor devices, which
is often defined as “weight matrix.” In actual hardware, the
operation defined by (1) will be affected by operational noises,
e.g., memristor resistance variation and voltage drop [29] on
the connection wires. In order to implement an MLP with
expected feed-forward function, a series of MBCs need to
be connected. A large amount of linear algebra can be then
performed in parallel as there is little dependency between the
data within the same layer. In [30], Hu et al. proposed using
MBCs to perform vector-matrix multiplication in analog form
with minimum impact from sneak path. In this work, similar
design is adopted to implement the computing core of the
proposed ANN accelerator.

III. HARMONICA SYSTEM OVERVIEW

Kuon et al. forecasted the rising of analog neuromorphic
computing circuitry because of its great potential in energy
efficiency and computation density [31]. In Harmonica, the ac-
celeration of ANN computation is performed in a mixed-signal
neuromorphic computing accelerator (NCA) based on the
MBC structure presented in Section II-B. The synapse weights
in an ANN are represented by the resistances of the memristors.
Routers are introduced to connect the MBCs and conduct the
topological reconfiguration of the NCA (e.g., MLP and AAM).

Fig. 3 illustrates the proposed Harmonica architecture. In
each processor core, the general-purpose pipeline is augmented
with a NCA. Within the territory of the NCA, the computation
as well as the data transportation all remain in analog form.

Fig. 3. Overview of Harmonica architecture.

A mixed-signal interconnection network (M-Net) is responsible
for the routing of the analog computational data and the digital
control signal. Digital-analog/analog-digital (DA/AD) conver-
sion is performed on the data from/to the general-purpose
pipeline at the boundary of the NCA to accommodate different
computation formats. Such a design minimizes the performance
and energy overheads of DA/AD conversions and maximizes
the reconfigurability of the NCA.

A compilation flow similar to [13] is utilized to generate a
NCA-aware binary of which the target ANN code is executed
in the NCA. Based on the characteristics and complexity of the
target codes, the ANN implementation topology, including the
number of layers and the number of neurons at each layer, is
decided offline. The initial training of the NCA for specific
applications is also completed offline. Considering that the
resistance states of the memristors could gradually drift during
the NCA computation [32], we propose an inline calibration
scheme to periodically refresh the MBCs and calibrate the
computation accuracy of the NCA by finely calibrate the MBCs
with a subset of the training vectors.

IV. THE NCA ARCHITECTURE

Memristor-based neuromorphic computing accelerator
(NCA) is the key component enabling the high performance
and energy efficiency of Harmonica. This section presents
the hardware design details of the NCA. We first propose
a hierarchical structure of reconfigurable MBC arrays to
support both MLP and AAM implementations. The necessity
of introducing mixed-signal interconnect network (M-Net) is
discussed and the implementation details are also given. An
inline calibration scheme is then proposed to ensure run-time
execution accuracy of the NCA. Finally, the interaction between
the CPU and the NCA is discussed at the end of this section.

A. Hierarchical Structure of MBC Arrays

Fig. 3 shows the hierarchical MBC array structure in
the NCA. We adopt the metamorphous centralized mesh
(MCMesh) topology to build the interconnection network for
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Fig. 4. The mixed-signal router design: (a) Architecture. (b) The digital
controller.

supporting data migration among MBC arrays as it has less
cost than most of the popular network topologies in multicore
systems [33]. NCA consists of four MBC groups, each of which
has four MBC arrays connected through a group router. An
MBC array consists of four sub-arrays to present the 4 combi-
nations of the multiplication of the signed input signal and the
singed weight as described in [34]. In this work, the optimized
MBC design has 64 rows and 64 columns. As we shall show in
Section VI-D, such a design offers a good compromise between
performance and reliability. Furthermore, since 80% of learning
applications have no more than 60 neurons in the input layer
[11], this MBC design is sufficient for the majority of ANN
applications. Meanwhile, with the interconnection network,
larger applications can be supported by being partitioned into
multiple MBC arrays for execution.

Without losing generality, we use a connection matrix Mn×m

to explain how a connection matrix can be mapped into the
MBC arrays. Here n and m represent the numbers of neurons
in the input and output layers of the connection matrix, re-
spectively. If max(n,m) ≤ 64, Mn×m can be directly mapped
to a 64 × 64 MBC array; if 64 < n ≤ 128 and m ≤ 64 or if
64 < m ≤ 128 and n ≤ 64,Mn×m can be mapped to two MBC
arrays; an even larger Mn×m need be partitioned into more
MBC arrays in different MBC groups.

B. Mixed-Signal Interconnection Network (M-Net)

1) Digital, Analog, or Mixed-Signal: The signal transmis-
sion in the NCA can be conducted in either digital or analog
form. Digital signal can support very high-frequency data trans-
fer. However, as the computation performed by MBC arrays is
in analog form, DA/AD conversions are necessary at the inter-
face between each MBC array and the connected router if the
signal transmission is in digital form. Such a design inevitably
harms the signal precision and introduces significant area and
power overheads. In our NCA design, the small footprint of
MBC arrays keeps the data communication distance less than
0.53 mm, which indeed allows the data to be transferred in ana-
log form. Moreover, the impact of signal distortion generated
during the signal transmission can be tolerated by the high fault
resistance of ANN.

We design a mixed-signal interconnection network (M-Net)
to assist the computation and data migration in the MBC arrays.
In M-Net, the computational data is maintained in analog form,

Fig. 5. The analog component design in the mixed-signal router: (a) The
transmission path. (b) The crossbar-based multiplexer.

while the control and routing information is transferred in dig-
ital form to simplify the communication and synchronization
between the CPU and the NCA. More specifically, the signal
communication is conducted through routers, each of which is
divided into digital control logic and analog data path.

Fig. 3 also shows the centralized hierarchical MBC array
architecture where the data communication is performed at both
inter-group and intra-group levels. The central router connects
to the CPU and all the group routers. Each group router talks
to the four local MBC arrays within the group, three other
group routers, and the central router. Such a centralized scheme
maximizes the number of parties that each router communicates
with, minimizes the effective communication distance and the
hop count, mitigates the bottleneck effect of the central router,
and simplifies the control complexity.

2) Router Design: The group router design is depicted in
Fig. 4(a). The analog data path [shown in Fig. 5(a) and (b)]
is composed of 8 input/output ports, input buffers and data
multiplexer/switches. The 8 input/output ports are connected
with 4 local MBC arrays, 3 other group routers, and the CPU,
in which 64 analog signals in each port corresponding to a set
of data as one package. We adopt a switched-op-amp (SOP)
based sample-and-hold (S/H) circuit (see Fig. 5(a) [35]) as an
analog buffer to hold the analog data until the data is ready
to be transferred to the next destined MBC array or router.
Such a design substantially minimizes the nonlinear distortion
of the stored analog data caused by charge injection and clock
feedthrough error, maintaining a good signal quality [35]. More
discussions are be found in Section V-A.

Fig. 4(b) shows the digital controller design in a router.
Like traditional router in CMesh NoC, the routers in NCA
are responsible for both data transmission and routing info
processing. A work queue (WQ) is introduced to monitor the
MBC array computation status and produce the routing info for
each data packet. It also controls the routing path configuration
in the multiplexer through a switch allocator (SA). Each WQ
entry is associated with a multi-bit computing counter (CO)
to monitor the computation status of a local MBC array by
counting the number of the executed loops. We also introduce
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Fig. 6. Routing information format.

a multi-bit computing counter (CO) to count the computation
time for an MBC array, a packet generator (PG) to produce the
routing information for the next data transmission, and a Status
recorder (SR) to broadcast the status of the data path to the
connected router.

The central router design is similar to that of the group router
except that the central router is only responsible for establishing
the data paths between the CPU and the four group routers.
Although the group routers work independently, all the MBC
arrays can perform computation simultaneously.

3) Routing Management: We design a special routing infor-
mation package for data routing in NCA to support a variety
of ANN implementations (e.g., AAM and MLP). The routing
information package consists of 1-bit valid bit (V ), 1-bit rout-
ing field (H), address field (Addri), and looping field (Loop).
Since a NCA consists of 4 MBC groups and each group has
4 MBC arrays, the address field contains 5 bits: Addri[1 : 0]
represents the MBC group, Addri[3:2] identifies the MBC array
within the group, and Addri[4] indicates CPU or NCA. The
looping field contains 7 bits to support up to 128 loops corre-
sponding to the requirement of the seven ANN benchmarks.

Bit H denotes the type of ANN implementations (MLP
or AAM) and the composition of routing information. The
MLP implementation only has address field. The address field
indicates the path of the data travelling in the NCA when MLP
implementation is selected. The AAM implementation requires
both address and looping fields to guide the destined MBC array
and the number of computation looping, respectively. CPU
address is always at the end of the routing information package,
completing the data transmission in NCA.

C. MBC Inline Calibration

Ideally, MBCs are programmed in training process by apply-
ing proper electrical current/voltage. During NCA operations,
only small computation signals go through the memristors.
However, such small signals can still disturb the memristor
resistance states, resulting in the deviation of synapse weights
from the target values. Most importantly, such memristor resis-
tance shifting accumulates over time and eventually leads to the
degradation of NCA computation accuracy.

We studied the memristor resistance shift when executing
benchmark connect-4 in the NCA with MLP and AAM imple-
mentations, respectively. Here the memristor resistance shift is
measured by the relative deviation, which denotes the ratio
between the resistance change and the originally trained value.
The simulation results are summarized in Fig. 7, where x−axis
represents the number of NCA runs and y−axis represents
the accumulated percentage of the memristors on the crossbar
with a relative resistance deviation > 10%. As we can observe,
the time-varying inputs in MLP implementation randomize the
memristor resistance shift and slow down its accumulation.
In AAM implementation, however, the iterative computations

Fig. 7. The memristor resistance drifting when executing connect-4 in (a) MLP
or (b) AAM implementation.

Fig. 8. A D-NPU design built with digital PEs in [13].

under the consistent inputs cause a fast accumulation of the
memristor resistance shift.

We propose an inline calibration scheme as follows: if the
resistances of an MBC are too far from the originally trained
values to accurately perform the computation, a set of training
vectors will be applied to finely tune the resistance of the MBC
back. Although the memristor resistance is not easy to converge
to the target level which requires iterative programming with
feedback control [36], the inline calibration can be conducted
anytime between executions of two NCA instructions and
hence, has no impact on the continuity of the NCA operation.
During a calibration process, the NCA outputs are used for only
fine-training purpose (e.g., utilizing Delta rule) and will not be
sent to the CPU.

On the one hand, a reasonable calibration interval shall be
maintained to avoid unnecessary MBC fine tuning. On the
other hand, prolonging the interval between two calibrations
does not necessarily reduce the overall calibration overhead: a
longer interval potentially raises the memristor resistance shift
and hence increases the required training time. More relevant
discussions can be found in Section VI-C.

D. Interaction Between CPU and NCA

We extend the instruction set architecture (ISA) by adding
special NCA instructions to control the NCA in Harmonica.
A NCA-aware compiler is developed to compile the target
codes into two types of NCA instructions: 1) The NCA I/O
instructions that are used to supply inputs to the NCA and also
collect its outputs; and 2) the NCA configuration instructions
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TABLE I
THE EXTENDED NCA INSTRUCTIONS IN ISA

TABLE II
THE DESIGN PARAMETERS OF NCA COMPONENTS

that setup data path through MBC arrays. Detailed definitions
of these extended NCA instructions are listed in Table I. The
parameters of ANN, including the number of inputs/outputs,
layers and neurons, are imported to the compilation and assist
the generation of NCA configuration instructions.

The NCA works as a complementary functional unit to the
CPU and accelerates ANN-relevant executions of the target
codes. Fig. 3 illustrates how NCA interacts with the CPU at dif-
ferent pipeline stages: At issue stage, setp instruction reads the
register file and sets up the data routing in the NCA. launch in-
struction fires the NCA execution at execute stage. deq instruc-
tion retrieves the output data from the NCA at execute stage
and writes them to the register files at write back stage. movd
instruction feeds the input data to the NCA at write back stage.

All the interactions between the NCA and the CPU go
through the three FIFO queues of the NCA, which are also
shown in Fig. 3: In-queue buffers the data fed by movd in-
struction; Out-queue buffers the data that are produced by the
NCA and wait to be fetched by deq instruction; Config-queue
buffers the routing information given by setp instruction. The
data popped from In-queue are converted to analog signals
before being routed to the destined MBC array. Similarly, the
output analog signals from the NCA should be converted to
digital form before being captured by Out-queue.

V. EXPERIMENTAL METHODOLOGY

A. Circuit Level Implementation and Simulation

The adopted Verilog-A Memristor model is based on the
device parameters from [26], which have been scaled to 65 nm
technology according to the resistance and area relation in [37].
The memristor material is W/SiGe/a-Si/Ag and the read current
applied on the memristor is 2 A. All the NCA circuit com-
ponents, including MBC, analog buffer, switch, sum amplifier,
sigmoid circuit, etc., are designed with SMIC 65 nm technology
[38]. We use a 4-bit flash analog-digital converter (ADC) and
a 4-bit current steering digital-analog converter (DAC) [39] to
achieve a fast data transfer. The resolution is decided by the re-
quirement of the selected benchmarks. As depicted in Fig. 5(a),

an MBC array receives input data from the DAC and sends the
computation result to the ADC. The DAC at the input side is
coupled with a cascoded current amplifier to boost the output
impedance. At the output side of the MBC array, a signal passes
through an amplifier (Amp) and a sample-and-hold (S/H) be-
fore reaching the ADC. The Amp boosts up the input signal to
match the ADC input window and performs correlated-double-
sampling (CDS) to mitigate the DC offset caused by mismatch
[40], while the S/H ensures a stable input during the analog-
to-digital conversion. The area of all the analog circuits are
extracted from Cadence Virtuoso [41] simulations while that of
the digital component is estimated based on Booksim and sum-
marized in Table II. As most of the NCA is occupied by routers,
we build an analog signal transmission model to simulate the
longest transmissible distance between the routers. The result
shows that a voltage swing between 0 V and 1 V is safe to be
transferred from one output port of a router to one input port of a
connected router in 0.5 ns, after considering signal fluctuations.
We also consider the possible noises produced in NCA, 1/f
noise generated in the amplifier, thermal noise produced in
the memristor and the amplifier, and quantization noise caused
by the 4-bit ADC. After evaluations, we find the quantization
noise, within 18 mV, dominates in these three types of noises
and it is still negligible compared to the resolution of the 4-bit
DAC/ADC, 62.5 mV. The device mismatch can be calibrated by
a predetermined look-up table like [42]. In addition, the signal
distortion introduced by MBC arrays is assumed to follow
a normal distribution. The detailed discussion of the signal
distortion impact can be found in Section VI-B.

Monte-Carlo simulations are run for reliability analysis by
assuming both the memristor resistance and the analog inputs
follow normal distributions. Since the initial memristor resis-
tance of an MBC sample is decided by the offline training, it
is fixed in each Monte-Carlo simulation. Contrarily, the signal
fluctuation is generated on-the-fly during the NCA execution.

B. Benchmarks

As shown in Table III, seven representative ANN bench-
marks are selected in our experiment.1 All the selected bench-
marks can be implemented using MLP or AAM models. The
algorithm execution quality is measured by the classification
rate. The implementation details and the initial training errors
of the selected benchmarks using MLP and AAM model are
also presented in Table III. These benchmarks naturally come
with training and testing inputs. Hence, we are able to further
divide the training vector into an actual training set and a so-
called validation set, which is used to evaluate the quality of a
network. ANN topology for each application is optimized based
on FANN library [46] by comprising training time, computation
accuracy, and network size. The enhanced device variation and
signal noise aware MBC training scheme [20] is utilized to
ensure training robustness. The mean square error (MSE) is
applied to evaluate the reliability of the NCA.

1The image of MNIST is compressed from 28 × 28 pixels into 8 × 8 pixels
and the gray scale is reduced from 256 to 16.
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TABLE III
THE DESCRIPTION AND IMPLEMENTATION DETAILS OF THE SEVEN SELECTED BENCHMARKS

TABLE IV
THE SIMULATION PLATFORMS

C. Architecture Level Simulation Setup

We add a cycle-accurate NCA module in MacSim [47] and
configure the CPU as Intel Atom [48]. The NCA-supported
functions within a target code are identified and translated to
NCA instructions. During trace generation, the modified PIN
tool generates the simulation trace by replacing the NCA-
supported functions with the corresponding NCA instructions
according to the selected ANN topology in the specific appli-
cation. For the benchmarks that we evaluated, averagely 99%
of execution time is spent on running the target code. Thus, we
only consider the execution time of the target codes instead of
the whole program. All the parameters are depicted in Table IV.

We obtain the energy consumption of NCA by recording the
execution during NCA computation and calculating based on
the circuit level simulation result. The CPU’s energy consump-
tion is generated by McPAT [49]. The data traffic and the power
consumption of both the M-Net and the D-Net are simulated by
a modified booksim simulator [50].

D. Implementation of Other Design Alternatives

We also compare the NCA-based design with other ANN-
specific accelerator designs. A digital accelerator design—
processing elements (PEs) from [13] is evaluated by scaling
the input/output/weight buffer of each PE to the level of an
MBC array. Through a digital NoC (namely, D-Net) that has
the same throughput as our proposed M-Net, 16 PEs are con-
nected to construct the digital neural processing unit (D-NPU).
Table IV shows the configuration of the D-NPU.

We also conduct an alternative design to explore the efficacy
of M-Net by connecting MBC arrays with D-Net instead of
M-Net. The MBC arrays remain as the computing units. D-Net
keeps the same topology and function as M-Net by transmitting
both data and control signals in digital format. To minimize the
design cost of data bus while maintaining the same bandwidth,
digital data can be packed and transmitted at a higher frequency.

The evaluation in booksim [50] shows that operating the D-Net
with input buffers at 1.332 GHz offers the similar transmission
capacity as M-Net. The boundary of digital and analog domains
moves from CPU ↔NCA in Harmonica to D-Net ↔MBC
arrays in such a “MBCs+D-Net” design. DA/AD conversions
are frequently performed before/after every MBC computation
and become indispensable. Compared to the M-Net, digital
transmission on the D-Net suppresses signal precision loss and
simplifies the router design. However, the increased number of
DA/AD converters dramatically increases the design area and
power consumption of the non-computing parts, as illustrated
in Table II.

VI. EXPERIMENTAL RESULTS

A. MBC Training Effort

The computation accuracy and energy consumption of the
NCA are greatly influenced by the precision of the input signal
and the training effort which can be measured by the size of
training data set used in MBC array training. The resolutions
of the computation data are naturally provided in the selected
benchmarks and all less than or equal to 4-bit. Thus, we fix the
DAC/ADC resolution to 4-bit and focus on the impact of the
training effort in the following evaluations.

For a specific benchmark, the computation accuracy can be
improved by increasing the size of training data set. However,
the computation accuracy will saturate when the number of the
training data reaches a threshold, i.e., the saturated training data
set size. We compare the computation accuracy of MLP and
AAM under different training efforts as shown in Fig. 9(a) and
(b), respectively. Here 100% training effort denotes the case that
the saturated training data is used and all the classification rates
are normalized to the ideal value achieved by the CPU with
32-bit floating point precision. As we can see, applying 100%
training effort will produce a normalized classification rate very
close to the ideal case. The classification rate decreases as
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Fig. 9. The normalized classification rates of (a) MLP and (b) AAM under
different MBC training efforts. The DAC/ADC resolution is set to 4-bit.

the training effort reduces due to the degraded training accu-
racy. Compared to AAM which benefiting from the iterative
computation, the classification rate of MLP decreases more
obliviously when reducing the training effort. In particular, the
classification rate reduces more prominently in the benchmarks
that have a large scale network, such as gene, mnist and mush-
room. When the training effort is set to 70%, the normalized
classification rate is maintained above 86% for all benchmarks.
Further reducing the size of training data set will quickly dete-
riorate the NCA computation accuracy. For the same reason,
AAM shows a high tolerance to the degradation of training
effort. In the following experiments, we adopt the training effort
of 70% which provide a sufficient accuracy in both MLP and
AAM implementations with negligible performance and energy
overheads.

B. Impact of Device Variations and Signal Fluctuations

Fig. 10 shows the impacts of device variations and signal
fluctuations on the computation accuracy of NCAs. Here σp

represents the deviation of memristor resistance introduced by
process variations. σf is the deviation of the analog signal
magnitude, which are generated in DA/AD conversion, rout-
ing/buffering, sum-amplifier, and sigmoid function. As pointed
out in [20], σf has greater impact on the computation accuracy
of MBCs compared to σp. To be conservative, we use very
pessimistic settings of σf to cover even the extreme cases in
all simulations.

As the variations increase, the classification rate of the NCA
generally degrades as expected though each benchmarks react
to the change of the variations differently. Interestingly, the
computation accuracy of mnist degrades slightly faster than
other benchmarks, indicating a less robust ANN topology.
Nonetheless, both MLP and AAM can maintain an acceptable
computation accuracy when σp and σf are within a realistic

Fig. 10. The impact of device variations and signal fluctuations on computation
accuracy: (a) MLP, (b) AAM.

Fig. 11. The calibration overhead of (a) MLP and (b) AAM.

range, i.e., σp = 0.05 and σf = 0.1. Again, AAM implementa-
tion demonstrates better reliability than MLP. After this section,
all the simulations are performed at a nominal condition. How-
ever, by following the same flow that generates Fig. 10, the
relevant statistical analysis can be easily conducted.

C. Design Tradeoff of Inline Calibration

We define the calibration overhead (OHcal) to measure the
impact of the inline calibration scheme on NCA performance
within a calibrated execution period as

OHcal =
Tcal

Titvl + Tcal
. (2)
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Fig. 12. The normalized NCA performance and energy at different MBC sizes
in (a), (e) MLP and (b), (f) AAM implementations. The results of 64 × 64 MBC
is used as normalization baseline. The classification rate at different MBC sizes
in (c) MLP and (d) AAM. Results are normalized to the ideal case defined in
Section VI-A.

Here Titvl represents the execution time period of the NCA
between two calibrations. Tcal is the time spent on the NCA
calibration. As we discussed in Section IV-C, a longerTitvl does
not necessarily produce a smaller overhead.

Fig. 11 summarizes the OHcal of all benchmarks with two
ANN implementations when the Titvl varies from 1000 to
100 000 NCA runs. The inline calibration is conducted at the
end of every Titvl to ensure the normalized classification rate
of the NCA above a predetermined threshold, i.e., 84% for
MLP and 90% for AAM. In both ANN implementations, the
minimum OHcal is achieved between 10 000 ∼ 50 000 NCA
runs, depending on specific applications. The calibration time
of AAM is longer than that of MLP due to its severer memristor
resistance drift after the same number of NCA runs. In the
following simulations, we choose a Titvl of 20 000 NCA runs,
which results in negligible calibration overhead in both ANN
implementations (i.e., < 0.41% in MLP and < 0.86% in AAM,
respectively).

D. Impact of MBC Sizes

A larger MBC array not only promotes the computation
efficiency of the NCA by running more calculations at the same
time but also decreases the latency and energy overhead of
routing signals among MBC arrays when the scale of the ANN
is too large to fit in one MBC array. However, the computation
accuracy of a larger MBC array may be decreased due to
process variations and signal fluctuations.

Fig. 12 shows the experiment results of the execution time, the
classification rate and the energy consumption of Harmonica
with different MBC sizes. As shown in Fig. 12(a), (b), fol-
lowing the increase of the MBC size, the system performance

Fig. 13. The performance speedup, energy efficiency and classification rate of
three ANN accelerator designs with MLP (a), (c), (e), and AAM (b), (d), (f)
implementations.

keeps improving as long as the size of the ANN is larger than
the MBC. Further enlarging MBC, however, does not benefit
the NCA performance. Although the energy consumption is
reduced when the MBC size decreases due to the less data
routing among M-Net [see Fig. 12(e), (f)], the computation
accuracy keeps dropping down due to process variations and
signal fluctuations [see Fig. 12(c), (d)]. Hence, we chose 64 ×
64 MBCs as the default design in our simulations to balance
between NCA computation efficiency and accuracy for the
selected benchmarks.

E. Comparison to Other Design Alternatives

We evaluate the performance, energy efficiency, and clas-
sification rate of the three ANN accelerator designs: D-NPU,
MBC+D-Net, and NCA, in the seven selected benchmarks,
as shown in Fig. 13. The performance and energy efficiency
are normalized to the baseline CPU execution, that is, running
the MLP/AAM implementation exclusively on the CPU with
FANN library. The results show that all the three ANN acceler-
ators dramatically speedup the execution of the selected ANN
benchmarks with slight degradation in computation accuracy
w.r.t. the baseline CPU.

As shown in Fig. 13(a) and (b), the geometric mean speedup
(GMS) achieved by D-NPU in digital format is 11.9× or 1.7×
for MLP or AAM implementation, respectively. As a PE can
process only one multiply-add operation per cycle, the com-
putation bandwidth of D-NPU is relatively limited compared
to the other two designs. MBCs+D-Nets utilizes MBC arrays
for analog computation, which dramatically boosts the GMS of
its MLP and AAM implementations to 117.2× and 20.1×, re-
spectively. Compared with MBCs+D-Nets, the proposed NCA
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minimizes the costly DA/AD conversions and hence, demon-
strates even higher speedup: The corresponding GMS values
further rise to 178.41× (MLP) and 27.06× (AAM). In general,
MLP achieves much faster execution than AAM because all the
inputs traverse the network only once.

The energy efficiency result of each design is shown in
Fig. 13(c) and (d), which follow the trend similar to the cor-
responding performance speedup. Compared to the baseline
CPU architecture, 184.24× and 25.23× average energy sav-
ings are achieved by MLP and AAM, respectively. The en-
ergy efficiency of NCA is more than 2× higher than that of
MBC+D-Net due to the dramatically reduced DA/AD con-
version overhead. Note that in MLP, the energy efficiency of
D-NPU under MNIST is higher than that of MBCs+D-Net.
It is because the partitioning of MNIST into multiple MBCs
introduces considerably large amount of data traffic among
the MBCs and hence, significantly raises the AD/DA energy
consumption in MBCs+D-Net.

Fig. 13(e) and (f) illustrate the classification rates obtained
from each designs. In MLP, the accuracy of the NCA is the
lowest among all the designs. The computation accuracy is
enhanced in MBC+D-Net by utilizing digital network for signal
transmission. As expected, the full digital implementation of
D-NPU achieves the highest classification rate. In AAM, the
three designs all achieve very high (i.e., 92%) and close accu-
racy in all benchmarks, say, with a variation less than 2.8%.
This is because AAM can automatically compensate the ad-
verse impact of the less reliable executions in each loop on the
computation accuracy. As shown in Fig. 13(a) and (b), com-
pared to MBC+D-Net, the performance speedup achieved by
NCA in AAM implementation is only 1.3×, which is less than
the 1.5× speedup achieved in MLP implementation.

In short, NCA exhibits extremely high performance and
power efficiency while well maintains the computation accu-
racy within an acceptable level. Moreover, MLP and AAM
implementations present different tradeoffs between the com-
putation efficiency and accuracy, offering valuable design flex-
ibility adaptive to the nature of the particular applications.

VII. RELATED WORKS

Artificial neural network (ANN) is recently gaining con-
siderable attentions in computer architecture and solid state
circuit societies [51], [52] as a promising candidate to con-
quer the well-known von Neumann bottleneck. Many stud-
ies have been conducted on the programming models for
the ANN-based computing platform [53] and neuromorphic
computing [54], which is referred to the VLSI implemen-
tation of ANN. To bridge the gap between ANN algorithm
and its realization on microarchitectures, Hashmi et al. [53]
proposed a neuromorphic instruction set architecture (ISA)
to extract the representation of ANN and designed a run-
time environment to generate the neuromorphic codes for
different computing platforms, e.g., CPU, GPU, and Boolean
logics. In this work, we leverage the advanced memristor
crossbar technology to build Harmonica—a mixed-signal het-
erogeneous computing framework which offers much higher
computing and power efficiency in ANN and learning appli-
cations than the system with conventional CMOS-only ANN
accelerators.

Harmonica is able to perform not only ANN computations
but also approximate computations, similar to the proposal
in [13], [55]. Harmonica can be dynamically reconfigured
to construct different ANN topologies, outperforming other
digital ANN accelerators with time-multiplexed computation
structure. Also, compared to conventional mixed-signal designs
[56] with CMOS-based computing components, Harmonica
demonstrates very attractive performance/power/area efficiency
by utilizing the novel designs of memristor-based computing
and analog routing scheme. Meanwhile, the computation ac-
curacy of Harmonica is well maintained by our robust designs
(e.g., M-Net) and inline calibration scheme, as demonstrated in
the experiments.

VIII. CONCLUSION AND FUTURE WORKS

In this work, we propose a heterogeneous computing frame-
work named Harmonica, which contains a memristor-based
neuromorphic computing accelerator (NCA) tightly coupled
with the general-purpose pipeline. Harmonica accomplishes
177.67× (27.2×) performance speedup and 184.71× (25.18×)
energy reduction on average in the seven simulated benchmarks
in MLP (AAM) implementations. The high computation and
energy efficiency mainly come from: 1) the high-throughput
of the mixed-signal NCA computation; 2) the excellent re-
configurability of the hierarchical memristor crossbar array
structure; 3) the low data transmission overhead on the mixed-
signal interconnection network (M-Net); and 4) the concise
coordination interface between the general-purpose pipeline
and the NCA. An inline calibration scheme is also developed
to control the run-time NCA computation accuracy degradation
incurred by memristor resistance shift. Besides the presented
MLP and AAM networks, the NCA structure can construct
other types of ANN by reconfiguring the M-Net and properly
migrating data among the MBC arrays.
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