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Abstract—Stereo vision is a well-known technique for
acquiring depth information. In this paper, we propose a real-
time high-quality stereo vision system in field-programmable gate
array (FPGA). Using absolute difference-census cost initializa-
tion, cross-based cost aggregation, and semiglobal optimization,
the system provides high-quality depth results for high-definition
images. This is the first complete real-time hardware system that
supports both cost aggregation on variable support regions and
semiglobal optimization in FPGAs. Furthermore, the system is
designed to be scaled with image resolution, disparity range, and
parallelism degree for maximum parallel efficiency. We present
the depth map quality on the Middlebury benchmark and some
real-world scenarios with different image resolutions. The results
show that our system performs the best among FPGA-based
stereo vision systems and its accuracy is comparable with those
of current top-performing software implementations. The first
version of the system was demonstrated on an Altera Stratix-IV
FPGA board, processing 1024 x 768 pixel images with
96 disparity levels at 67 frames/s. The system is then scaled
up on a new Altera Stratix-V FPGA and the processing ability
is enhanced to 1600 x 1200 pixel images with 128 disparity levels
at 42 frames/s.

Index Terms—Field-programmable gate array (FPGA),
hardware accelerator, high-quality depth map, stereo vision.

I. INTRODUCTION

TEREO vision is an active research area in computer
S vision, as it is widely used in many applications. Usually,
a stereo vision system has two cameras to capture two different
images. Stereo matching is a key function of a stereo vision
system. The purpose of stereo matching is to search for
disparities between corresponding pixels in stereo images
to make the cost function achieve minimum results among
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all disparities. Then the depth could be calculated from the
inverse of this disparity. Stereo matching is a complicated and
time-consuming procedure, which makes it hard to process in
real time on a CPU. Current research efforts on stereo vision
focus on the depth accuracy and processing speed of stereo
matching.

Stereo matching algorithms could be divided into two types:
1) local methods and 2) global methods [1]. Local methods
compute depth at a local region, usually on a fixed support
window; and global methods compute depth based on a global
cost optimization [2]. Because local methods use only local
information to minimize the cost function, the accuracy is
lacking in low-texture regions and occluded regions. While
global methods show better results on these regions [2], they
are not easily implemented using dedicated hardware because
they cause huge pressure on hardware resources due to huge
intermediate computing results and large volumes of irregular
data access. This is why the majority of existing hardware
implementations use local methods [3].

Most of the current acceleration works for stereo matching
just evaluated their accuracy on the Middlebury low-resolution
benchmark [4]. However, the implementation cannot always
maintain a good depth quality when the scenario or the
image resolution changes. In this paper, we focus on both
depth quality in different scenarios and processing speed for
high-definition images. We are motivated by the absolute
difference (AD)-Census algorithm [5], which has ranked first
on the Middlebury benchmark [4] since 2011. AD-Census is
a combination of several existing state-of-the-art technologies.
We examine the major hypotheses of these key technologies
and further optimize them for hardware implementation on
field-programmable gate array (FPGA), which are discussed
in Sections III and IV. We discuss processing speed and depth
quality in different scenarios in Section V.

The major contributions of this paper are as follows.

1) We propose a hardware-friendly stereo matching
algorithm, optimizing it for high depth quality and
real-time processing at high resolutions. This is the
first complete real-time hardware system that supports
both cost aggregation on variable support regions and
semiglobal optimization on FPGA.

2) We propose a sophisticated hardware architecture with
optimized parallelism scheme to accelerate the proposed
algorithm. The hardware implementation is fully
parameterized and could easily be scaled up. A novel
semiglobal optimization structure that could support
hybrid parallelism is proposed.
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3) We develop a prototype on Altera EP4SGX230 FPGA
and upgrade to Altera SSGSMDS5H2 FPGA. The previ-
ous version achieves 67 frames/s for 1024 x 768 pixel
images and the upgraded version achieves 42 frames/s
while processing 1600 x 1200 pixel images. The aver-
age error rate of the implementation on the Middlebury
benchmark is 5.61%, which is the best of all hardware
implementation works to our knowledge.

II. BACKGROUND AND RELATED WORK

As introduced in Section I, to achieve real-time processing,
dedicated hardware platforms have been used to accelerate
stereo vision systems. Most of the existing works use graphic
processing units (GPUs) and FPGAs as their acceleration
platforms. Developed in 2002, [6] was the first work to use
GPUs to accelerate depth estimation. Then there are some
papers on GPU accelerations for stereo matching algorithms
using local methods. Among these works, the implementation
of [7] has the best speed performance, achieving 12 frames/s at
a 450 x 375 resolution with 64 disparity levels, and obtaining
a relatively good matching accuracy. Some researchers
have also tried to implement global methods on GPUs for
better quality. Yang et al. [8] and Wang et al. [9] use a
hierarchical belief propagation and an adaptive aggregation-
based dynamic programming separately to achieve
high-quality real-time processing. Rosenberg er al. [10]
implements semiglobal matching on GPUs at 8 frames/s for
320 x 240 pixel images with 64 disparities. The AD-Census
algorithm with scanline optimization was proposed and
implemented on GPUs in 2011 at a frame rate of about
10 frames/s with a 512 x 384 resolution and 60 disparity
levels. It presents the best depth quality in terms of the
Middlebury benchmark. Although GPU has proved to be an
attractive speedup platform for stereo matching, high power
consumption restricts its performance.

Compared with GPUs, FPGA has two advantages: 1) recon-
figurable processing units and customized memory hierarchies
and 2) low power. Jin et al. [11] and Gudis et al. [12] have
developed real-time stereo vision systems for 640 x 480
resolution images. Zhang et al. [13] combine the mini-census
transform and cross-based cost aggregation in their structure,
which achieves 60 frames/s at 1024 x 768 pixel stereo images.
Shan et al. [14] combine disparity-level parallelism and
row-level parallelism, achieving a 400 frames/s at 640 x 480
resolution with 128 disparity levels. Jin and Maruyama [15]
apply cost aggregation and fast locally consistent dense
stereo functions. They use Virtex-6 FPGA as the platfrom
and achieve 507.9 frames/s for 640 x 480 resolution images.
These works have achieved real-time processing; however,
to fit the algorithm on FPGAs, they used local methods
to compute disparities and have some limitations in large
no-texture regions. Thus, they cannot attain good quality
for high-definition images. Recently, some researchers
have started to implement stereo matching algorithms
using global methods on FPGAs for better performance.
Park and Jeong [16] and Sabihuddin et al. [17] implement
a trellis-based dynamic programming and a maximum-
likelihood dynamic programming methods on FPGAs
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TABLE I
EXPLANATION OF THE SYMBOLS IN THIS PAPER

Symbol Explanation
H,W Height and width of the image
Limaz Maximum arm length
Np Number of the disparity levels
dmaz Maximum disparity value (Np — 1)
(z,y,d) | (Row address, column address, disparity)
1(p) Intensity value of pixel p
Cr Initial cost
Cap AD cost
Ceensus Census cost
Cagg Aggregated cost
Ly Optimized path cost in direction r
Ctinal Final cost after semi-global optimization
Pp Disparity-level parallelism
Pr Row-level parallelism
in real-time. Jin and Maruyama [18] implement a

tree-structured dynamic programming on FPGA and achieves
better performance. Gehrig et al. [19] develop an FPGA
prototype using the semiglobal matching for automotive
applications. The most recent work for the semiglobal
matching is [3], which proposes a systolic-array-based
architecture to obtain a 30 frames/s performance for the
640 x 480 pixel images with a 128-disparity range. Both
focus on the semiglobal matching implementations and pay
little attention to the other functions of the system. Besides,
the influence of the image resolution is not fully discussed.

We have explored state-of-the-art stereo matching
technologies extensively and tried to develop an efficient
system to achieve better quality and real-time processing
speed for the high-definition images based on FPGA.

III. HARDWARE-FRIENDLY STEREO
MATCHING ALGORITHM

Stereo matching is the key component of the stereo vision
system. It aims to find the correspondence between the input
stereo images. In this section, we discuss the algorithm
selection and tuning considerations for a high-quality
hardware-friendly implementation. The symbols commonly
used in the paper are listed in Table L.

A. Key Algorithm Selection

Stereo matching aims to find the correspondence between
the input images captured in different views. In this paper, we
aim at a real-time stereo vision system with high depth quality
and high image resolution. Global methods usually provide
better depth map, but the computing complexity is also huge.
It is very difficult to achieve real-time processing even with
hardware acceleration, and thus local methods are selected as
the basic algorithm in this paper.

The basic idea of local methods is to determine the
correspondence by pixel-to-pixel comparison. Each pixel
p(x;y) in the left image is compared with multiple pixels
q(x—d,y),d =0,1,2,..., dnax in the right image. The most
similar one is selected as its corresponding pixel. However,
single pixel comparison is easily affected by noises or ambigu-
ities. Thus, two support regions S P (p) and S P(q) surrounding



1698

Vertical arm of p Vertical arm of p

Horizontal
arm of r

Horizontal
arm of p

}—Horizontal

arm of g
Support
region of p

=

Horizontal
armof p \

Fig. 1. Cross-based support region. The support region of pixel p is
composed of multiple horizontal arms. The maximum arm length is Lmax.

the processing pixels p and ¢ are compared instead.
The algorithm is usually divided into several basic steps:
1) cost initialization; 2) cost aggregation; 3) disparity
selection; and 4) postprocessing, as shown in (1)—(3). The cost
initialization step computes the initial cost C;(p, d), which
means the difference between pixel p and q. Then the aggre-
gated cost Cyee (p, d), wWhich represents the difference between
support regions SP(p) and SP(q), could be computed by
the aggregation of the initial costs in the support region.
After aggregation, the raw disparity dies(p) is selected with
a winner-takes-all (WTA) method. Finally, a postprocessing
step is applied to refine the raw disparity map

Ci(p.d) = diff(p. q) (1)
Cage(p. d) = diff(SP(p). SP(g)) = > Ci(g.d) (2)
qeSP(p)
dres(p) = argmin Cagg(Pa d). 3)
0=<d <dmax

Cost aggregation is the most important function in local
methods because it influences the computing complexity and
depth accuracy. A fixed rectangle support region is easy
to implement, but the depth map is often blurred in the
discontinuous regions. To maintain clear object edges, the
pixels with different depths should be excluded when con-
structing the support regions. Thus, the support region should
be variable in shape. However, the 2-D variable support region
makes cost aggregation more complex. To solve this problem,
a cross-based support region is adopted in this paper. The
cross-based support region was first proposed in [20], as shown
in Fig. 1. First, a cross is constructed for each pixel. The
cross consists of four adaptive support arms composed of
pixels similar in color to the central pixel. The support region
of pixel p is composed of all the horizontal arms of those
pixels in the vertical arm of pixel p. As an advantage of this
special structure, the aggregation could be divided into two
steps: 1) horizontal aggregation and 2) vertical aggregation.
This technology greatly reduces the computing complexity.

Fig. 2 shows the disparity maps of a 3-D video with dif-
ferent configurations. The original video [21] is captured by a
Sony HDR-TD10 Video Camera in a Natural History Museum
with a resolution of 1280 x 720. With a variable support region,
we could see that the depth becomes more accurate in the
discontinuous regions.

However, there are still problems after introducing variable
support region. First, there are some noisy pixels in the
disparity map. When the shape of support region is related
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Fig. 2. Depth results of a 3-D video. (a) Original image. (b) Result of
fixed support region. (c) Result of variable support region. (d) Result after
semiglobal optimization.
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Fig. 3. Disparity error rate with different Lygaxs. The original figure is the
baby data set in Middlebury benchmark [4].

to the pixel values, we find the noise could affect the support
region size and bring mismatched pixels. Second, there are
some mismatched holes in the disparity map. In the large
no-texture regions, the pixels in one support region have the
same value, and thus, the disparity values are hard to determine
due to the ambiguity. This problem could deteriorate with the
increasing of the image resolution. For example, there are
large mismatched holes in Fig. 2(c). A larger support region
size could solve part of this problem. As shown in Fig. 3, a
large Lmax has a certain improvement on the error rate, but
it is still worse than the algorithm with some global methods.
Besides, the resource utilization also increases with larger
support region. We find that the support region should be larger
than 100 x 100 to remove the mismatched holes, as shown
in Fig. 2(c). It will cause unacceptable resource utilization in
the cost aggregation step. Third, the disparity map computed
by the local method is not smooth even in the same surface.
These discontinuous regions usually mean mismatched pixels.

Global optimization is a better choice to further improve
the depth quality. As shown in Fig. 3, we can get high
depth quality without changing the arm length. However, the
computing complexity of global methods is unacceptable for
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Fig. 4. Average disparity error percentages after performing each algorithm step and tuning. (a)—(c) Disparity error rates in different regions (nonoccluded,
all, and discontinuous, respectively). (d) Average error rate of (a)—(c). S1: initial algorithm. S2: with cross-based variable support region. S3: with semiglobal
optimization. S4: with postprocessing. S5: after inverting aggregation sequence. S6: after simplifying semiglobal optimization directions. S7: after fixed-point

conversion.

real-time processing even with hardware accelerations.
To reduce the computing complexity, a semiglobal
optimization method is proposed in [7]. Instead of solving
a 2-D global optimization problem, the semiglobal method
simplifies the smoothness costs so that the costs could be
optimized along different directions separately, significantly
reducing the computing complexity. Semiglobal optimization
also requires many resources, but it is much smaller than
the resources that traditional global methods require, which
makes real-time processing possible. This has been proved
in [3]. With bigger FPGA and optimized hardware structure,
real-time semiglobal optimization for high-definition images
is practical. Thus, it is adopted in this paper for further
optimization of smoothness.

The semiglobal method improves the depth accuracy in
both subjective and objective evaluations. The depth map
of the 3-D video after semiglobal optimization is shown
in Fig. 2(d). There is no ground truth for the scenario, but we
could see that the depth map becomes more smooth and the
mismatched holes are removed. The objective evaluation based
on Middlebury benchmark [4] is shown in Fig. 4. We could
see that the disparity error rate is reduced by around 1.5%
with semiglobal optimization. Furthermore, semiglobal opti-
mization makes the system scalable to high-definition
scenarios. The high-definition images usually have more
no-texture regions, which may be larger than the maximum
support region. These no-texture regions are more likely to
be mismatched using the local stereo matching methods.
Applying semiglobal optimization, this problem could be
solved without tuning the parameters. The related evaluations
are performed in Section V-DI1.

B. Overall Algorithm Flow

To achieve high accuracy and fast processing speed,
we select cross-based cost aggregation and semiglobal
optimization as the key components. The final stereo matching
algorithm is composed of AD-Census cost initialization,

cross-based cost aggregation, semiglobal optimization,
disparity selection, and postprocessing.
1) AD-Census  Cost  Initialization: ~ As  discussed

in Section III-A, the cost initialization step computes

the difference between pixels in the left image and the
right image. A basic measurement of the initial cost
is AD, which represents the mean value of absolute color
differences, as shown in (4). AD is simple to implement, but
it is easily affected by the radiometric differences between
stereo cameras. To solve this problem, the census transform
proposed in [22] is adopted. It encodes the pattern of intensity
change into a vector and the initial cost is defined as the
hamming distance between census vectors. The assumption
that the color information is consistent between stereo images
is not needed in census-based cost initialization, and thus, it is
more robust to radiometric differences. In [5], the information
of AD and census transform are combined and it is proved
to be an efficient measurement of the initial cost. A robust
function is further applied and the final initial cost is the sum
of AD cost and census cost, as shown in

igh
Zi:R,G,B |Iileft(l7) - Iing t(P -, 0))|

Cap(p,d) = 3 “4)
C ,d
Ci(p.d) = 1 - exp (—%)
F1—exp(- Ceensus(P, d) . 5)
/1Census

2) Cross-Based Cost Aggregation: The initial costs are
aggregated in the cross-based variable support regions. As we
introduced in Section III-A, cross-based cost aggregation
could be performed by horizontal aggregation first and
vertical aggregation then. The computing procedure is

Cagah(p,d) = D Ci(q,d) (6)
g€HARM(p)

Cage (p,d) = Z Caggh(qa d). @)
gE€VARM(p)

HARM(p) and VARM(p) represent the horizontal arm and
vertical arm of pixel p, respectively. For each pixel p, the
initial costs are first aggregated in the horizontal direction as
the horizontal aggregated cost Cagen(p, d). Then the horizontal
aggregated costs are aggregated in the vertical direction as
the final aggregated cost Cage(p,d). The results are the
same as a straightforward 2-D aggregation, but the computing
complexity is greatly reduced.
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3) Semiglobal Optimization: Semiglobal optimization
optimizes the aggregated costs along different directions
separately. For direction r, the optimized cost is computed as

Ly(p,d) = Cagg(Pad)
+min{L,(p —r,d),L,(p—r,d £1)
+ Py, ming L (p — r, k) + P2}
—mingL,(p — r, k). )

The left term L,(p,d) represents the path costs in
direction r. P; and P, are penalties for disparity disconti-
nuities. The final optimized costs are the sum of all the path
costs

Conat(p,d) = D Ly (p, d). ©)

4) Disparity Selection and Postprocessing: After semi-
global optimization, we use the WTA method to find the best
disparity. The best disparity corresponds to the minimum cost

dres(p) = argmin Chpa (p, d). (10)

0=<d <dmax

A postprocessing step is applied to refine the disparity map.
The postprocessing is composed of outlier detection, outlier
handling, and sub-pixel interpolation. We begin by selecting
the L-R consistency check and uniqueness check to detect
invalid disparity results. A pixel is marked as an outlier if its
disparities in the stereo images are different or the minimum
cost and the second minimum cost of this pixel are too close.
For each outlier pixel, we find the nearest two reliable pixels
in the left and right directions. The smaller value of these
two pixels is selected as the disparity of the outlier. Finally, a
sub-pixel interpolation method is used to increase the accuracy
of the disparity map.

The average disparity error rate after performing each
algorithm step is shown in Fig. 4. We could see that the
cross-based support region and semiglobal optimization
greatly improve the depth accuracy. The final software
algorithm provides a disparity error rate of 5.09%.

C. Hardware-Oriented Algorithm Tuning

Most of the existing stereo matching algorithms are
developed in a CPU. Although we have considered the
implementation platform, there are still some difficulties in
putting the algorithm in FPGA. In this section, we discuss
the algorithm tunings to make the selected algorithm suitable
for hardware implementation. The accuracy loss caused by
the tunings is shown in Fig. 4. The final algorithm achieves
a disparity error rate of 5.61%. The algorithm tunings reduce
the depth accuracy of about 0.5%, but they make it possible
to implement the algorithm on FPGA.

1) Inverted Aggregation Sequence: A variable support
region is usually difficult to implement on FPGA. The selected
cross-based support region in Fig. 1 simplifies the structure,
but the resource utilization is still huge. The straightforward
implementation requires storing 2 X Lpax + 1 rows of the hor-
izontal aggregated costs to do vertical aggregation. The total
size of these costs is (2 X Lpax + 1) x W x Np X DWqegt,
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Fig. 6. Selected semiglobal optimization directions—right bottom, bottom,
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where DW o represents the data width of the costs. This is
too large for the on-chip memory. Zhang et al. [13] have
proposed a fixed vertical arm method to solve this problem
but it leads to significant accuracy degradation. We adopt the
inverted aggregation sequence method proposed in [23], which
does vertical aggregation before horizontal aggregation. The
benefit of this sequence is that we could buffer the pixel values
instead of the horizontal aggregated costs, reducing the total
memory size to (2 X Lyax + 1) X W x DWpxyaiwe, Where
DWpxvalue Tepresents the data width of the pixel value. The
inverted aggregation sequence means that the support region
is composed of multiple vertical arms, as shown in Fig. 5.
This support region is still 2-D variable and the accuracy loss
is acceptable (about 0.14% as shown in Fig. 4).

2) Semiglobal Optimization Simplification: The original
semiglobal method optimizes costs along 16 directions [7].
However, those directions opposite to the scan line dataflow
are hard to implement in FPGA. As shown in Fig. 6, when
optimizing pixel p along direction ry4, the results of pixel s
must be ready. Furthermore, while optimizing pixel s, the
results of pixel £ must be ready. We could find that the results
of the pixel in the bottom of the column must be ready
while optimizing pixel p. This is not suitable for a pipelined
hardware structure. In our system, only four directions are
chosen for the semiglobal optimization. The four directions are
right bottom(ro), bottom(ry), left bottom(ry), and right(r3),
as shown in Fig. 6. The previous pixel values m, n, ¢, and
v in these four directions could be utilized while optimizing
pixel p. The corresponding accuracy loss is about 0.3%, as
shown in Fig. 4.
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3) Fixed-Point  Conversion:  The original software
implementation is based on floating-point operations.
However, floating-point units are very expensive in FPGA.
Thus, we use fixed-point operations in the hardware. The
initial costs, the aggregation costs, and the final optimized
costs are all represented with 8-bit fixed-point data in FPGA.
This greatly reduces the resource utilization, while the
accuracy loss is acceptable (about 0.08% as shown in Fig. 4).

1V. HARDWARE IMPLEMENTATION OF STEREO MATCHING
A. Overall Design

In this section, we discuss the FPGA implementation of the
proposed stereo matching algorithm. Considering the hardware
implementation, there are two major challenges. The first chal-
lenge is to develop an efficient parallelism scheme to combine
the cross-based cost aggregation and semiglobal optimization.
We adopt a hybrid parallelism scheme proposed in [14]. This
parallelism scheme is efficient for the cost aggregation module,
but it could not be used in semiglobal optimization due to
the data dependency. It requires a huge buffer between the
two modules. To solve this problem, we further optimize
the parallelism scheme to reduce the buffer size. The second
challenge is to develop a semiglobal optimization structure
to support the proposed parallelism scheme. The disparity-
level parallelism is a big problem due to data dependency in
adjacent pixels. For example, the previous structure proposed
in [3] supports pixel-level parallelism only. We propose a novel
semiglobal optimization module to support both disparity-level
and row-level parallelisms.

The overall architecture of the stereo matching core is
shown in Fig. 7. The rectified image RGB (Red, Green, Blue)
data and the corresponding census vectors are buffered and
sent to the cost initialization module. The initial costs of these
pixels at a certain number of disparities are then computed.
Meanwhile, the arm length, which represents the size of the
cross, is computed. Then the initial costs and arm length are
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sent to the aggregation module to compute aggregated costs.
After aggregation, semiglobal optimization is applied to
improve the accuracy of the costs. Finally, the disparity result
is selected through the WTA module and refined through
postprocessing. To build a scalable architecture, the hardware
implementation is fully parameterized using the generate
statement in Verilog. Thus, the parameter settings could be
tuned to achieve the smallest resource utilization for different
workloads and different platforms.

The details of the hardware implementation are discussed
in Sections IV-B-IV-E. The optimized parallelism scheme is
discussed first as an overall introduction of the system design.
Then the implementation details of each module are discussed.

B. Parallelism Scheme

Most current hardware stereo vision systems process all
the disparities in parallel and process pixel by pixel using
progressive scan [11]-[13], as shown in Fig. 8(a). This par-
allelism scheme is simple to implement, but has been proved
inefficient in [14]. They introduce row-level parallelism, which
means that multiple pixels in adjacent rows are processed in
parallel. The new row-level parallelism leads to little resource
increase using data reuse technology. Then the disparity-level
parallelism degree could be greatly reduced when targeting
the same processing speed. For example, if Pr neighboring
pixels along the column direction are processed in parallel
and Pp disparities are processed in parallel for each pixel, we
only need to make sure the total parallelism degree Pr x Pp
is enough for real-time processing. Thus, Pp does not have to
be equal to Np. To get the costs for all disparity levels, each
group of Pg rows is processed for K = Np/Pp passes in
the cost aggregation module. In each pass, we could process
Pp disparities. Thus, we completely go through Pp x K = Np
disparities in K passes. The corresponding dataflow is shown
in Fig. 8(b).

The hybrid parallelism scheme in [14] reduces resource
utilization of the cost aggregation module. However, it is not
suitable for semiglobal optimization. As shown in (8), the
input aggregated costs Cagg(p, d) for all the disparity levels
must be ready when computing L(p, d). The required dataflow
in semiglobal optimization module is shown in Fig. 8(c). Thus,
the multipass dataflow of the aggregated costs in Fig. 8(b)
cannot be sent to the semiglobal module directly. A simple
solution is to add a cost buffer to rearrange the output
aggregated costs, which is adopted in [24]. The size of the
buffer is Pr x W x Np x DWqg X 2, where DW o represents
the width of the aggregated costs. The size is multiplied
by 2 because a ping-pong buffer is needed to support fully
pipelined processing. This buffer is quite huge. For example,
the total size of the buffer is about 6.3 Mbits if we set
W = 1024, Np = 96, Pg = 4, Weost = 8. Thus, it becomes
the main bottleneck for high-definition image processing.

To solve the problem, we further optimize the dataflow using
the hybrid parallelism scheme, as shown in Fig. 8(d). In our
design, we partition each row into multiple segments. These
segments are taken as an independent row of the hybrid paral-
lel processing scheme, which is computed in multiple passes.



1702

Single row,
N W-1 »
»
X
No R ——————— Single pass— — — — — — — >
disparities}
H Next row
s
v d
(@)
Pr r'uws‘\,"'
O-’ W-1 »
; X
AZJ | ) S R Single pass— — — — — — >
disparities}
H Next row
]
v d

(©)

Fig. 8.
(d) Proposed dataflow of the aggregated cost in this paper.

Thus, the size of the buffer to rearrange the aggregated costs
depends on the width of the segment, instead of the image
row. The new size is Pr X Wseg X Np X DWeost X 2, where
Weeg represents the width of each segment. Wgee could be
set much smaller than the width of the image, significantly
reducing the buffer size. The special data access pattern needs
a special design while fetching left and right image data from
line buffers; we discuss this later in Section I'V-C.

One problem caused by the proposed parallelism scheme
is the aggregation in the edge of the segment. Because of
the disparity and the support window, aggregation for pixel p
involves pixel p — (Pp + Lmax, 0) and pixel p + (Lmax, 0).
This means that Pp + 2 X Lpax extra cycles are needed
to load these extra pixels so as to preheat the processing
logic. For a whole row of the image, the preheating proce-
dure is always ignored because the pixels out of the image
border are unknown at all. However, after the partition, the
preheating procedure cannot be ignored. Thus, each pass for
one segment costs Wseo + Pp + 2 X Lmax cycles, which
means that the computing efficiency caused by preheating is
Wseg/(Wseg + Pp + 2 X Lmax).

C. Cost Initialization

The cost initialization module provides the initial costs for
the aggregation module. For the inverted aggregation module,
the initial costs of the up and down arms are needed at the
same time. To get these initial costs in parallel, we design
line buffers to fetch multiple pixels, as shown in Fig. 9. The
line buffer is composed of multiple block RAMs to build a
wide output port. RGB and census data are written to line
buffers progressively. As shown in Fig. 9, the colored block
RAMs are ready for output. A column of the image could
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rdaddrg
o :
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data =0 d=Pp-1
+k*Pp +k*Pp
Fig. 9.  Structure of the line buffers and the cost-initialization module.

The size of the buffer and the disparity-level parallelism degree Pp are
parameterized.

be read from the output port of the buffer. Then the needed
image and census data are selected out by the multiplexer
and sent to the computing units. In this paper, the initial
costs are represented with 8-bit fixed-point value. And the
exponential function in (5) is implemented by small look-up
tables in FPGA.

As we have discussed in Section I'V-B, the total Np disparity
levels are processed in K = Np/Pp passes. To process
different disparity ranges in different passes, we add different
biases to the read address of the right buffer rdaddrg. In the
kth path (k = 0,1,..., K — 1), the bias is set as k x Pp,
and rdaddrr = rdaddry — k x Pp. Thus, we could compute
the cost for d = k x Pp + j if we delay the output of the
right buffer for j cycles. For example, in the second pass,
rdaddr R should be equal to rdaddr; —2 x Pp, and we could
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Fig. 10. Structure of the cost aggregation
parameterized.

module. Pp and Pg are

compute the initial cost for d = 2 x Pp +2 with the output of
the left buffer and the two cycle-delayed output of the right
buffer. In our structure, we delay the output of the right buffer
for 0 to Pp — 1 cycles with a shift register array, as shown
in Fig. 9. Thus, the costs for d = k x Pp,k x Pp + 1,...,
k x Pp + Pp — 1 are computed in parallel in the kth path.
We could go through all the costs ford =0,1,..., Np — 1
in K passes.

D. Cost Aggregation

To solve the memory utilization problem caused by the
cross-based support region, we adopt the inverted aggregation
sequence method, which is proposed in [23]. To acceler-
ate cost aggregation, Zhang et al. [20] propose the integral
image, which reuses data between neighboring rows. Then,
Shan et al. [23] implement a hierarchal vertical aggregation
structure on FPGA to compute the integral image when doing
vertical aggregation. We also use this structure for fast and
efficient implementation.

The structure of the cost aggregation is shown in Fig. 10.
A total of Pp aggregation modules are generated to deal
with Pp disparities in parallel. In each module, Pr pixels
are processed in parallel. The initial costs are aggregated first
vertically and then horizontally. During the aggregation, the
pixel number in the support region is recorded. All aggregated
costs need to be divided by this pixel number for
normalization.

E. Semiglobal Optimization With Hybrid Parallelism

To match the optimized hybrid parallelism scheme, we
propose a new semiglobal optimization structure that supports
both disparity-level and row-level parallelism.

When implementing the disparity-level parallelism, the data
dependency is a problem for pipelined processing. As shown
in (8), the path costs L,(p) depends on the minimum of
Ly(p —r). In the direction right, pixel p is processed right
after p — r. The minimum of Np costs could not be computed
in one cycle. So there must be some additional free cycles
between the output of these two adjacent pixels.
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Fig. 12.  Dataflow of the semiglobal computing module. Here we take
K = Np/Pp = 8 as an example.

In the proposed parallelism scheme, the computation of
each pixel costs K = Np/Pp cycles. If the disparity range
is still partitioned into K groups and processed in pipeline,
there will be no free cycles. Thus, we increase the disparity-
level parallelism degree of the semiglobal optimization module
to solve this problem. The semiglobal disparity-level paral-
lelism degree is represented as ngbm and is currently set as
2 x Pp. The corresponding structure and dataflow are shown
in Figs. 11 and 12. The whole disparity range is partitioned
into K/2 groups. Thus, there are K/2 cycles between the
output of adjacent pixels. These free cycles are used to
compute ming L, (p —r, d). This computation is processed by
the hardware comparison logic units in Fig. 11. The minimum
of the whole disparity range ming L, (p —r, d) could be ready
at the K'th cycle. The path costs for pixel p could be computed
in the following K /2 cycles.

The row-level parallelism degree of the semiglobal opti-
mization module is equal to Pg in Section IV-B. To implement
the row-level parallelism, we also need to handle the data
access problem. The optimized costs L,(p,d) of the upper
row are buffered as the input to the current row in the
directions rg, r1, and r, in Fig. 6. For different directions, the
path costs of the upper row are delayed for different cycles.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

Fig. 13 shows the architecture of the proposed
hardware-accelerated stereo vision system. The system is
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TABLE II
MAXIMUM PROCESSING SPEED AND CORRESPONDING RESOURCE UTILIZATION

FPGA Image Frame Module Resource utilization
Platform resolution rate ALUTs T Registers | RAM bits
Altera 1024*768 @96 67.82fps Stereo matching core 125,255 81,092 9,282,494
EP4SGX230 disparities ’ Whole system 137,425 86,039 9,387,470
Altera 1600*1200@128 42.61fps Stereo matching core 222,034 149,288 16,604,247
5SGSMDS5K?2 disparities ’ Whole system 236,498 155,992 17,071,191

"' The Quartus software usually reports resource utilization with ALMs for Stratix V devices. The ALUTs
utilization is also reported in the resource section. Here we show the ALUTSs utilization to match the Stratix

IV devices.
TABLE III
OVERALL COMPARISON OF THE FPGA-BASED STEREO VISION SYSTEMS
Image Size | Disparity Levels | FPST | MDE/s?| MDE/s/KLCs®>|  Error Rate Algorithm

Shan et al. [14] 1280 x 1024 256 46 15437 622.7 17.3% Local SAD-based block matching
MCADSR [23] 1024 x 768 128 129 13076 217.7 7.65% Cross-Based local stereo matching
Proposed 1600 x 1200 128 42.61 | 10472 47.2 5.61% Cost aggregation + Semi-global
Ambrosch et al. [25] 450 x 375 100 599 10125 168.75 all=31.5% Local SAD-based block matching
Jin et al. [15] 1024 x 768 60 199.3 9362 76.2 6.05% Fast locally consistent dense stereo
Jin et al. [11] 640 x 480 64 230 4522 75.4 17.2% Local census-based block matching

Banz et al. [3] 640 x 480 128 103 4050 42.1 nonocc = 6.7% Semi-global matching
Zhang et al. [13] 1024 x 768 64 60 3019 89.7 8.2% Cross-Based local stereo matching

Tree structured DPY[18] 640 x 480 60 58.7 1082 9.86 8.71% Dynamic programming

! FPS: Frame per second.

2 MDE/s: Million disparity estimation per second.

3 KLCs: Kilo LUTs (for Xilinx FPGAs) or Kilo LEs (for Altera FPGAs).
4 DP: Dynamic programming.

Host PC
Display Rectification@:'
\
Disparity Image
result Data

PCle Hard IP Core FPGA Dev Board

MM Master
Avalon MM Bus

S
Read FIFO [«{ S M| Stereo
,§¥a;on Matching
us
Write FIFO b{M GotE
‘ MM-ST converter
Fig. 13.  Architecture of the demo system.
composed of a host PC, an FPGA board, and

two Flea3 cameras [25]. The host PC gets the stereo
image data streams from the Flea3 cameras and sends them
to FPGA through the Peripheral Component Interconnect
Express interface. The rectification is also processed in
the software because modern PCs are capable of doing
real-time rectification. On the FPGA board, we build a
hardware-accelerated stereo matching core to compute the
disparity map. The final disparity map is read out from the
FPGA board and displayed by the host PC.

We evaluate both the processing speed and the accuracy
performance to prove the effectiveness of the proposed stereo
vision system. The first version of the system is based on
an Altera EP4SGX230 FPGA. We further migrate the system

to the Altera SSGSMD5K2 FPGA and get higher processing
ability. The system could run up to 180 MHz on both of the
two platforms.

B. Overall Performance Evaluation

Table III makes an overall comparison among the state-of-
the-art FPGA-based stereo vision systems. When evaluating
FPGA-based stereo vision systems, we mainly focus on three
aspects: 1) depth quality; 2) processing speed; and 3) resource
utilization. The depth quality is measured by error rate, which
means the rate of mismatched pixels. The error rate of the
proposed system is 5.61%, which ranks first among the
FPGA-based stereo vision systems. It will be discussed in
detail in Section V-D.

The processing speed is evaluated by million disparity
estimations per second (MDEs/s), which means the product
of image size, disparity levels, and frame rate. Table II
shows the maximum processing speed and the corresponding
resource utilization of the system. On Altera EP4SGX230
FPGA, we could achieve a processing speed of 67.82 frames/s
for 1024 x 768 images with 96 disparities. On the larger
Altera SSGSMD5K2 FPGA, the processing speed improves
and we could achieve 42.61 frames/s for 1600 x 1200 images
with 128 disparities. The proposed system could achieve
10472 MDE/s on Altera 5SSGSMD5K?2 FPGA, which ranks
high in the comparison. Some systems [14], [15], [23], [26]
achieve a similar or even better processing speed. But their
algorithm is simpler and the accuracy is worse than those of
our system. The systems in [14] and [26] are all based on
a fixed support window, which leads to low accuracy. The
systems in [15] and [23] improve the accuracy with variable
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TABLE IV
RESOURCE UTILIZATION UNDER DIFFERENT
PARAMETER SETTINGS
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TABLE V
RELATION BETWEEN RESOURCE UTILIZATION
AND PARAMETERS

Image Settings Frame Resource utilization Modules Number of ALUTs Number of RAM bits
resolution Pp Pr rate ALUTs Registers RAM bits Cost 1 L OR
6407480@ T 1 | 31070 | 61221 | 23396 | 3813439 initialization | 10 * PR * 1204+ Pp % 2,9000 | (2 Pr +24) « W+ 96

64 disparities, 4 2 62.33fps 64,878 30,796 4,193,550 Cost . .
Weeg=160 8 [ 2 | 1220fps | 92240 | 52337 | 4156903 aggregation | [P * Pr* 430+ Pp +1,600 0
1024*768 @ 4 2 17.19fps 67,233 31,818 7,918,498 Semi-global . R
96 disparities, 3 2 | 3301fps | 94464 | 54.133 7,827,966 optimization Pp x Pr 1,600 P Np x Wieg %45
Weg=256 8 4 67.82fps 125,255 81,092 9,282,494 Other Modules 40, 000 W 2,200
1600_*1209_@ 8 2 10‘85[?5 94,647 54,871 14,051,519 ! These numerical values in the table are based on the compilation results.
128 disparities, 8 4 21.70fps | 126,724 82,684 16,758,556
Wseg=400 16 4 42.61fps | 222,034 149,288 16,604,247

support region or fast locally consistent algorithm. But their
accuracy is still worse than that of our system because their
algorithm is based on a local stereo matching method.

The resource utilization is another important criterion espe-
cially when the resource is limited. Thus, a normalized
processing speed, which is measured by MDEs/s/KLCs, is
also shown in Table III. It is an estimated evaluation because
the basic units of different FPGA platforms are not the same.
We could see that the performance of the proposed system is
worse than those of the systems based on local methods. It is
intuitive because we achieve the highest accuracy among these
platforms. Besides, our primary goal is to improve the depth
quality running in a real-time speed (30 frames/s). We believe
higher resource will be provided and the accuracy will become
more important.

A unified figure of metric (FOM) which includes all the
mentioned aspects is quite helpful for the evaluation. However,
it is difficult because the depth quality and the processing
speed are in quite different domains. Besides, the importance
of these two aspects varies over the requirement of the specific
application. Thus, we think it is more meaningful to discuss
the FOM in a specific scenario, and it is an open question for
domain expertise.

C. Scalability

Another key feature of the proposed system is scalability.
As shown in Table II, the stereo matching core occupies
most of the hardware resource in the whole system. To make
the system more flexible, the stereo matching core is fully
parameterized to build a scalable hardware design. Thus, we
could make a tradeoff between processing speed and resource
utilization by tuning the parameters. The processing speed
and resource utilization are mainly determined by the image
size, disparity range, disparity-level parallelism Pp, row-level
parallelism Pg, and segment width Wse,. Table IV shows the
resource utilization of the stereo matching core with different
parameters.

We further analyze the relationship between the resource
utilization and parameter settings, as shown in Table V.
Parameters Pp, Pr, Np, H, W, and Wq, are considered here.
The other parameters such as the cost width DW s and the
maximum arm length L.« are fixed under different workloads
(DWeost = 8, Lmax = 12 in current system), and thus, they
are not listed for simplification. The values in Table V are
based on the compilation results of each module. Due to

unpredictable optimization in compilation tools, the real
resource utilization of the whole core may be a little different
from the estimated value. The total resource utilization could
be estimated with (11). When the total parallelism degree
Pp x Pg is fixed, the logic resource utilization mainly depends
on Pp, while the memory resource utilization mainly depends
on Pgr. The processing speed (frame per second) is shown
in (12). The parameters could be adjusted according to the
resource specification

ALUTs ~ Pp x Pgr x 2,200+ Pp x 4,500 + 40, 000

RAM bits ~ Pg x (W x 192 + Np x Wseg x 45) + W x 4,500
(11)
(12)

H x W x Np
Pp x Pp

% Wieg
Wseg+PD+2X Lmax

FPS =

D. Quality Evaluation

The depth quality of the proposed system is discussed in
this section. We evaluate the system with both benchmark and
real-world scenarios. The experiment shows that our system
could provide accurate disparity maps in different scenarios
and different resolutions.

1) On the Middlebury Benchmark: The Middlebury
benchmark [4] is widely used in evaluating the quality of
stereo matching algorithms. The four image pairs tsukuba,
venus, teddy, and cones are processed using the proposed
system and the results are shown in Fig. 14. The average
percentage of bad pixels in the disparity map is 5.61%.
We compare the proposed system with some state-of-the-
art stereo vision systems and list the results in Table VI.
The accuracy of the proposed system is the best of the
hardware-accelerated stereo vision systems. The first is the
original AD-Census implementation on GPU. AD-Census uses
many promising technologies to achieve the best accuracy
on the Middlebury benchmark. It requires large resources to
implement all functions for AD-Census. The system in [15]
shows comparable accuracy performance. But they use a local
stereo matching method and the accuracy may drop with the
increased image resolution.

The resolutions of the data set tsukuba, venus, teddy,
and cones are all smaller than that of VGA. However,
our system could process high-definition images up to
1600 x 1200@128 disparities. To evaluate the tolerance for
resolution changes, we further process some high-definition
images in the benchmark, including data set Dolls, Babyl,
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TABLE VI

Platform Tsukuba Venus Teddy Cones Average Percent

nonocc' [ all” | disc® | nonocc all disc | nonocc all disc | nonocc all disc Bad Pixels
ADCensus [5] GPU 1.07 148 | 5.73 0.09 0.25 | 1.15 4.10 6.22 | 109 242 7.25 | 6.95 3.97
PatchMatch [27] CPU 2.09 2.33 | 931 0.21 0.39 | 2.62 2.99 8.16 | 9.62 2.47 7.80 | 7.11 4.59
Proposed FPGA 2.39 3.27 | 8.87 0.38 0.89 | 1.92 6.08 12.1 | 154 2.12 774 | 6.19 5.61
Jin et al. [15] FPGA 1.66 2.17 | 7.64 0.40 0.60 | 1.95 6.79 124 | 17.1 334 8.97 | 9.62 6.05
SemiGlobal [7] CPU 3.26 396 | 12.8 1.00 1.57 | 11.3 6.02 122 | 163 3.06 9.75 | 8.90 7.50

Banz et al. [3] FPGA 4.1 - - 2.7 - - 114 - - 8.4 - - noncc. = 6.7
Variable Cross [20] CPU 1.99 2.65 | 6.77 0.62 0.96 | 3.20 9.75 15.1 | 182 6.28 12.7 | 129 7.60
Variable Cross GPU [28] GPU 1.71 222 | 6.74 0.55 0.87 | 2.88 9.90 15.0 | 19.5 6.66 123 | 134 7.65
MCADSR [23] FPGA 3.62 4.15 | 14.0 0.48 0.87 | 2.79 7.54 14.7 | 194 3.51 11.1 | 9.64 7.65
Zhang et al. [13] FPGA 3.84 434 | 142 1.20 1.68 | 5.62 7.17 126 | 174 5.41 11.0 | 139 8.20
Tree structured DP [18] FPGA 1.43 2.51 | 6.60 2.37 297 | 13.1 8.11 13.6 | 155 8.12 13.8 | 164 8.71
Jin et al. [11] FPGA 9.79 11.6 | 20.3 3.59 527 | 36.8 12.5 21.5 | 30.6 7.34 17.6 | 21.0 17.2

Shan et al. [14] FPGA - 24.5 - - 15.7 - - 15.1 - - 14.1 - all = 17.3

Chang et al. [29] DSP 20.4 20.6 | 47.9 15.3 16.6 | 29.5 25.1 324 | 34.1 229 31.1 | 30.6 27.2

! nonocc: Average percentage of bad pixels in non-occluded regions.

2 all: Average percentage of bad pixels in all regions.
3 disc: Average percentage of bad pixels in discontinuous regions.

Tsukuba

Left image

Ground truth

Proposed
result

O]

Fig. 14. Evaluation results on Middlebury benchmark. (a)—(d) Left images (data set tsukuba, venus, teddy, and cones, respectively). (e)-(h) Corresponding

ground truth. (i)—(1) Depth maps provided by the proposed system.

and Cloth4. For each data set, the Benchmark provides seven
pictures captured at different viewpoints. We select view 1 as
the left image and view 3 as the right image to make sure that
the disparity range is within 128 levels. The result disparity
maps are shown in Fig. 15. Although the parameters are
tuned for the low-definition images, the proposed system still
provides clear and smooth disparity maps in high-definition
scenarios. The disparity error rate in all regions are also listed
in Fig. 15. The numerical depth accuracy is also comparable
with the low-definition results.

2) On Real-World Scenarios: The evaluation of the
Middlebury benchmark proves that the results of the pro-
posed system are quite accurate. However, the original
images in the benchmark are all well captured and rectified.

In real-world scenarios, the stereo images may not be as
high-quality as the benchmark. Thus, the depth accuracy may
decrease due to some nonideal factors such as luminance
differences and rectification error. To prove its robustness in
real-world scenarios, the proposed system is further evaluated
by the images from Flea3 cameras and online 3-D videos,
as shown in Fig. 16. Shown in Fig. 16(a) and (b) are the
images captured by the Flea3 cameras in the demo system
with a resolution of 1600 x 1200. Fig. 16(c) is one frame of
a 3-D video [21], which is captured by a Sony HDR-TD10
Video Camera in a Natural History Museum with a resolution
of 1280 x 720. Shown in Fig. 16(d)—(f) are the proposed
depth results. We could see that our system still provides clear
disparity maps in real-world scenarios.
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VI. CONCLUSION

In this paper, we propose a stereo vision system based
on an FPGA accelerator. The proposed algorithm is from
top-performing stereo matching algorithms on Middlebury
benchmarks. We design a scalable architecture for the imple-
mentation of key functions and build prototypes using
Altera boards. Its quality is better than that of existing
hardware stereo vision systems. Moreover, the processing
ability of our system is among the best of current hardware
implementations. Our system is the first complete work on
FPGA that supports aggregation on a cross-based region
(it also could be a fixed window or a variable window)
and semiglobal optimization. The depth quality is evaluated
both on Middlebury benchmarks and real-world scenarios. The
results show that our implementation has the best performing
stereo matching accuracy on the Middlebury Benchmark and
the top-performing processing ability. The system could be
tailored to different solutions according to the application
requirements. In the future, we intend to start its application-

(e) All Error Rate = 0.29%
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Cloth4

(f) All Error Rate = 4.45%

Evaluation results on high-definition images. (a)—(c) Original images from the Middlebury benchmark. (d)—(f) Disparity maps of the proposed

)

Evaluation results in real-world scenarios. (a) and (b) Captured by Flea3 cameras. (c) Online 3-D video. (d)—(f) Disparity maps of the proposed

specified integrated circuit design for lower cost and power.
This could make more mobile scenarios solvable.
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