
Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network

Jiantao Qiu1,2, Jie Wang1, Song Yao1,2, Kaiyuan Guo1,2, Boxun Li1,2,Erjin Zhou1,
Jincheng Yu1,2, Tianqi Tang1,2, Ningyi Xu3, Sen Song2,4, Yu Wang1,2,

and Huazhong Yang1,2

1Department of Electronic Engineering, Tsinghua University
1Tsinghua National Laboratory for Information Science and Technology
2Center for Brain-Inspired Computing Research, Tsinghua University

3Hardware Computing Group, Microsoft Research Asia 4School of Medicine, Tsinghua University
{songyao, yu-wang}@mail.tsinghua.edu.cn

ABSTRACT
In recent years, Convolutional Neural Network (CNN) based

methods have achieved great success in a large number of appli-
cations and have been among the most powerful and widely used
techniques in computer vision. However, CNN-based methods are
computational-intensive and resource-consuming, and thus are hard
to be integrated into embedded systems such as smart phones, smart
glasses, and robots. FPGA is one of the most promising platforms
for accelerating CNN, but the limited bandwidth and on-chip mem-
ory size limit the performance of FPGA accelerator for CNN.

In this paper, we go deeper with the embedded FPGA platfor-
m on accelerating CNNs and propose a CNN accelerator design
on embedded FPGA for Image-Net large-scale image classifica-
tion. We first present an in-depth analysis of state-of-the-art C-
NN models and show that Convolutional layers are computational-
centric and Fully-Connected layers are memory-centric. Then the
dynamic-precision data quantization method and a convolver de-
sign that is efficient for all layer types in CNN are proposed to
improve the bandwidth and resource utilization. Results show that
only 0.4% accuracy loss is introduced by our data quantization flow
for the very deep VGG16 model when 8/4-bit quantization is used.
A data arrangement method is proposed to further ensure a high uti-
lization of the external memory bandwidth. Finally, a state-of-the-
art CNN, VGG16-SVD, is implemented on an embedded FPGA
platform as a case study. VGG16-SVD is the largest and most ac-
curate network that has been implemented on FPGA end-to-end so
far. The system on Xilinx Zynq ZC706 board achieves a frame rate
at 4.45 fps with the top-5 accuracy of 86.66% using 16-bit quanti-
zation. The average performance of Convolutional layers and the
full CNN is 187.8 GOP/s and 137.0 GOP/s under 150MHz working
frequency, which outperforms previous approaches significantly.
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1. INTRODUCTION
Image classification is a basic problem in computer vision (CV).

In recent years, Convolutional Neural Network (CNN) has led to
great advances in image classification accuracy. In Image-Net Large-
Scale Vision Recognition Challenge (ILSVRC) 2012 [1], Krizhevsky
et al. showed that CNN had great power by achieving the top-5
accuracy of 84.7% in classification task [2], which was significant-
ly higher than other traditional image classification methods. In
the following years, the accuracy has been improved to 88.8% [3],
93.3% [4], and 96.4% [5] in ILSVRC 2013, 2014, and 2015.

While achieving state-of-the-art performance, CNN-based meth-
ods demand much more computations and memory resources com-
pared with traditional methods. In this manner, most CNN-based
methods have to depend on large servers. However, there has been
a non-negligible market for embedded systems which demands ca-
pabilities of high-accuracy and real-time object recognition, such
as auto-piloted car and robots. But for embedded systems, the lim-
ited battery and resources are serious problems.

To address this problem, many researchers have proposed vari-
ous CNN acceleration techniques from either computing or memo-
ry access aspects [6, 7, 8, 9, 10, 11, 12, 13]. However, most of pre-
vious techniques only considered small CNN models such as the
5-layer LeNet for simple tasks such as MNIST handwritten dig-
its recognition [14]. State-of-the-art CNN models for large-scale
image classification have extremely high complexity, and thus can
only be stored in external memory. In this manner, memory band-
width becomes a serious problem for accelerating CNNs especially
for embedded systems. Besides, previous research focused on ac-
celerating Convolutional (CONV) layers, while the Fully-Connected
(FC) layers were not well studied. Consequently, we need to go
deeper with the embedded FPGA platform to address these prob-
lems.

In this paper, we make a deep investigation on how to deploy
full CNNs to accelerators on embedded FPGA platform. A CN-
N accelerator for Image-Net large-scale classification is proposed,
which can execute the very deep VGG16-SVD model at a speed of
4.45 fps. Specifically, this paper makes the following contributions.

• We present an in-depth analysis of state-of-the-art CNN mod-
els for large-scale image classification. We show that state-
of-the-art CNN models are extremely complex (for example,
the VGG16 model has 138 million weights and needs over
30 GOPs), CONV layers are computational-centric, and FC
layers are memory-centric.

• For the first time, we present an automatic flow for dynamic-
precision data quantization and explore various data quan-
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Figure 1: A typical CNN structure from the feature map per-
spective.

tization configurations. Results show that only a 0.4% ac-
curacy loss is introduced with VGG16 model under 8/4 bit
dynamic-precision quantization. Specific hardware is also
designed to support dynamic-precision data quantization.

• We show that the performance of FC layers is mainly limit-
ed by the memory bandwidth on embedded FPGA platform,
which is different from CONV layers. In this manner, we ap-
ply SVD to the weight matrix of the first FC layer, which
reduces 85.8% memory footprint of this layer, design the
convolvers that can compute FC layers to reduce resource
consumption, and propose a data arrangement scheme to ac-
celerate FC layers.

• We propose a CNN accelerator design on an embedded FP-
GA platform for Image-Net large-scale classification. On the
Xilinx Zynq platform, our system achieves the performance
at 187.8 GOP/s and 137.0 GOP/s for CONV layers and full
CNN under 150 MHz frequency respectively. With VGG16-
SVD network, our implementation achieves a top-5 accuracy
of 86.66% at a 4.45 fps speed.

The rest of paper is organized as follows. In Section 2, the
background of CNN is presented. In Section 3, the related work
is introduced and discussed. We analyze the complexity distribu-
tion of state-of-the-art CNN models in Section 4. In Section 5, the
dynamic-precision data quantization flow is proposed. The pro-
posed image classification system design and implementation de-
tails are introduced in Section 6. The memory system and data
arrangement method for FC layers are introduced in Section 7. The
performance of the proposed system is evaluated and discussed in
Section 8. We finally conclude this paper in Section 9.

2. BACKGROUND
Deep CNN achieves the state-of-the-art performance on a wide

range of vision-related tasks. To help understand the CNN-based
image classification algorithms analyzed in this paper, in this sec-
tion, we introduce the basics of CNN. An introduction to the Image-
Net dataset and state-of-the-art CNN models is also presented.

2.1 Primer on CNN
A typical CNN consists of a number of layers that run in se-

quence. The parameters of a CNN model are called "weights". The
first layer of a CNN reads an input image and outputs a series of
feature maps. The following layers read the feature maps generated
by previous layers and output new feature maps. Finally a classifier
outputs the probability of each category that the input image might
belong to. CONV layer and FC layer are two essential types of lay-
er in CNN. After CONV layers, there are usually pooling layers. A
typical CNN example is shown in Figure 1.

In this paper, for a CNN layer, f in
j denotes its j-th input feature

map, fout
i denotes the i-th output feature map, and bi denotes the

bias term to the i-th output map. For CONV layers, nin and nout

represent the number of input and output feature maps respectively.
For FC layers, nin and nout are the length of the input and output
feature vector.

CONV layer takes a series of feature maps as input and con-
volves with convolutional kernels to obtain the output feature map-
s. A nonlinear layer, which applies nonlinear activation function to

Table 1: # of layers in VGG models.

Model CONV CONV CONV CONV CONV FC TotalGroup 1 Group 2 Group 3 Group 4 Group 5
VGG11 1 1 2 2 2 3 11
VGG16 2 2 3 3 3 3 16
VGG19 2 2 4 4 4 3 19

each element in the output feature maps is often attached to CONV
layers. The CONV layer can be expressed with Equation 1:

fout
i =

nin∑
j=1

f in
j ⊗ gi,j + bi (1 ≤ i ≤ nout), (1)

where gi,j is the convolutional kernel applied to j-th input feature
map and i-th output feature map.

FC layer applies a linear transformation on the input feature
vector:

fout = Wf in + b, (2)

where W is an nout × nin transformation matrix and b is the bias
term. It should be noted, for the FC layer, the input is not a combi-
nation of several 2-D feature maps but just a feature vector. Conse-
quently, in Equation 2, the parameter nin and nout actually corre-
sponds to the lengths of the input and output feature vector.

Pooling layer, which outputs the maximum or average value of
each subarea in each feature maps, is often attached to the CONV
layer. Max-pooling can be expressed as Equation 3:

fout
i,j = max

p×p


f in
m,n · · · f in

m,n+p−1

...
...

f in
m+p−1,n · · · f in

m+p−1,n+p−1

 , (3)

where p is the pooling kernel size. This non-linear "down sam-
pling" not only reduces the feature map size and the computation
for later layers, but also provides a form of translation invariance.

CNN can be used to classify images in a forward inference pro-
cess. But before using the CNN for any task, one should first train
the CNN on a dataset. Recent research [15] showed that, a CNN
model pre-trained on a large dataset for a given task can be used
for other tasks and achieved high accuracy with minor adjustment
in network weights. This minor adjustment is called "fine-tune".
The training of the CNN is mostly implemented on large servers.
For embedded FPGA platform, we only focus on accelerating the
inference process of a CNN.

2.2 Image-Net Dataset
Image-Net [1] dataset is regarded as the standard benchmark to

evaluate the performance of image classification and object detec-
tion algorithms. So far Image-Net dataset has collected more than
14 million images within more than 21 thousand categories. Image-
Net releases a subset with 1.2 million images in 1000 categories for
the ILSVRC classification task, which has significantly promoted
the development of CV techniques. In this paper, all the CNN mod-
els are trained with ILSVRC 2014 training dataset and evaluated
with ILSVRC 2014 validation set.

2.3 State-of-the-Art CNN Models
In ILSVRC 2012, the SuperVision team won the first place in

image classification task using AlexNet by achieving 84.7% top-
5 accuracy [2]. CaffeNet is a replication of AlexNet with minor
changes. Both of AlexNet and CaffeNet consist of 5 CONV layers
and 3 FC layers.

The Zeiler-and-Fergus (ZF) network achieved 88.8% top-5 accu-
racy and won the first place in image classification task of ILSVRC
2013 [3]. The ZF network also has 5 CONV layers and 3 FC layers.

The VGG model achieved a top-5 accuracy of 92.6% and won
the second place in image classification task of ILSVRC 2014 [16].
VGG model consists of 5 CONV layer groups and 3 FC layers.
According to the exact number of layers, there are several versions
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of the VGG model including VGG11, VGG16, and VGG19, as
listed in Table 1.

3. RELATED WORK
To accelerate CNN, a set of techniques from both software and

hardware perspectives have been studied. From software perspec-
tive, the target is compressing CNN models in order to reduce the
memory footprint and the number of operations while minimizing
accuracy loss. From the hardware perspective, specific architecture
and modules are designed to reuse data, enhance "locality" of da-
ta, and accelerate convolution operations. To deploy CNN models
on embedded systems, the bit widths of operators and weights are
often reduced compared to that on CPU or GPU platform.

3.1 Model Compression
Network pruning and decomposition were widely used to com-

press CNN models. In early work, network pruning proved to be
a valid way to reduce the network complexity and over-fitting [17,
18, 19]. In [20], Han et al. pruned less influential connection-
s in neural networks, and achieved 9× and 13× compression for
CaffeNet and VGG16 model without accuracy loss. The Singu-
lar Value Decomposition (SVD) [21] is frequently used to reduce
memory footprint. In [22], Denton et al. used SVD and filters clus-
tering to speedup the first two FC layers of CNNs. Zhang et al. [23]
proposed a method that was tested on a deeper model, which used
low rank decomposition on network parameters and took nonlinear
units into consideration. Jaderberg et al. [24] used rank-1 filters to
approximate the original ones.

3.2 Data Quantization
Implementing fixed-point arithmetic units on ASIC and FPGA

is much more efficient compared with floating-point ones. Conse-
quently, most of previous CNN accelerators used fixed-point num-
bers instead of floating-point numbers [7, 25, 26, 6]. Shorter fixed-
point representation of weights and data can also significantly re-
duce memory footprint and computation resources. For example,
Chen et al. showed that the area and power of a 16-bit multiplier is
0.164× and 0.136× compared with that of 32-bit multiplier under
65nm fabrication technology [7].

Most of previous work adopted the 16-bit quantization strate-
gy [27, 25, 7, 8]. In [7], Chen et al. showed that using 16-bit num-
bers instead of 32-bit ones only introduced 0.26% more error rate
on MNIST dataset. In [8], 16-bit numbers were used in the infer-
ence process while 32-bit numbers were used in training process,
and results on MNIST dataset showed that there was only 0.01%
accuracy reduction.

To accelerate large CNN models on the embedded FPGA plat-
form, data quantization is rather important and a shorter represen-
tation that introducing negligible accuracy loss is always expected.
However, though previous work used data quantization, there is no
comprehensive analysis of different quantization strategies.

3.3 CNN Accelerator
Previous CNN accelerator designs can be generally classified in-

to two groups: the first group focuses on the computing engine and
the second group aims to optimize the memory system.

CNNs are extremely computational-intensive, and thus powerful
computing engines are necessary to accelerate them. Chakaradhar
et al. in [11] proposed a dynamically configurable architecture for
CNN. They added dedicated switches between the computing mod-
ules to enable design space exploration for dynamic configuration
across different CNN layers. An associate compiler was also pro-
posed to fully exploit the parallelism among the CNN workloads.

The weights in CONV layers of CNN are used for multiple times
in computation, and thus the overall performance can be signifi-
cantly degraded by frequent memory access. In [7], Chen et al.
used the tiling strategy and dedicated buffers for data reuse to re-
duce the total communication traffic. In their further study [8], a
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Figure 2: The complexity distribution of state-of-the-art CNN
models: (a) Distribution of operations by theoretical estima-
tion; (b) Distribution of weight number.

multi-chip supercomputer was proposed which offered sufficien-
t memory capacity to store all the weights in the CNN on chip.
In [10], all the weights of one CNN layer were also stored in on-
chip memory. In this manner, the data traffic between on-chip and
off-chip memory could be minimized.

3.4 Motivation
State-of-the-art CNN models for large-scale visual recognition

are much larger and deeper than early small CNN models. In
this case, CNN accelerators such as ShiDianNao [10] which store
weights on chip are hard to support those large CNN models. Con-
sequently, state-of-the-art CNN models can only be stored in exter-
nal memory and the bandwidth problem needs to be considered.

Most of previous studies focused on only accelerating the CON-
V layers of CNN. For example, in [6], the accelerator design was
only applied to several CONV layers rather than the full CNN.
In [26] and [11], authors only used models with few CONV lay-
ers without any FC layer. In this manner, those accelerators were
hard to be used for accelerating full CNNs.

A full CNN model consists of both CONV layers and FC layer-
s, and thus an efficient CNN accelerator for real-life applications
need to consider both of them. For CONV layers and FC lay-
ers, the encountered problems are rather different. CONV layers
are computation-centric: they contain few parameters but need a
great deal of operations; FC layers are memory-centric: they usual-
ly contain hundreds of million weights, and each weight is used for
only once. Consequently, loading weights from the external mem-
ory significantly degrades the performance of FC layers. In other
words, the bandwidth limits the performance of FC layers. Con-
sidering this, we go deeper with the embedded FPGA platform on
alleviating the bandwidth problem.

4. COMPLEXITY ANALYSIS OF CNN
Time complexity of a layer in CNN can be evaluated by the

number of multiplication operations in the inference process. In a
CONV layer, each convolutional kernel is a k×k filter applied to a
r×c dimension input feature map. The number of kernels equals to
nin×nout. Consequently, according to Equation 1, the complexity
of this CONV layer is

CTime
CONV = O(nin · nout · k2 · r · c). (4)
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Table 2: The Memory footprint, Computation Complexities,
and Performance of the VGG16 model and its SVD version.

Network FC6
# of total # of Top-5
weights operations accuracy

VGG16 25088×4096 138.36M 30.94G 88.00%
VGG16-SVD 25088×500 + 500×4096 50.18M 30.76G 87.96%

For pooling layers and FC layers, the time complexities are

CTime
Pooling = O(nin · r · c), (5)

CTime
FC = O(nin · nout). (6)

For pooling layers, nout equals to nin since each input feature
map is pooled to a corresponding output feature map, and thus the
complexity is linear to either input or output feature map number.

Space complexity refers to the memory footprint. For a CONV
layer, there are nin×nout convolution kernels, and each kernel has
k2 weights. Consequently, the space complexity for a CONV layer
is

CSpace
CONV = O(nin · nout · k2). (7)

FC layer actually applies a multiplication to the input feature vec-
tor, and thus the complexity for FC layer is measure by the size for
the parameter matrix, which is shown in Equation 8:

CSpace
FC = O(nin · nout) (8)

No space is needed for pooling layers since it has no weight.
The distribution of demanded operations and weight numbers in

the inference process of state-of-the-art CNN models are shown in
Figure 2. The measured operations consist of multiplications, adds,
and non-linear functions.

As shown in Figure 2 (a), the operations of CONV layers com-
pose most of the total operations of CNN models, and thus the
time complexity of CONV layers is much higher than that of FC
layers. Consequently, for CONV layers, more attention should be
paid to accelerate convolution operations.

For space complexity, the situation is quite different. As shown
in Figure 2 (b), FC layers contribute to most of the weights. S-
ince each weight in FC layers is used only once in one inference
process, leaves no chance for reuse, the limited bandwidth can
significantly degrade the performance since loading those weights
may take quite long time.

Since FC layers contribute to most of memory footprint, it is
necessary to reduce weights of FC layers while maintaining com-
parable accuracy. In this paper, SVD is adopted for accelerating
FC layers. Considering an FC layer fout = Wf in + b, the weight
matrix W can be decomposed as W ≈ UdSdVd = W1W2, in
which Sd is a diagonal matrix. By choosing the first d singular
values in SVD, i.e. the rank of matrix Ud, Sd, and Vd, both time
and space complexity can be reduced to O(d ·nin + d ·nout) from
O(nin · nout). Since accuracy loss may be minute even when d
is much smaller than nin and nout, considerable reduction of time
consumption and memory footprint can be achieved.

The effectiveness of SVD is proved by the results in Table 2.
By applying SVD to the parameter matrix of the FC6 layer and
choosing first 500 singular values, the number of weights in FC6
layers is reduced to 14.6 million from 103 million, which achieves
a compression rate at 7.04×. However, the number of operations
does not decrease much since the FC layer contributes little to total
operations. The SVD only introduces 0.04% accuracy loss.

5. DATA QUANTIZATION
Using short fixed-point numbers instead of long floating-point

numbers is efficient for implementations on the FPGA and can sig-
nificantly reduce memory footprint and bandwidth requirements. A
shorter bit width is always wanted, but it may lead to a severe ac-
curacy loss. Though fixed-point numbers have been widely used in
CNN accelerator designs, there is no comprehensive investigation
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Figure 3: The dynamic-precision data quantization flow.

on different quantization strategies and the trade-off between the bit
length of fixed-point numbers and the accuracy. In this section, we
propose a dynamic-precision data quantization flow and compare it
with widely used static-precision quantization strategies.

5.1 Quantization Flow
For a fixed-point number, its value can be expressed as

n =

bw−1∑
i=0

Bi · 2−fl · 2i, (9)

where bw is the bit width and fl is the fractional length which
can be negative. To convert floating-point numbers into fixed-point
ones while achieving the highest accuracy, we propose a dynamic-
precision data quantization strategy and an automatic workflow, as
shown in Figure 3. Unlike previous static-precision quantization s-
trategies, in the proposed data quantization flow, fl is dynamic for
different layers and feature map sets while static in one layer
to minimize the truncation error of each layer. The proposed
quantization flow mainly consists of two phases: the weight quan-
tization phase and the data quantization phase.

The weight quantization phase aims to find the optimal fl for
weights in one layer, as shown in Equation 10:

fl = argmin
fl

∑
|Wfloat −W (bw, fl)|, (10)

where W is a weight and W (bw, fl) represents the fixed-point for-
mat of W under the given bw and fl. In this phase, the dynamic
ranges of weights in each layer is analyzed first. After that, the fl
is initialized to avoid data overflow. Furthermore, we search for the
optimal fl in the adjacent domains of the initial fl.

The data quantization phase aims to find the optimal fl for a
set of feature maps between two layers. In this phase, the inter-
mediate data of the fixed-point CNN model and the floating-point
CNN model are compared layer by layer using a greedy algorithm
to reduce the accuracy loss. For each layer, the optimization target
is shown in Equation 11:

fl = argmin
fl

∑
|x+

float − x+(bw, fl)|. (11)

In Equation 11, x+ represents the result of a layer when we denote
the computation of a layer as x+ = A · x. It should be noted, for
either CONV layer or FC layer, the direct result x+ has longer bit
width than the given standard. Consequently, truncation is needed
when optimizing fl selection. Finally, the entire data quantization
configuration is generated.
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Table 3: Exploration of different data quantization strategies with state-of-the-art CNNs.
Network CaffeNet VGG16 VGG16-SVD

Experiment Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 Exp 11 Exp 12 Exp 13
Data Bits Single-float 16 8 Single-float 16 16 8 8 8 8 Single-float 16 8

Weight Bits Single-float 16 8 Single-float 16 8 8 8 8 8 or 4 Single-float 16 8 or 4
Data Precision N/A Dynamic Dynamic N/A 2−2 2−2 Not available 2−5 or 2−1 Dynamic Dynamic N/A Dynamic Dynamic

Weight Precision N/A Dynamic Dynamic N/A 2−15 2−7 Not available 2−7 Dynamic Dynamic N/A Dynamic Dynamic
Top 1 Accuracy 53.90% 53.90% 53.02% 68.10% 68.02% 62.26% Not available 28.24% 66.58% 66.96% 68.02% 64.64% 64.14%
Top 5 Accuracy 77.70% 77.12% 76.64% 88.00% 87.94% 85.18% Not available 49.66% 87.38% 87.60% 87.96% 86.66% 86.30%
1 The weight bits "8 or 4" in Exp10 and Exp13 means 8 bits for CONV layers and 4 bits for FC layers.
2 The data precision "2−5 or 2−1" in Exp8 means 2−5 for feature maps between CONV layers and 2−1 for feature maps between FC layers.

5.2 Analysis of Different Strategies
We explore different data quantization strategies with CaffeNet,

VGG16, and VGG16-SVD networks and the results are shown in
Table 3. All results are obtained under Caffe framework [28].

• For CaffeNet, as shown in Exp 1, the top-5 accuracy is 77.70%
when 32-bit floating-point numbers are used. When employ-
ing static-precision 16-bit quantization and 8/4-bit dynamic-
precision quantization, the top-5 accuracy results are 77.12%
and 76.64% respectively.

• VGG16 network with static-precision quantization strategies
are tested in Exp 4 to Exp 8. As shown in Exp 4, single-float
VGG16 network 88.00% top-5 accuracy. When using the 16-
bit quantization configuration, only 0.06% accuracy loss is
introduced. However, when employing 8-bit static-precision
quantization, no configuration is available since the feature
maps between FC layers are quantized to 0. As shown in
Exp 8, at least two precisions are needed when using 8-bit
quantization and the accuracy degrades greatly in this case.

• Results of VGG16 network with dynamic-precision quanti-
zation are shown in Exp 9 and Exp 10. When 8-bit dynamic-
precision quantization is used for both data and weights, the
top-5 accuracy is 87.38%. Using 8/4-bit dynamic-precision
quantization for weights in CONV layers and FC layers re-
spectively even achieves higher accuracy. As shown in Exp
10, in this case, the top-5 accuracy is 87.60%.

• The results of VGG16-SVD network are shown in Exp 11
to Exp 13. Compared with the floating-point VGG16 model,
floating-point VGG16-SVD only introduces 0.04% accuracy
loss. However, when 16-bit dynamic-precision quantization
is adopted, the top-5 accuracy is down to 86.66%. With 8/4-
bit dynamic-precision quantization, the top-5 accuracy fur-
ther drops to 86.30%.

The results show that dynamic-precision quantization is much
more favorable compared with static-precision quantization. With
dynamic-precision quantization, we can use much shorter repre-
sentations of operations while still achieving comparable accuracy.
For example, compared with 16-bit quantization, 8/4-bit quantiza-
tion halves the storage space for intermediate data and reduce three-
fourths memory footprint of CNN models. Besides, the utilization
of bandwidth can also be significantly increased.

6. SYSTEM DESIGN
In this section, we introduce the design of our CNN accelerator.

First, the overall architecture is presented. After that, the designs of
major modules are introduced. Finally, the implementation details
are presented.

6.1 Overall Architecture
In this work, we propose a CPU+FPGA heterogeneous archi-

tecture to accelerate CNNs. Figure 4 (a) shows an overview of the
proposed system architecture. The whole system can be divided
into two parts: the Programmable Logic (PL) and the Processing
System (PS).

PL is the FPGA chip, on which we place the Computing Com-
plex, On-chip Buffers, Controller, and DMAs. The Computing Com-
plex consists of Processing Elements (PEs) which take charge of

the majority of computation tasks in CNN, including CONV layer-
s, Pooling layers, and FC layers. On-chip buffers, including input
buffer and output buffer, prepare data to be used by PEs and store
the results. Controller fetches instructions from the external mem-
ory and decodes them to orchestrate all the modules except DMAs
on the PL. DMAs are working for transferring data and instructions
between the external memory on the PS side and On-chip Buffers
on the PL side.

PS consists of general-purpose processors and the external mem-
ory. All the CNN model parameters, data, and instructions are s-
tored in the external memory. Processors run bare-metal programs
and help to orchestrate the whole inference phase by configuring
the DMAs. We also realize Softmax function on CPU considering
that its FPGA implementation will bring inevitable design overhead
with little performance improvement since this function is called
only in the last layer of the whole CNN.

The complete inference process of an image with the proposed
CNN accelerator consists of three steps that are executed in se-
quence: data preparation, data processing, and result output.

Data Preparation. In this phase, all the data needed in the com-
putation including image data, model data, and control data are s-
tored in the external memory. Control data includes the Buffer De-
scriptors (BD) used by DMAs and instructions used by Controller.
So far the image data is not obtained from the camera.

Data Processing. When all the data are prepared, CPU host
starts to configure DMAs with the BDs that are pre-stored in the
external memory. The configured DMA loads data and instructions
to the controller, triggers a computation process on PL. Each time
a DMA interrupt is asserted, CPU host adds up the self-maintained
pointer address for each DMA’s BD list and configures them with
new BDs. This phase works until the last BD has been transferred.

Result Output. After receiving the interrupt of the last BD from
DMA, the processor host applies Softmax function to the final re-
sults from PEs, and output the results to UART port.

6.2 PE Architecture
Figure 4 (b) shows the architecture of the PE and other modules

involved. A PE consists of five parts, including the Convolver Com-
plex, the Adder Tree, the Non-Linearity module, the Max-Pooling
module, and the Bias Shift.

• For Convolver Complex, we employ the classical line buffer
design [29] as shown in Figure 4 (c). When Input Data goes
through the buffer in row-major layout, the line buffer releas-
es a window selection function on the input image. Thus the
selected window followed by multipliers and an adder tree
will compute the convolution result, one data per cycle. S-
ince the bottleneck of FC layers appears at the bandwidth,
we use this module to compute matrix-vector multiplication
for FC layers even the efficiency is not good. To realize this
function, we set the delay of each line of the line buffer the
same as the kernel size by using a MUX at the end of each
line. In the proposed implementation, the kernel size is 3.
When Input Data goes through the buffer, we get a totally
new vector every 9 cycles in the selected window and do a
vector inner product. Thus a convolver can do a matrix mul-
tiplied by a vector of size 9.
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Figure 4: The design of our image classification system: (a) the overall architecture; (b) the processing element; (c) the convolver in
the processing element.
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Figure 5: Workload schedule for CONV layers and FC layers: (a) Tiling and reuse of feature maps in CONV layers; (b) two phases
in the execution of CONV layers; (c) workload schedule in FC layers.

• Adder Tree (AD) sums all the results from convolvers. It
can add the intermediate data from Output Buffer or bias data
from Input Buffer if needed.

• Non-Linearity (NL) module applies non-linear activation func-
tion to the input data stream.

• Max-Pooling module utilizes the line buffers to apply the
specific 2 × 2 window to the input data stream, and outputs
the maximum among them.

• Bias Shift module and Data Shift module are designed to
support dynamic quantization. Input bias will be shifted by
Bias Shift according to the layer’s quantization result. For
a 16-bit implementation, the bias is extended to 32-bit to be
added with convolution result. The output data will be shifted
by Data Shift and cut back to the original width.

The size of convolutional kernel usually has only several options
such as 3×3, 5×5, and 7×7. All the convolutional kernels in the
VGG16 model are in 3×3 dimension, and thus in the Convolver
Complex, the 2D convolvers are designed for convolution operation
only over a 3×3 window.

6.3 Implementation Details
6.3.1 Workloads Schedule

Parallelism. Chakradhar et al. pointed out that there are mainly
three types of parallelism in CNN workloads: operator-level (fine-
grained) parallelism, intra-output parallelism (multiple input fea-
tures are combined to create a single output), and inter-output paral-
lelism (multiple independent features are computed simultaneous-
ly) [11]. In our implementation, all the three types of parallelism
are considered. The operator-level parallelism is realized with 2D
convolvers. The intra-output parallelism is realized with multiple
convolvers working simultaneously in each PE. The inter-output
parallelism is realized by placing multiple PEs.

Tiling and Reuse. Due to limited on-chip memory, tiling is
necessary for CNNs. For tiling in CONV layers, we tile each input
image by the factor Tr (Tc) in row (column). And we tile the input
(output) feature maps nin (nout) by the factor Ti (To). For FC
layers, we tile each matrix into tiles of Ti×To. For reuse, the times

Phase 1 Phase nin / Ti

Data In

Data Out

Weight In

Weight Out

Result Out

Data Out Data Out

Weight In Weight In

Weight Out Weight Out

Data In

Data Out

Weight In

Weight Out

Result Out

Data Out Data Out

Weight In Weight In

Weight Out Weight Out

Result In Result In

Figure 6: Timing graph. There are totally nin/T i phases to
generate the reuse_times×PE_num tiles in the output layer.
In each phase, the next group of data is loaded and the data pre-
loaded in the last phase are output and reused for reuse_times
times. Meanwhile, accompanied weights are loaded and output
for reuse_times times with no reuse. The output buffer works
on collecting data in the entire phase, while outputting inter-
mediate data and final data to PEs or the external memory.

of each input tiled block (vector) to be reused is reuse_times. We
show how this workload schedule mechanism applies to CONV
layers in Figure 5 (a) (b) and FC layers in Figure 5 (c).

6.3.2 Controller System
In each computation phase, the Controller decodes a 16-bit in-

struction to generate control signals for on-chip buffers and PEs.
One instruction is composed with the following signals.

• Pool Bypass and NL Bypass are used to bypass the Pool and
NL module if needed.

• Zero Switch is used to select either zero or bias data into
added to the result of adder tree, since usually more than
one phase is needed to calculate the final result and the bias
should be added only once.

• Result Shift and Bias Shift describe the number of bits and
direction for data shifting, for dynamic data quantization.

• Write En is used to switch the data from the Output Buffer
either to the external memory or to the PEs to be reused.

• PE En offers us the flexibility to set several PEs as idle if
needed. This can help save energy when computation capac-
ity meet the demand.
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Buffer. The total bandwidth of each buffer is defined by corre-
sponding port numbers multiplied by data width (D_W ).

• Phase Type helps the Controller to distinguish these phases
and send out the corresponding signals.helps the Controller
to distinguish these phases and send out the corresponding
signals. Several phases need to be specifically taken care of.
For example, for the last phase in the last layer an the last
output image, no more weights or data should be loaded in,
and the input buffers should be configured differently com-
pared to previous phases.

• Pic Num and Tile Size/Layer Type help the Controller to
configure the Input Buffer and Output Buffer.

A compiler is developed on Matlab to automatically generate
instructions. The compiler takes the fixed-point CNN model as
the input and generates instructions as output. Table 4 shows the
generated the instructions with the example in Figure 5 (a).

• Instruction 1 commands Input Buffer to load all the needed
data, which is distinguished by the Phase Type signal. PE En
enables two PEs working in parallel. As Ti = 2, Pic Num
is set as 2. Tile Size is set as the defined Tr. Layer Type
defines the layer type as CONV layer. All the other signals
are useless in this phase.

• Instruction 2 starts calculating the four tiled blocks in the
output layer. Since they are all intermediate results, Pool and
NL modules are bypassed. Bias will be added in this phase
only once. And Bias Shift specifies the shift configuration
for bias data. Output Buffer will only collect the intermediate
data and not write to anywhere.

• In instruction 3, Write En is set as "PE" to command Output
Buffer to send the intermediate results back to the PEs. Bias
is no longer added, and thus Zero Switch is set to zero. Since
all the data generated in this phase is the final results, Pool
and NL Bypass are disabled to let data from AD enter these
two modules in sequence.

• In the last instruction, supposing this CONV layer is the last
layer, then no module is working in PE. Write EN is set as
"DDR" to command the Output Buffer to write results back
to the external memory. Result Shift is set to shift the results
data as we want. This phase is distinguished by Controller
by setting Phase Type as last.

7. MEMORY SYSTEM
In this section, we introduce the memory system design which

aims to feed the PEs with data efficiently. First the designs of
buffers are introduced. After that, the data arrangement mecha-
nisms for CONV and FC layers are presented.

7.1 Buffer Design
As shown in Figure 4 (a), there are two on-chip buffers on the

PL side, the Input Buffer and the Output Buffer. The Input Buffer
stores the bias, image data, and weights. The Output Buffer saves
the results generated from PE and offers intermediate results to the
PEs at proper time. For simplicity of illustration, we define three
parameters as shown in Figure 7

• datain_port_num. The maximum amount of data that can
be transferred by DMA each cycle.

• weightin_port_num. The maximum amount of weights
that can be transferred by DMA each cycle.
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Figure 8: Storage pattern for one CONV layer with max-
pooling when the parameter group <Ti, To, reuse_times,
PE_num> is set to <2, 4, 2, 2>.
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Figure 9: Data arrangement in external memory: (a) Linear
arrangement; (b) DMA-oriented arrangement.

• dataout_port_num. The maximum amount of results that
can be transferred by DMA each cycle.

In CONV layers, the total amount of weights needed in each
phase is far less than that of image data, while in FC layers, the
amount of weights is far more than the amount of data in input
vectors. Therefore, we save the weights of FC layers in data buffer
whose capability is larger than weight buffer, and save the input
data vector in the weight buffer.

7.2 Data Arrangement for CONV layers
In order to reduce the unnecessary access latency of external

memory, we optimize the storage pattern of data in the memory
space. The principle is to maximize the burst length of each DMA
transaction. Figure 8 shows a brief example of how we organize
the input and output data in one CONV layer with max-pooling.
We store the tiles which are at the same relative locations in each
picture continuously. Therefore, in each phase, we can load all the
input tiles for computation continuously. The output feature maps
will be the input feature maps of the next layer, therefore, the same
storage pattern applies as well.

There is a slight difference between CONV layers with Pooling
and other layers. After a 2 × 2 pooling, the result is only a quar-
ter of a tile. In Figure 8, Out(2, 1), instead of Out(1,2), will be
calculated after Out(1,1). This means adjacent result tiles are not
stored continuously in external memory. If we write each result tile
as soon as it is generated, the burst length will be only Tr/2. This
will significantly degrade the utilization of the external memory.
To solve this problem, we increase the memory budget on chip. We
buffer Out(1,1) to Out(4,1) before generating Out(1,2), then write
Out(1,1) and Out(1,2) together. This strategy increases the burst
length to Tr × Tc/2.

7.3 Data Arrangement for FC Layers
The speed of computing FC layers is mainly restricted by the

bandwidth. In this manner, using specific hardware to accelerate
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Table 4: Instructions for One CONV layer generated by the compiler.
Index Pool Bypass NL Bypass Zero Switch Result Shift Bias Shift Write En PE En Phase Type Pic Num Tile Size Layer Type

1 X X X X X No 2 First 2 Tr CONV
2 Yes Yes Bias X BS No 2 Cal 2 Tr CONV
3 No No Zero X X PE 2 Cal 2 Tr CONV
4 X X X RS X DDR 2 Last 2 Tr CONV

Table 5: Parameter configuration and resource utilization.
Param. tile_size convolver_num PE_num reuse_times
Config. 28 64 2 16
Param. datain_port_num weightin_port_num dataout_port_num
Config. 8 4 2

Resource FF LUT DSP BRAM
Utilization 127653 182616 780 486
Percent(%) 29.2 83.5 89.2 86.7

Figure 10: Testing platform. We use Xilinx Zynq ZC706 for
on-board testing. A power meter is used for power analysis.

FC layers is not effective. Considering this, the proposed system
uses the Convolver Complex in one of the PEs to do the computa-
tion for FC layers. In this case, we need to fully utilize the band-
width of the external memory with the current PL structure.

In our system, we assign a buffer of length 900, the same as Tr×
Tr to each of the 64 Compute Complex in one PE. The buffers are
filled one by one when computing CONV layers. To reduce extra
data routing logic for filling buffers while keep a long burst length
when fetching data for computing FC layers, we arrange the weight
matrix in the external memory. We first divide the whole matrix
with blocks of 64×9 columns and 100 rows such that one block
can be processed in a phase. In each block, the data is arranged as
shown in Figure 9 (b). Without data arrangement for FC layers, as
shown in Figure 9 (a), we need 64×100 DMA transactions to load
one block while the burst length is just 9. By arranging the data
following Figure 9 (b), we need just one DMA transaction to load
the whole block and the long burst length ensures a high utilization
of the bandwidth of external memory.

8. SYSTEM EVALUATION
In this section, the performance of the implemented system is

evaluated. First, we analyze the performance of our system archi-
tecture under given design constraints. After that, the performance
of the proposed system is presented and compared with other plat-
forms. Finally we compare our system with previous FPGA-based
CNN accelerators.

We use 16-bit dynamic-precision quantization and Xilinx Zynq
ZC706 for the implementation. Xilinx Zynq platform consists of a
Xilinx Kintex-7 FPGA, dual ARM Cortex-A9 Processor, and 1 GB
DDR3 memory. It offers a bandwidth of up to 4.2GB/s. All the
synthesis results are obtained from Xilinx Vivado 2014.4. We first
synthesize each module in Vivado to figure out the resource utiliza-
tion. Then we choose the optimal parameter group to maximize
the throughput with the resource and bandwidth constraints. The
parameters and resource utilization are shown in Table 5. We can
see that our parameter configuration helps to maximize the resource
utilization. Figure 10 shows the hardware platform.

The CPU platform is Intel Xeon E5-2690 CPU@2.90GHz. The
GPU platform is Nvidia K40 GPU (2880 CUDA cores with 12GB
GDDR5 384-bit memory), and the mGPU platform is the Nvidia
TK1 Mobile GPU development kit (192 CUDA cores). For exper-
iments on CPU, GPU, and mGPU, the operating system is Ubuntu
14.04 and the deep learning software framework is Caffe [28].

8.1 Theoretical Estimation
For CONV layer, the number of phases needed in one CON-

V layer when tiling is adopted can be calculated by the following
formula:

NCONV
phase = ⌈nin

Ti
⌉ × ⌈nout

To
⌉ × ⌈row

Tr
⌉2,

where To = reuse_times × PE_num and Tc = Tr. The time
of computation and loading data in each phase are:

tCONV
compute_data ≈ Tr2 × reuse_times,

and

tCONV
load_data =

Tr2 × Ti

datain_port_num
.

CONV layers are usually computation-intensive. Consequently,
in order to keep ping-pong mechanism working, typically tload is
smaller than tcompute, and thus there should be:

datain_port_numCONV ≥ Ti

reuse_times
.

In each phase, data will be reused for reuse_times times, each
accompanied with a new group of weights (9 weights for each ker-
nel as for the model we use). Therefore, for weights, we have:

tCONV
compute_weight ≈ Tr2

tCONV
load_weight =

9× T i× PE_num
weightin_port_num

weightin_port_numCONV ≥ 9× T i× PE_num
Tr2

.

According to the workloads schedule shown in Figure 6, the con-
straint for dataout_port_num is:

dataout_port_numCONV ≥ PE_num.

In order to minimize the bandwidth consumption, we consider
to choose weightin_port_num and datain_port_num as few-
er as possible. Under the above constraints, we can estimate the
computation time for one CONV layer:

tCONV = NPhase × tcompute

= ⌈
nin

T i
⌉ × ⌈

nout

To
⌉ × ⌈

row

Tr
⌉2 × Tr2 × reuse_times.

Considering that Ti = convolver_num, Tr = tile_size and
To = reuse_times×PE_num in CONV layers, we further get:

tCONV = ⌈
nin

convolver_num
⌉ × ⌈

nout

reuse_times× PE_num
⌉

× ⌈
row

tile_size
⌉2 × tile_size2 × resue_times.

≈
nin × nout × row2

convolver_num× PE_num
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Table 6: Performance of different platforms with VGG16-SVD network.
Platform Embedded FPGA CPU GPU mGPU CPU GPU mGPU

Layer Theoretical Computation Real Computation Total Operations Real Performance Real Computation Real Performance
(Group) Time (ms) Time (ms) (GOP) (GOP/s) Time (ms) (GOP/s)
CONV1 21.41 31.29 3.87 123.76 83.43 2.45 59.45 46.42 1578.8 65.15
CONV2 16.06 23.58 5.55 235.29 68.99 3.31 79.73 80.44 1675.5 69.60
CONV3 26.76 39.29 9.25 235.38 76.08 4.25 89.35 151.57 2177.1 103.51
CONV4 26.76 36.30 9.25 254.81 62.53 3.31 107.49 147.91 2791.6 86.04
CONV5 32.11 32.95 2.31 70.16 12.36 2.30 63.75 186.99 1003.5 36.27

CONV Total 123.10 163.42 30.69 187.80 312.36 15.45 399.77 98.26 1986.0 76.77
FC6-1 10.45 20.17 0.025 1.24 1.69 0.445 29.35 14.87 56.404 0.86
FC6-2 1.71 3.75 0.0041 1.09 0.26 0.031 5.26 15.65 132.26 0.78
FC7 13.98 30.02 0.034 1.12 1.86 0.19 14.74 18.04 177.78 2.28
FC8 3.413 7.244 0.0082 1.13 0.46 0.96 4.58 17.75 8.56 1.79

FC Total 29.55 61.18 0.073 1.20 4.28 1.79 53.93 17.17 40.98 1.36
Total 152.65 224.60 30.76 136.97 316.64 17.25 453.70 97.16 1783.9 67.81

For FC layers, the number of phases and the time of different
tasks can be estimated with the following equations:

NFC
phase = ⌈nin

Ti
⌉ × ⌈ nout

To× PE_num
⌉

tFC
load_data =

PE_num× Ti× To

datain_port_num

tFC
load_weight =

Ti

weightin_port_num

tFC
compute_data = tFC

compute_weight =
Ti× To

convolver_num
.

Typically, for FC layers, tFC
compute is much smaller than tFC

load,
and thus the total cycles needed by one FC layer can be estimated
as:

tFC = NPhase × tload

= ⌈
nin

T i
⌉ × ⌈

nout

To× PE_num
⌉ ×

PE_num× T i× To

datain_port_num

≈
nin × nout

datain_port_num
.

In summary, under the given constraints, the runtime of a CONV
layer and an FC layer can be estimated through Equation 13 and
Equation 12:

tFC =
nin × nout

datain_port_num
, (12)

tCONV =
nin · nout · row2

convolver_num2 × PE_num
. (13)

As shown in Equation 13, CONV layers are bounded both by
bandwidth and computation resources. For FC layers, as shown in
Equation 12, it is bandwidth-bounded only. Consequently, higher
bandwidth can help reduce the runtime of FC layers.

8.2 Performance Analysis
Though the performance of FC layers on FPGA is limited by the

bandwidth, it is still higher than ARM processors. Consequently, in
our implementation, the FC layer workloads are placed on FPGA.

The performance of our system, CPU, GPU, and mGPU is shown
in Table 6. The VGG16-SVD network needs 30.764 GOPs includ-
ing multiplications, adds, and non-linear functions. Our system
achieves an average performance of 187.80 GOP/s for CONV lay-
ers and 136.97 GOP/s for the whole network. The frame rate of our
system is 4.45 fps, which is 1.4× and 2.0× faster than the CPU and
mGPU platform (the power of CPU and mGPU are 135W and 9W
respectively). The overall performance of GPU is 13.0× higher
than our implementation, but it consumes 26.0× more power com-
pared with embedded FPGA (250W versus 9.63W).

The performance of our system on FC layers is much lower
than that of CONV layers even though data arrangement method
is adopted due to the limited bandwidth. Consequently, though

Table 7: Comparison with other FPGA accelerators.

[11] [30] [6] Ours
Year 2010 2014 2015 2015

Platform Virtex5 Zynq Virtex7 Zynq
SX240t XC7Z045 VX485t XC7Z045

Clock(MHz) 120 150 100 150
Bandwidth (GB/s) – 4.2 12.8 4.2

Quantization 48-bit fixed 16-bit fixed 32-bit float 16-bit fixedStrategy
Power (W) 14 8 18.61 9.63

Problem 0.52 0.552 1.33 30.76Complexity (GOP)
Performance 16 23.18 61.62 187.80 (CONV)

(GOP/s) 136.97 (Overall)
Resource

4.30×10−4 – 8.12×10−4 3.58×10−3 (CONV)Efficiency
2.61×10−3 (Overall)(GOP/s/Slices)

Power Efficiency 1.14 2.90 3.31 19.50 (CONV)
(GOP/s/W) 14.22 (Overall)

Table 8: Projected frame rates on Zynq/VC707 board using 16-
bit and 8/4-bit quantization with VGG16-SVD network.

Platform Total Resources 16-bit Quantization 8-bit Quantization
LUT FF Bandwidth # of PE FPS # of PE FPS

Zynq 218600 437200 4.2GBps 2 4.45 4 8.9
VC707 303600 607200 4.2GBps 3 5.88 6 11.76

the number of operations needed by FC layers is only 0.0024× of
CONV layers, the runtime of FC layers is 0.374× of CONV lay-
er. The mGPU platform suffers from the same problem due to the
limited bandwidth.

Compared with theoretical estimation, there is around 47% per-
formance degradation for on-board test, as shown in the 2nd colum-
n and the 3rd column of Table 6. One possible reason is the DDR
access latency. The other possible reason is that different DMAs are
working asynchronously, since different DMA transactions may af-
fect each other and reduce the total efficiency of bandwidth usage.

8.3 Design Comparison
As shown in Table 7, we compare our CNN accelerator with pre-

vious work. In [30], the design was verified on 3 models, including
a single CONV layer, a model consisting of 2 CONV layers for face
recognition, and a model for street parsing without structure detail-
s. Since the first model lacks generality and structure details of
the third model were not provided, results of a 2-layer CNN model
is adopted for comparison. We also transform the unit GFLOP
in [6] into GOP for comparison.

In summary, our accelerator achieved the highest performance,
resource efficiency, and power efficiency compared with previous
designs. It should be noted, all the performance results of previous
designs were obtained from CONV layers only. If we only consider
CONV layers, the average performance of our system is 187.80
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GOP/s, which is several times higher than previous designs. The
performance of our system with the full VGG16-SVD network is
136.97 GOP/s.

8.4 Discussion
At present, our implementation uses 16-bit fixed-point numbers

and Zynq board. The projected results with different quantization
strategies and platforms are shown in Table 8. Theoretically, when
using the 8-bit quantization, 2× PEs can be placed on the FPGA
and thus the performance on CONV layers doubles. Besides, 2×
weights can be loaded to the system with the same bandwidth com-
pared with the 16-bit quantization, and thus the performance on FC
layers also doubles. Further more, when deploying to the VC707
board, one more PE can be placed, and thus the processing capa-
bility on CONV layers is expected to be 1.5× higher than that of
Zynq platform. For VGG16-SVD network on VC707 with 8-bit
dynamic-precision quantization, it is expected to achieve a frame
rate at 11.76 fps.

9. CONCLUSION
The limited bandwidth is one of the bottlenecks of accelerat-

ing deep CNN models on embedded systems. In this paper, we
make an in-depth investigation of the memory footprint and band-
width problem in order to accelerate state-of-the-art CNN model-
s for Image-Net classification on the embedded FPGA platform.
We show that CONV layers are computation-centric and FC layers
are memory-centric. A dynamic-precision data quantization flow
is proposed to reduce memory footprint and bandwidth require-
ments while maintaining comparable accuracy. Convolver that can
be used for both CONV layers and FC layers is designed to save
the resource. A data arrangement scheme for FC layers is also pro-
posed to ensure high bandwidth utilization. Our implementation
on Xilinx Zynq with very deep VGG16-SVD model for Image-Net
classification achieves a frame rate at 4.45 fps with 86.66% top-5
accuracy with 16-bit quantization. The average performances of
CONV layers and the full CNN are 187.8 GOP/s and 137.0 GOP/s
under 150MHz working frequency.
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