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Abstract— Through-silicon-via (TSV) could provide vertical
connections among different dies in 3-D integrated circuits
(3-D ICs), but the significant silicon area occupied by TSVs may
bring great challenge to designers in 3-D clock tree synthesis
(CTS), because only a few whitespace blocks can be used for clock
TSV insertion after floorplan and placement are determined,
specifically in the area-efficient 3-D IC designs. This paper
proposes a whitespace-aware TSV arrangement algorithm in
3-D CTS, which mainly consists of three stages: sink preclus-
tering, whitespace-aware 3-D method of means and medians
(3-D-MMMs) topology generation, and deferred-merge embed-
ding merging segment reconstruction. By leveraging the
TSV-to-TSV coupling model, we also propose an efficient clock
TSV arrangement method to alleviate the coupling effect of
adjacent TSVs. Compared with the traditional 3-D-MMM-based
CTS with TSV moving adjustment, the experimental results show
that our proposed algorithm is more practical and efficient,
achieving 49.2% reduction on the average skew and 1.9%
reduction on the average power.

Index Terms—3-D integrated circuits (3-D ICs), clock tree syn-
thesis (CTS), through-silicon-via (TSV) arrangement, whitespace.

I. INTRODUCTION

ITH CMOS process technology continuously scaling

down, through-silicon-via (TSV)-based 3-D integrated
circuits (3-D ICs) have drawn much more attention recently.
With the help of 3-D technology we can reduce global
wirelength, alleviate congestion, and improve performance.
Moreover, 3-D technology provides much more design flexi-
bility by heterogeneous integration [1].
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Fig. 1. Three-dimensional CTS without whitespace-aware TSV arrangement.
(a) TSVs are not located in whitespace after an initial design. (b) Moving
TSVs into whitespace incurs longer wirelength and leads to potential skew
increase.

For a 3-D stacked IC, the clock network distributes the clock
signal through the entire stacks and connects all the clock sinks
on different dies by a single tree as shown in Fig. 1. Different
from the 2-D clock network, the clock signal is distributed
not only through x and y directions, but also in z direction
through TSVs, which increases the design complexity. Despite
the obvious superiority of 3-D ICs, the vertical interconnect,
TSV could also lead to some serious problems, such as the
limited whitespace for TSV-insertion and the relatively severe
parasitic or coupling effect of TSVs.

Under current technologies, TSVs are very huge compared
with gates and memory cells [2], therefore, a large number
of TSVs will consume significant silicon area and degrade
the yield and reliability of the chip. Furthermore, as TSVs
are usually placed in the whitespace between macroblocks
or cells, a bad arrangement of TSVs may incur longer
wirelength because the available TSV location might be far
away from its connected cells. Nowadays, intellectual property
(IP) and standard cell-based design has been extensively
used to reduce design cost; however, only a few whitespace
blocks are reserved for clock TSVs after floorplan and place-
ment are determined [3]. Fig. 1 indicates that without the
consideration of TSV whitespace during 3-D clock tree
synthesis (CTS), TSV moving is necessary to ensure that each

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU et al.: WHITESPACE-AWARE TSV ARRANGEMENT IN 3-D CLOCK TREE SYNTHESIS

TSV is located inside the whitespace and it would incur longer
wirelength and lead to potential skew increase. In addition, the
parasitic and coupling effects of TSVs located in the limited
whitespace blocks could be very problematic owing to the
big sizes of TSVs, which may aggravate the path delay and
power consumption, and may also lead to timing violations.
Therefore, the impact of TSVs should be carefully considered
in the design of 3-D clock network. In this paper, we mainly
focus on optimizing the TSV arrangement in the limited
whitespace.

A. Previous Work

Different from the 2-D clock network, the main challenge in
3-D clock network is to alleviate the negative impacts of TSV
and the vertical stacking processing on different design crite-
ria, such as reducing the power consumption, enhancing the
performance (e.g., skew and slew), increasing the robustness
under thermal and process variations, and ensuring the prebond
testability. Many literatures spring up in the past few years in
the field of 3-D CTS, which mainly focus on zero (bounded)
skew [4]-[6], low power [5], [7]-[9], robustness [10]-[13],
and prebond testability [8], [9], [14]-[16].

In one of the most representative methods, Minz et al. [17]
generated a 3-D clock tree considering the number of TSVs
by defining a TSV bound between adjacent dies in their
3-D method of means and medians (3-D-MMMs) algorithm.
The basic idea is to recursively divide the given sink set
into two subsets until each sink belongs to its own set. The
division is based on the TSV bound, which is also divided
according to the ratio of the estimated number of TSVs in each
subset. The 3-D-MMM-ext algorithm [7] gives the optimal
number of TSVs to minimize the overall power consumption.
Kim et al. proposed MMM-3-D algorithm [18], which uses
a designer-specified parameter p (0 < p < 1) to control the
partition direction. If the half-perimeter wirelength of a subset
is smaller than pL (where L is the half-perimeter wirelength
of all the sinks), z-cut is executed. They also proposed a
solution called ZCTE-3-D to solve the zero skew clock tree
embedding problem, which can give the best TSV allocation
and placement result for a given tree topology. These top-
down methods could control TSV counts but are not able to
accurately predict TSV locations.

In the aforementioned previous works, there is still little
effort on solving the challenge induced by the large TSVs
in the 3-D clock network. Zhao and Lim [19] solved a
practical 3-D clock routing problem which considered the
obstacles induced by different TSVs, such as P/G, signal,
and clock TSVs. They developed a TSV-induced obstacle-
aware deferred-merge embedding (DME) method to construct
a buffered clock tree which can avoid those obstacles with the
help of newly defined merging segments. In practice, besides
the TSV-induced obstacles, the IP-based designs may also
lead to many other obstacles to prevent the TSV insertion.
Generally, only a few whitespace blocks are reserved for clock
TSVs after floorplan and placement are determined in IP and
standard cell-based designs. Long wire detour is inevitable
in such scenarios. Taking the available whitespace blocks
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rather than the obstacles as the constraints can reduce the
design complexity and enhance the performance. Thus, a novel
whitespace-aware 3-D CTS algorithm is necessary.

Another issue in the previous works is that the TSVs are
only simplified as 2C-R [7], [17], [18], [20] model, which
underrates the impact of TSVs on the 3-D clock network.
Meanwhile, fruitful work has been done to model the parasitic
and coupling effects of TSVs, such as [21]-[26] focusing
on the TSV-to-TSV coupling effects in device or full-chip
level, and [27] focusing on the TSV to active circuit coupling
effect. In digital 3-D ICs, the TSV-to-TSV coupling effect is
much more significant, which may lead to timing violations
and extra power consumption. However, little work has
been conducted to evaluate the coupling effect of adjacent
TSVs when constructing the 3-D clock network, and it is
a challenging task to build a high-performance 3-D clock
network while alleviating the TSV-to-TSV coupling effect in
the limited whitespace blocks.

B. Our Contribution

As mentioned before, the number and locations of TSVs
are crucial and only a few whitespace blocks are available for
clock TSVs during 3-D CTS. None of the existing methods
still works efficiently in this scenario. In this paper, we propose
a whitespace-aware TSV arrangement algorithm in 3-D CTS.
The main contributions are summarized as follows.

1) We formulate the whitespace-aware TSV arrangement
problem in 3-D CTS and propose a practical and efficient
algorithm to solve the problem. Furthermore, we propose
a whitespace-aware 3-D CTS flow in Section III.

2) The proposed algorithm is made up of three stages: first,
a distance-aware sink preclustering algorithm, which dis-
tributes the sinks to nearby whitespace blocks; second,
an extended version of the 3-D-MMM clock tree topol-
ogy generation algorithm named as TSV whitespace-
aware 3-D-MMM (TWA-3-D-MMM for short), which
ensures that each sink set contains whitespace blocks;
and third, a DME merging segment reconstruction
algorithm, which brings convenience to routing and
TSV arrangement.

3) Unlike previous 3-D CTS methods which simplify the
TSV as a 2C-R model, in this paper, we leverage
the TSV-to-TSV coupling model to evaluate the TSV
parasitic/coupling effects, and propose an efficient clock
TSV arrangement method to alleviate the TSV coupling
effects.

4) We investigate the relation between whitespace area,
TSV number, and the main CTS quality criteria such
as power, skew, and slew rate by comparing our method
with the traditional 3-D-MMM based CTS with TSV
moving adjustment. We apply our method to the main-
stream ISPD benchmarks and real industry cases; the
experimental results show the superiority of our method,
which can achieve an average skew and power reduction
of 49.2% and 1.9%, respectively.

The rest of this paper is organized as follows. Section II
presents the preliminaries and problem formulation
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Fig. 2. Models. (a) F2B stack. (b) TSV between Die(k) and Die(k + 1) is
only restricted by the whitespace blocks on Die(k).

of 3-D CTS. Section III illustrates the detailed algorithms of
our proposed whitespace-aware 3-D CTS. Our experimental
setup and experimental results are presented in Section IV.
Finally, we summarize the work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Electrical Model of 3-D Clock Network

Die: For a N-die stacked 3-D clock design, we number the
dies as Die(0), Die(1), ..., Die(N —1) in a top-down manner,
the die on which the clock source is located is named as the
source die. For simplicity, we set the clock source on Die(0)
in this paper.

TSV: TSV between nonadjacent dies is composed of several
TSVs between adjacent dies. In this paper, we model the
TSVs with the TSV-to-TSV coupling effect. The detailed
coupling model between two adjacent TSVs is presented in
Section II-B.

TSV Whitespace Block: With current technologies, the
diameter of TSV is very huge compared with gates and
memory cells, therefore only a few whitespace blocks can
be reserved for TSVs before CTS. TSV whitespace blocks
exist between IP blocks, and they can be modeled as discrete
whitespace blocks. In a N-die face-to-back (F2B) stack case
as shown in Fig. 2, TSVs between Die(k) and Die(k 4 1) are
only restricted by the whitespace blocks on Die(k) [28]. Note
that TSV whitespace on the last die, that is, Die(N — 1) is
useless. For simplicity, TSV whitespace (blocks) is referred to
as whitespace (blocks) hereafter.

B. TSV-to-TSV Coupling Model

In 3-D ICs, the coupling effect between two adjacent TSVs
could be significant because of the big sizes of TSVs. This
TSV-to-TSV coupling could lead to extra delay or power,
and timing violations. In this paper, we adopt the simplified
equivalent lumped model of two coupled TSVs [23] to evaluate
the impact of TSVs on the 3-D clock network. The model of
two coupled TSVs is shown in Fig. 3. We use the following
simplified formulas to calculate the capacitances and the
resistances:

Crsy = %m(zgs% x Itsv (D
TSV

Csi = 808si2(rTsv T dtOX) R x Itsv (2)

CBump = £ofr X T X IBump X [Bump (3)

d— ZrBump
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Fig. 3. TSV-to-TSV coupling model.
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where ¢ and &g are the dielectric constant of vacuum and
silicon, a is the scaling factor, rrsy and [tsy are the
TSV radius and height, rBump and /gump are the radius and the
height of a bump, rox is the thickness of the insulator, and
d is the distance between two TSVs. To explore the latency
induced by TSV coupling effect, we apply a pulse signal to
one TSV and treat the other TSV as victim, then simulate
the equivalent circuit model in SPICE with the parameters
defined by Chaabouni ef al. [25]. The simulation result shows
that the latency through a TSV can be reduced by 65%, if the
distance to adjacent TSV is increased from 11 to 100 gm. This
TSV-to-TSV coupling-induced latency uncertainty may induce
timing violations in 3-D digital ICs.

C. Problem Formulation

The formal definition of whitespace-aware TSV arrange-
ment problem in 3-D CTS is as follows. Given some
whitespace blocks W, a set of clock sinks S, a TSV bound
Brsy, and a slew rate bound Bsjey, the objective is to construct
a single clock tree such that: 1) the number of clock TSVs,
that is, TSVNum < Btsv; 2) each clock TSV is located in the
whitespace blocks without overlap; 3) clock slew rate is under
Bsiew; and 4) clock skew and clock power are minimized.

III. ALGORITHM
A. Overview of Our Proposed Method

Our proposed TSV whitespace-aware 3-D clock synthesis
mainly consists of three stages: 1) sink preclustering; 2) TSV
whitespace-aware 3-D-MMM clock tree topology generation;
and 3) DME merging segment reconstruction stage. In the
sink preclustering stage, sinks far away from their related
whitespace are clustered to form subtrees, only the root node
of the subtree is reserved and treated as a new sink. In the
TWA-3-D-MMM clock tree topology generation stage, we
extend the 3-D-MMM method by judging whether the current
x/y-cut between multiple dies is appropriate such that each
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Fig. 4. Proposed whitespace-aware 3-D CTS flow.

sink set contains whitespace blocks. In the DME merging
segment reconstruction stage, we modify the merging seg-
ment of the internal nodes having TSVs by considering TSV
geometries and whitespace occupation, which would benefit
detail routing and TSV arrangement. By integrating a slew-
aware buffering stage, we further present a whitespace-aware
3-D CTS flow in Fig. 4. The computational complexity of our
proposed method is O (mn) where n and m are the number of
clock sinks and number of whitespace blocks, respectively.

B. Sink Preclustering

Because the reserved whitespace blocks for TSV insertion
are relatively narrow and small, and the clock sinks are widely
distributed, there may be a long distance between sinks and
whitespace blocks. Ignoring the available whitespace blocks
during 3-D clock network and then moving the TSVs into the
whitespace would lead to wirelength overhead and potential
skew increase.

To solve this problem, an intuitive method is to distribute
sink nodes closer to the whitespace, which is called sink
preclustering. The preclustering algorithm proposed in this
paper is shown in Fig. 5. First, we put all whitespace blocks
from different dies on a plane and name it as a whitespace
set. Second, for each die, we calculate the minimal distance
from each sink to the whitespace set through an exhaustive
search and assign the sinks to their nearest whitespace blocks.
Third, we use a designer-specified parameter f to control sink
preclustering. For each die, sinks that have a longer distance
from their related whitespace block than the value fL (where
L is the half-perimeter wirelength of the die) need to be
clustered. For each sink cluster, we generate a subtree by using
the classical method of means and medians (MMMs) [29]
and DME [30] for clock tree topology generation and detail
routing. The root of the subtree is treated as a new sink with
its latency and downstream capacitance as input delay and
capacitive load, while all the original sinks in the cluster are
removed from the sink set. After preclustering, the sink set
that contains nonclustered sinks and cluster roots is set as the
new constraint to construct the whole 3-D clock network.
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C. TSV Whitespace-Aware 3-D-MMM

The basic idea of the famous 3-D-MMM algorithm is to
recursively divide the given sink set and related TSV bound
into two subsets until each sink belongs to its own set. TSVs
are necessary when merging nodes on different dies. The algo-
rithm tends to use as many TSVs as the giving bound permits,
but in terms of whitespace, this division may cause serious
problems. In Fig. 6(a), under current y-cut, sink s1 and s2 from
different dies are divided into a subset with no whitespace in
it, so a TSV is inserted and moved into the nearest whitespace,
which leads to longer wirelength. To deal with this problem,
we modify the 3-D-MMM algorithm and extend it to the
TWA-3-D-MMM algorithm by judging whether the current
x/y-cut between multiple dies is appropriate considering
whitespace. The pseudocode of the proposed TWA-3-D-MMM
method is shown in Fig. 7. In line 2, we initialize the subsets
S1 and S2. In lines 3 and 4, if the current sink set contains
only one node, which means it is a sink itself, then return.
If not, we execute x/y-cut and divide the current sink set and
TSV bound into two subsets when sinks in the current set
are on different dies. Then, we come to the most important
judging procedure (line 11) in our algorithm.

Assuming sink set S is divided into two subsets
S1{s11, 812, ...,51;} and S2{s21,22,...,52;} under current
x/y-cut, and the maximum and minimum die number of
sinks in S1 and S2 are dmax1, dminl > dmax2> dmin2, respectively.
In multiple die case, dmaxi # dmin1 and dmax2 # dmin2-
For subset S1, all sinks have to be connected, which means
TSVs are needed between adjacent dies from Die(dmini)
to Die(dmax1), so subset S1 should contain whitespace on
Die(dmint), Die(dmin1 + 1), . .., Die(dmax1 — 1), and so should
subset S2. If one of the subsets does not meet the whitespace
constraints, the current cut is canceled and marked to be
z-cut, which usually happens near the leaf level of the clock
tree. Fig. 6 shows a judging example.

1) When executing current y-cut, there is no whitespace in
sink subsets {s1, 52}, so the TSV-related parent node a of
sinks s1, s2 is initially arranged outside the whitespace
and should be moved to the nearest whitespace, which
would incur longer wirelength and lead to potential skew
increase.

2) Because there is no whitespace in sink subsets {s1, s2},
we change current cut to z-cut, so the TSV is arranged
into whitespace without longer wirelength.

3) When judging current y-cut, subset S1 has no
whitespace in Die(k 4 1), so current cut is canceled and
changes to z-cut.

4) Both subset S1 and S2 has whitespace in Die(k) and
Die(k + 1), so current cut is valid.

D. DME Merging Segment Reconstruction

There are two phases in the classical DME clock routing
method: 1) a bottom-up phase computes all feasible locations
for the roots of recursively merged subtrees, saved as related
merging segments; and 2) a top-down phase then resolves
the exact embedding of these internal nodes [30]. For those
internal nodes with TSVs, their related merging segments need
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TSV Whitespace-aware 3D-MMM Topology Generation (TWA-3D-MMM)
Input: clock sinks, TSV bound, TSV whitespace, cutDirection
Output: a rooted 3D clock tree topology

1 TWA-3D-MMM (sinkset S, TSV bound B, Whitespace blocks W, cutDirection C)
2 S1 and S2 = subset of S;

3 if (|S| = 1) then

4: ‘ return root(S);

5: else if (B |= 1 or stack(S) = 1) then

6: if (C = x-cut) then

7 x-cut(S, St1, S2);

8: C = y-cut;

9: Find B1, B2, such that B1 + B2 = B;
10: if (C = y-cut) then

11: y-cut(S, St1, S2);

12: C = x-cut;

13: Find B1, B2, such that B1 + B2 = B;
14: if (B != 1) then

15: if (there is no W in S1 or S2) then
16: cancel current cut;

17: C = z-cut;

18: B=1;

19: if (B = 1 and stack(S) > 1) then

20: z-cut(S, S1, S2);

21: B1=B2=1;

22: root(S1) = TWA-3D-MMM(S1, B1, C);

23: root(S2) = TWA-3D-MMM(S2, B2, C);

24: leftChild(root(S)) = root(S1);

25: rightChild(root(S)) = root(S2);

26: return root(S);

Fig. 7. Pseudocode of our TWA-3-D-MMM.

to be reconstructed and settled into whitespace. In this paper,
by leveraging the previously discussed TSV-to-TSV coupling
model in Section II, we propose a method to alleviate this
coupling effect of adjacent TSVs when arranging TSVs into
the available whitespace.

The TSV-to-TSV coupling effect would be much more
problematic, if there is voltage difference between the signals
on two adjacent TSVs. If signals on adjacent TSVs are
in-phase, the effective coupling capacitance (C; in Fig. 3) is
zero, resulting in a smaller latency through the TSVs. If signals
on adjacent TSVs are out-phase, the effective coupling capaci-
tance Cy; is nonzero, which would result in glitches and delay
variations in the signals, increasing the power consumption.
For the clock network of 3-D ICs, we find that the out-of-
phase coupling scenario mainly exists between adjacent clock
TSVs at different clock tree levels. Fig. 8 shows a simple
example to illustrate this effect. TSV3 and TSV4 are at the
first level of clock network, whereas TSV2 and TSVI1 are
at the second and third levels of clock network, respectively.
As shown in Fig. 8(c), because of the different arrival time at
each clock TSV, there will be voltage difference between these
clock TSVs for a portion of the clock cycle. Fig. 8(b) shows
that the TSV-to-TSV coupling effect, which is directly related
to the voltage difference between these adjacent TSVs, is also
proportional to the tree level difference of these clock TSVs.
For example, by using our proposed TSV whitespace-aware
3-D CTS method, TSV1, TSV3, and TSV4 are assigned into
one whitespace block as shown in Fig. 8(a). To construct a low
skew and balanced 3-D clock network, the distance between
TSV1 and TSV3 (or TSV4) should be carefully designed.

With the consideration of TSV geometries, the available
whitespace blocks, and the coupling effect of adjacent TSVs,
we propose a TSV arrangement method in whitespace blocks
to alleviate the noise and power consumption of 3-D clock
network. First, we divide the whitespace into many small
squares according to the TSV keepout zone as shown in
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Fig. 9. Then, for those internal nodes with TSVs, their related
merging segments need to be reconstructed and settled in
whitespace. We identify the available whitespace square which
has the smallest distance to the merging segment of the
internal node with TSV, and use the center of that whitespace
square as the temporary TSV location. All of the neighbor
whitespace squares are checked to see whether it has been
occupied by a TSV which causes large tree-level difference
with the present TSV. If such scenario happens, the initially
selected whitespace square for TSV insertion is abandoned,
and the whitespace square with the second smallest distance
to the merging segment is checked with the same procedure
until finding the proper location for the internal node with
TSV. Note that reconstructing the merging segment of one
child node may induce imbalanced latency between two child
nodes with the same parent node, which needs wire-snaking
to balance the latency.
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The center of the selected whitespace square is set as
the new merging segment, and the delay and downstream
capacitance of this segment are updated. This TSV movement
would lead to certain wirelength increase; however, with the
help of sink preclustering and TWA-3-D-MMM, merging
segments will be close to whitespace, minimizing the impact of
TSV moving. Once a whitespace square is used, it is marked
as occupied. After merging segment reconstruction, we can
execute the DME top-down embedding and generate the clock
routing result.

E. Slew-Aware Buffering

Clock slew rate control is of great importance for high-speed
clock design, because a large clock slew rate may cause extra
power consumption and potential timing violations. To ensure
the clock signal slew rate, we add a buffering stage to our
whitespace-aware 3-D CTS flow. Two kinds of buffers are
inserted: clock buffers and TSV-buffers [9]. Clock buffers
are inserted along the wire to control latency and slew rate,
whereas TSV-buffers are inserted just at each internal node
for prebond testability. Different from existing 3-D designs,
which focus on slew-aware buffer insertion during the bottom-
up embedding procedure of DME [7], [9], [31], our slew-aware
buffering is performed after clock routing, because it is easy
to achieve with an O(n) computational complexity. In our
slew-aware buffering algorithm, clock buffers are added along
the clock paths so that the downstream capacitance of each
buffer is limited to the bounding condition, which is denoted
as CMAX in [7]. Long snaking wire paths also need to be
buffered. After initial buffer insertion, we insert redundant
buffers at the sink node to make sure the buffer numbers from
clock source to sinks are balanced. Then, we reduce the buffer
number in a bottom-up merging method, that is, two buffers
at each child node could be replaced with one buffer at the
parent node.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

We implement our proposed method by using C++
programming language on Linux environment with 3 GHz
processor and 4 GB memory. We use ISPD 2009 clock net-
work synthesis contest benchmark [32] and two-die stacking
for simplicity. In our experiments, we use technology para-
meters based on the 45-nm predictive technology model [33].
The parasitic resistance and capacitance of unit wire length
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Fig. 10. Clock solution under different whitespace area. Red points and black triangles: sinks and TSVs, respectively. Green rectangles: whitespace blocks.
(a) Number of blocks = 4, 3-D-MMM-DBM solution before TSV moving. (b) Number of blocks = 4, 3-D-MMM-DBM solution after TSV moving, with
longer wirelength. (c) Number of blocks = 4, ours. (d) Number of blocks = 55, 3-D-MMM-DBM solution before TSV moving. (¢) Number of blocks = 55,
3-D-MMM-DBM solution after TSV moving, with longer wirelength. (f) Number of blocks = 55, ours.

are 0.1 Q/um and 0.2 fF/um, respectively. The parameters of
the TSV-to-TSV coupling model shown in Fig. 3 are referred
to [25]. The TSV diameter with keepout zone is defined as
7.41 um [19]. The buffer parameters are defined as the input
capacitance is 35 fF; the output capacitance and resistance are
80 fF and 61.2 Q, respectively. Because these benchmarks
are originally designed for 2-D ICs, similar with previous
work [7], [17], we divide these benchmarks into two layers
and whitespace blocks are randomly generated between sinks.
In addition, the clock frequency is set as 2 GHz, and the supply
voltage is 1.2 V. Note that the runtime of our algorithm is
within seconds for all benchmarks.

In SPICE simulation [34], wires are segmented with 7
model and TSVs are modeled as shown in Fig. 3. Clock slew
rate is defined as the transition time from 10% to 90% of
clock signal at each sink and buffer input. The clock slew
rate requirement is 100 ps. The total wirelength of 3-D clock
network can be calculated through our proposed algorithm,
whereas the power consumption, clock skew, and clock slew
are evaluated with SPICE simulation. The unit of wirelength,
power, skew, and slew are reported in mm, W, ps, and ps,
respectively.

B. Result Analysis

1) Impact of TSV Whitespace Area: We construct and
simulate the entire 3-D clock tree by our proposed method
on benchmark ispd09f11. To explore the impact of TSV
whitespace on 3-D clock network, we widely change the
number and area of the whitespace blocks, as shown in
Fig. 10. Alternatively, we also implement the solution based on

3-D-MMM, DME routing, and buffering algorithm, which is
named as 3-D-MMM-DBM hereafter. To deal with situations
that internal nodes with TSVs are not arranged in the
whitespace blocks, we simply move these internal nodes with
their related TSVs into the nearest whitespace block, which
may significantly increase the wirelength.

In Table I, it can be observed that the 3-D-MMM-DBM
method is strongly influenced by the number and the area
of the whitespace blocks. When fewer whitespace blocks are
allowed, such as those shown in Fig. 10(a) and (b), TSVs have
to be moved for a long distance. Although the performance of
the 3-D-MMM-DBM is relatively good before TSV moving,
moving TSVs into the whitespace blocks leads to extra power
and increased skew, and also causes slew violations. The long
wirelength induced by TSV moving, however, can be signifi-
cantly reduced when whitespace blocks are widely distributed
over the whole die as shown in Fig. 10(d) and (e), because
there are more choices for TSV arrangement. Our proposed
3-D CTS solution tends to arrange each TSV in the whitespace
blocks as expected, as shown in Fig. 10(c) and (f), resulting
in better skew/slew/power, especially for scenarios with fewer
and smaller whitespace blocks (which are more practical), as
shown in Table I.

2) Exhaustive Search Results for TSV Bound: To explore the
impact of TSV bound on 3-D clock network, we exhaustively
sweep the TSV bound from 1 to 50 for the ispd09fll
benchmark with 16 whitespaces. As shown in Fig. 11, with the
increase of TSV bound, the traditional 3-D-MMM-DBM solu-
tion suffers from severe power and skew problems, whereas
our method shows consistent good results. This behavior
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TABLE I
IMPACT OF DIFFERENT WHITESPACE AREA ON THE NUMBER OF TSV, SKEW, POWER, AND SLEW BETWEEN
3-D-MMM-DBM METHOD AND OUR PROPOSED METHOD (TSV BOUND IS SET TO BE 20, Block Ny, AND
TSVNum ARE THE NUMBER OF WHITESPACE BLOCKS AND TSVs, VIO IS THE SLEW VIOLATION)

Blocknum 3D-MMM-DBM before TSV moving 3D-MMM-DBM after TSV moving Our method
(area%) TSV Skew Power | Slew TSV Skew Power | Slew TSV Skew Power | Slew
Number (ps) (W) Vio Number (ps) (W) Vio Number (ps) (W) Vio
4(4.11%) 20 23.805 | 0.299 N 20 175.784 | 0.358 Y 2 28.575 | 0.294 N
9(5.64%) 20 23.805 | 0.299 N 20 148.983 | 0.336 Y 9 41282 | 0314 N
16(10.03%) 20 23.805 | 0.299 N 20 55.135 0.314 N 14 40.088 | 0.308 N
29(12.86%) 20 23.805 | 0.299 N 20 83.057 0.309 N 18 32.448 | 0.309 N
36(14.47%) 20 23.805 | 0.299 N 20 40.938 0.304 N 19 26.410 | 0.310 N
55(16.23%) 20 23.805 | 0.299 N 20 33.221 0.302 N 20 32.013 | 0.302 N
131(19.79%) 20 23.805 | 0.299 N 20 22.977 0.301 N 20 25.334 | 0.302 N
0.35 -
0.365 e POwer-3D-MMM-DBM 200 Whitespace Block Number (Area%)|
——t=— Power-ours 180 _0.33 A
0.345 9
skew-3D-MMM-DBM 160 % le(100%%)
o
=z = == skew-ours - 140 3 031 3 S
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2 H S 0.29 799 )
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Fig. 12. Power consumption with different TSV bounds [1, 130]
TSV Bound and with different whitespace area for our proposed whitespace-aware
3-D CTS method.
Fig. 11.  Skew and power trends for ispd09f11 with different TSV bounds

[1, 50] for both 3-D-MMM-DBM and our method.

happens because a larger TSV bound means more TSV moving
adjustments, which may worsen the unbalanced clock latency.

We also implement our proposed whitespace-aware
3-D CTS method with different whitespace area as shown in
Table I and sweep TSV bound in a much larger range from 1 to
130 to explore the impact of TSV bound and whitepace area on
the power consumption and skew. An ideal case with unlimited
whitespaces, which means the TSV can be placed anywhere,
is defined as the baseline. As shown in Fig. 12, in most
cases, the power consumption is decreased with the increase of
TSV bound. The power consumption is also decreased with
more whitespaces, because more whitespaces provide more
flexibility for the TSV placement. Meanwhile, the skew is
also improved with more whitespaces as shown in Fig. 13.
Note that in real 3-D IC designs, although reserving more
whitespaces for clock TSV insertion tends to improve the skew
and power consumption, the induced area overhead should be
carefully evaluated.

3) B of Preclustering: As illustrated in Section II, f
plays an important role in cluster generation. Actually, there
exists a fmax beyond which preclustering is meaningless.
This phenomenon is easy to understand because when £ is
sufficiently large, none of the sinks needs to be clustered.
We can find the longest distance from the sinks to their
related whitespace blocks and calculate fpa.x. A sweeping

45 4 Whitespacg Block Numbeg,Area%)
40 4 \
16 (10.03%) — x 1
35 A S
36 (14.47%)
30 4 131(19.79%)
m
£ 25 4
=
2 204
%)

15 A

10 1
Unlimited (100%)

1 10 20 30 40 50 60 70 80 90 100110120130
TSV Bound

Fig. 13. Skew with different TSV bounds [1, 130] and with different
whitespace area for our proposed whitespace-aware 3-D CTS method.

result shown in Fig. 14 reveals that the preclustering should
be implemented carefully because a bad choice of f would
unnecessarily cluster too many sinks, and affect topology and
routing results. Practically, f in the range from 90% to 99%
of the fmax provides appropriate results.

4) Wirelength, Skew, and Power Results: To fully explore
the comparison of our method with 3-D-MMM-DBM, much
more cases are examined with other benchmarks in ISPD09
contest [32], as shown in Table II. In all cases, the whitespace
area is set to be around 10% of the whole die area with more
than ten whitespace blocks. The results shown in Table II
demonstrate that our method has no slew violations while
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TABLE II
IMPACT OF DIFFERENT TSV BOUND ON DIFFERENT BENCHMARKS BETWEEN 3-D-MMM-DBM AND OUR METHOD

Benchmark Blocknym TSV 3D-MMM-DBM Our method
and Area (%) | Bound | skew | Power | Slew | Wirelength | Skew | Power | Slew | Wirelength
(Ps) W) Vio (mm) (ps) W) Vio (mm)
1 18.4 | 0.295 N 185.09 17.5 0.295 N 185.37
ispd0911 16 (10.57%) 10 472 | 0.305 N 171.98 37.6 0.305 N 174.81
20 55.1 0314 N 171.34 40.1 0.308 N 169.76
1 219 | 0.279 N 164.44 21.9 0.279 N 164.93
ispd09f12 15 (9.66%) 10 78.8 0.286 N 150.74 27.0 0.282 N 157.87
20 639 | 0.291 N 196.44 323 0.285 N 158.17
1 264 | 0.299 N 199.86 272 0.300 N 199.43
ispd09f21 15 (9.97%) 10 149 0.308 Y 196.78 48.1 0.295 N 193.42
20 196 0.341 Y 208.49 46.4 0.302 N 191.47
1 299 | 0.238 N 132.56 254 0.238 N 133.01
ispd09£22 12 (7.36%) 10 70.5 0.229 N 121.52 40.2 0.233 N 126.32
20 67.6 | 0.239 N 140.39 55.1 0.239 N 126.21
Average / / 68.7 0.286 / 169.97 34.9 0.280 / 165.06
0.5 Total Power Skew I 223 e POWer-unoptimized = = =< Power-optimized
260 0.35 L skew-unoptimized Skew-optimized
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Fig. 14.  Clock skew and power trends for ispd09fl11 based on different
£ values: from 0% to 100% of the fmax.

3-D-MMM-DBM does. Meanwhile, our method achieves
an average skew reduction of 49.2%, an average power
reduction of 1.9%, and an average wirelength reduction of
2.9%, respectively. Because all the TSVs must be restricted to
the whitespace blocks, the unavoidable longer wires aggravate
the clock skew, while our method can minimize the skew
degradation and reduce the wirelength, slew violations, and
power consumption. Note that although only two-layer stacked
case is implemented for simplicity, our proposed whitespace-
aware 3-D CTS method can be applied for cases with more
stacked layers.

5) Analysis of the TSV-to-TSV Coupling in 3-D CTS: To
evaluate the coupling effect of adjacent TSVs in 3-D CTS,
we implement the TSV-to-TSV coupling model presented in
Section II and TSV-optimized arrangement method presented
in Section III-D into our proposed flow. After exhaustively
sweeping the TSV bound from 1 to 50, as shown in Fig. 15,
considering the coupling effect of adjacent TSVs can further
improve the skew and power consumption. Specifically, the
improvement on the skew and power is more significant
with the increase of TSV bound, while the area and number
of whitespace blocks are kept unchanged. This phenomenon
happens because more TSVs in the limited whitespace would

[1,50] with or without optimizing TSV-to-TSV coupling effect.

aggravate the coupling effect of adjacent TSVs, if TSVs are
not optimally arranged.

To evaluate the parasitic impact of TSVs on timing, we
extract a last level tree from the whole 3-D clock network
implemented with a real industry benchmark, which consists
of one pair of sink nodes and a driving buffer as shown
in Fig. 16. The wire length from the sink node to the
parent node is 3.5 um. The load capacitance for the sink
node is 0.538 fF. The experimental result shows that the
parasitic effect of a single TSV can induce about 20 ps
latency variation (from 7 to 27 ps). Note that for the whole
3-D clock network, the latency from the clock source to the
clock sink is about 400 ps, whereas the skew is only 10 ps.
Therefore, neglecting the parasitic effect of TSVs may lead
to severe timing degradation, especially for the paths with
more TSVs.

6) Verification With Real Industry Benchmarks: To further
verify our 3-D CTS method, we also implement the proposed
method with two real industry cases, one with 739 clock
sinks and the other with 11447 clock sinks. Both of them
are modules in AMD GPU processors. The distribution and
information of all clock sinks are extracted from the original
2-D IC design. Then, we partition them into two layers
and mark the available whitespace blocks for clock TSV
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Fig. 16. Parasitic effect of TSV-induced latency. (a) The path latency without
TSV. (b) The path latency with one TSV inserted in the left edge.
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Fig. 17. Red points and black triangles: sinks and TSVs, respectively.
Green rectangles: whitespace blocks. (a) With 739 clock sinks, traditional
3-D-MMM-DBM  solution with TSV moving, which induces longer
wirelength. (b) With 739 clock sinks, our proposed TSV whitespace-
aware 3-D CTS solution. (c¢) With 11447 clock sinks, the traditional
3-D-MMM-DBM solution with TSV moving. (d) With 11447 clock sinks,
our proposed whitespace-aware 3-D CTS solution.

insertion according to the floorplan as shown in Fig. 17.
With these industry benchmarks, we compare our proposed
TSV whitespace-aware 3-D CTS method with the traditional
3-D-MMM-DBM method. First, for these two cases, we
set the TSV bound as 20 and 100, respectively. According
to the results shown in Fig. 17(a) and (c), the traditional
3-D-MMM-DBM solution tends to use as many TSVs as the
given TSV bound permits and leads to many longer wires
due to moving TSVs into the limited whitespace blocks.
In contrast, as Fig. 17(b) and (d) shows, our proposed solution
uses only 2 and 42 TSVs, respectively, and can achieve better
wirelength, skew, and power consumption. In addition, for the
first case with 739 clock sinks, we explore the impact of TSV
bound by sweeping the TSV bound from 1 to 50. The results
in Fig. 18 show that for both the traditional 3-D-MMM-DBM
and our methods, with the increase of TSV bound, the skew
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Fig. 18.  Skew and power trends for a real industry benchmark based on

different TSV bounds [1, 50].

and power consumption tend to be aggravated when TSV
bound is larger than 15, that is, because of the excessive long
wires induced by moving TSVs into the limited whitespace
areas for the traditional 3-D-MMM-DBM method, and
extra wire-snaking overhead when reconstructing merging
segment in our proposed method. However, our proposed
method still shows much more superiority than the traditional
3-D-MMM-DBM method with the increase of TSV bound.

V. CONCLUSION

In this paper, we formulate the whitespace-aware TSV
arrangement problem in 3-D CTS and propose a practical
and efficient algorithm to solve this problem. The algorithm
consists of three stages: sink preclustering, TWA-3-D-MMM
topology generation, and DME merging segment reconstruc-
tion. By leveraging the TSV-to-TSV coupling model, we
also propose an efficient clock TSV arrangement method to
alleviate the coupling effect of adjacent TSVs. Experiment
results show that our method is more practical and efficient,
compared with the traditional 3-D-MMM method with TSV
moving adjustment.
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