RENO: A High-efficient Reconfigurable Neuromorphic
Computing Accelerator Design’

Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen

University of Pittsburgh
Pittsburgh, USA
{xil116, mem231, bel34, hal66, yic52}@pitt.edu
Hao Jiang
San Francisco State University
San Francisco, USA
jianghao@sfsu.edu

ABSTRACT

Neuromorphic computing is recently gaining significant at-
tention as a promising candidate to conquer the well-known
von Neumann bottleneck. In this work, we propose RENO
— a efficient reconfigurable neuromorphic computing acceler-
ator. RENO leverages the extremely efficient mixed-signal
computation capability of memristor-based crossbar (MBC)
arrays to speedup the executions of artificial neural networks
(ANNs). The hierarchically arranged MBC arrays can be
configured to a variety of ANN topologies through a mixed-
signal interconnection network (M-Net). Simulation results
on seven ANN applications show that compared to the base-
line general-purpose processor, RENO can achieve on av-
erage 178.4x (27.06x) performance speedup and 184.2x
(25.23x) energy savings in high-efficient multilayer percep-
tion (high-accurate auto-associative memory) implementa-
tion. Moreover, in the comparison to a pure digital neural
processing unit (D-NPU) and a design with MBC arrays co-
operating through a digital interconnection network, RENO
still achieves the fastest execution time and the lowest en-
ergy consumption with similar computation accuracy.

1. INTRODUCTION

Traditional von Neumann computers require frequent data
exchanging between processors and memory chips. This de-
sign severely limits the system performance and efficiency,
especially in computation-intensive cognitive applications.
As a promising candidate to overcome the inefficiency of
von Neumann architecture, neuromorphic systems recently
became a hot research area in future tera-scale computing.
Many studies have been conducted on the hardware imple-
mentation of artificial neural networks (ANNs) across both
digital and analog domains. Examples include neural net-

>|<This work is supported in part by NSF XPS-1337198, NSF CNS-
1116171, AFRL FA8750-15-2-0048, DARPA D13AP00042, HP Lab
Innov. Res. Pgm, NSFC 61373026, and Tsinghua Univ. Init. Sci.
Res. Pgm. Received and approved for public release by AFRL on
03/04/2015, case number 88ABW-2015-0833. Any Opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of AFRL
or its contractors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
DAC 15, June 07 - 11 2015, San Francisco, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3520-1/15/06$15.00
http://dx.doi.org/10.1145/2744769.2744900.

Mark Barnell, Qing Wu
Air Force Research Laboratory
Rome, USA

{mark.barnell.1, ging.wu.2}@us.af.mil

Boxun Li, Yu Wang
Tsinghua University
Beijing, P.R. China
{lbx13, yu-wang}@mails.tsinghua.edu.cn
Jianhua Yang
University of Massachusetts
Amherst, USA

jiyang@umass.edu

work accelerators for signal processing [5], digital approxi-
mate computing accelerators that leverage neural network
algorithms [8], and heterogeneous systems built with GPUs
and APUs for deep learning accelerations [9]. However, tra-
ditional CMOS technology has been proven to be inefficient
for neuromorphic system design as dozens of transistors are
usually required to build one neuron [5].

Discovery of nanoscale memristor devices [6] inspired an
exciting approach to implement neuromorphic systems. Par-
ticularly, the similarity between the programmable resis-
tance state of memristors and the variable synaptic strengths
of biological synapses dramatically simplify the circuit real-
ization of neural network models. The specialty of memris-
tors has been investigated and exploited in a few research
works that focus on either the circuit implementation of the
matrix-vector multiplications in conventional approximate
computing acceleration [16,17].

In this work, we propose RENO — a novel efficient re-
configurable neuromorphic computing accelerator. RENO
uses on-chip memristor-based crossbar (MBC) arrays to im-
plement a perceptron networks, aiming at the acceleration
of ANN computations. Unlike many neuromorphic systems
that perform the computations on pure digital ALUs or ana-
log approximate computing units with AD/DA interface,
our design adopts a hybrid method in data representation:
the computation within the MBC arrays and the signal com-
munications among the MBC arrays are conducted in analog
form, while the control information remains as digital sig-
nals. Compared to the existing implementations of digital
ANN accelerators and approximate computing units, the key
distinctions of RENO can be summarized as:

e A efficient memristor-based mixed-signal accel-
erator is designed to speed up neuromorphic comput-
ing and support the implementations of a variety of
neural network topologies;

e A mized-signal interconnection network (M-Net)
is proposed to assist the communication of computa-
tional signals among the MBCs.

e An optimized configuration is discussed and final-
ized by thoroughly analyzing the impact of various de-
sign parameters on the system performance/accuracy.

RENO offers a cost-efficient and fault-tolerant ANN com-
putation platform complementing the general computations
of CPU cores. In the evaluations of RENO, we adopt a set
of prevailing ANN benchmarks and two ANN topologies-
Multilayer perception (MLP) and auto-associative memory
(AAM) to demonstrate the tradeoffs of the computation
performance and accuracy for different RENO configura-
tions. Simulation results show that compared to the baseline

Input layer

Hidden laye

Output layer ﬁ

(a) MLP (b) AAM
Figure 1: (a) A 3-layer MLP; (b) A 1l-layer AAM
with 4 neurons.
general-purpose CPU, RENO with MLP (AAM) configura-
tion can achieve on average 178.4x (27.06x) performance
speedup and 184.2x (25.23x) energy saving over the se-
lected ANN applications. Furthermore, we compare RENO
(MBC arrays with M-net) to a digital neural processing unit
(D-NPU) [8] and a conventional MBC-based neuromorphic
accelerator design, i.e., MBC arrays with digital routing net-
work (D-Net). The results show that RENO achieves the
fastest execution time and the lowest energy consumption
while maintaining comparable computation accuracy.

2. PRELIMINARY

2.1 Artificial Neural Network (ANN)

In this work, we consider two typical ANNs — MLP with
high efficiency and AAM with high accuracy. Both of them
are simplified mathematical models of biological neural net-
works. MLP belongs to the feedforward ANNs that are
widely utilized in approximate computing [11]. It maps a set
of input data to outputs through multiple layers of nodes in
a directed graph. Figure 1(a) shows an example of a three-
layer MLP. The input nodes collect and convey the input
bits to the following layer through the weighted connections.
Except for the input nodes, each node represents a neuron
with a nonlinear activation function, e.g., a sigmoid function
flx) = 1+ = on the sum of all the mgnals it receives.

AAM is normally used as recurrent neural networks, per-
forming pattern recognition and completion etc. [11]. Fig-
ure 1(b) shows a Hopfield network acting as an AAM. An
input vector distorted by noises or other randomness will go
through the network iteratively and converge to the closest
version of the vector pattern. In general, the non-iterative
MLP executes faster than the iterative AAM while the lat-
ter one is much more dependable due to its inherent fault
tolerance characteristic.

As an important operation of ANN, training determines
the weight associated with each connection and prepares the
ANN to respond to certain unseen data with desired outputs.
In this work, we adopt the back-propagation and the delta
rule [16] to perform the training. Note that our works mainly
focus on the testing/computation of the ANN by assuming
RENO has been trained by supervised algorithms for specific
applications.

2.2 Memristor and Memristor-based Crossbar
Memristor is regarded as the 4** fundamental circuit ele-
ment whose resistance (memristance) is determined by the
total electric charge/flux through it [6]. In theory, a mem-
ristor can be programmed to any arbitrary resistance state
within its lowest and highest bounds by appropriately con-
trolling the amplitude and duration of the programming sig-
nal. Recent research has obtained 7-bit programming resolu-
tion on memristors [4] with sophisticated peripheral circuits.
Similar to biological synapses, a memristor device can

Group Router

! Vi- T g \ Vi- T
Eégé g/[11
)
ol
Sum Sum Sum Sum
Am Am © lamp| |
a|rFo| | Frro | |FFol2

Figure 2: The RENO architecture.

“record” the historical profile of the applied excitations as
its resistance changes. This feature inspired many studies
on memristor-based synapse designs. For example, memris-
tors can be employed in spiking networks and trained by
using the spike timing dependent plasticity (STDP) learn-
ing rule [14]. The studies also presented the use of MBCs
in percetpron network construction and demonstrated ex-
tremely efficient, accurate, and fast ANN implementations [12].
Figure 2(a) depicts the diagram of a MBC which repre-
sents the connections between two layers in a MLP. The
input (V;) and output voltages (V,) follow the relation:

V,=CxV;. (1)

1l

rer%ter
s [Ay
> ()

HE(HE HETHE -

9| Input Config utputf 9 L

LILIL

Here C is the connection matrix. Due to device variations
and physical constraints in real implementation, however,
the relationship between the connection matrix and the re-
sistance matrix of a MBC cannot achieve a perfect one-to-
one mapping as Eq.(1) but rather obey an approximation.
Implementing a N-layer MLP requires N — 1 MBCs con-
nected in series. A large volume of ANN computations (i.e.,
weight multiplications) can be simultaneously performed by
the MBCs in analog form without any internal control logics.

In this work, we adopt the MBC programming method
in [12] where an adaptive write driver [4] is used to program
the memristors to particular resistance states. As memris-
tors on the same row can be tuned simultaneously, the im-
pact of sneak path leakage can be significantly suppressed.

3. THE RENO ARCHITECTURE

Figure 2 depicts the proposed RENO structure. It works
as a complementary functional unit to CPU and particu-
larly accelerates ANN-relevant executions. In this design,
memristor-based crossbar (MBC) arrays are used to per-
form analog neuromorphic computations. A mized-signal
interconnection network (M-net) is developed to connect the
MBC arrays and conduct the topological reconfiguration of
RENO. To receive command and data and send results back
to the processor in digital form, input, output and configu-
ration FIFOs are located at the interface of RENO.

3.1 Hierarchical Structure of MBC Arrays

As shown in Figure 2, MBCs are arranged in a centralized
mesh (CMesh) manner to minimize the cost of the inter-
connection network.The example in the figure includes four
MBC groups, each of which is formed with four MBC ar-
rays connected through a group router. An MBC array is
partitioned into four sub-crossbars to implement the multi-
plication of the combination of the signed signals and the
signed synaptic weights [12]. An optimal MBC design may
contain 64 rows and 64 columns which offers a good compro-
mise between performance and reliability. In fact, this array
scale covers the majority of learning applications, 80% of

] ot it - -
Digital Controller
B Ansog i oot e
information
U e 2y IO
Router — Input buffer » Router MPUt PAC]
Tt A
wsco — 4 g > | [{3 oo
| H N
MBCT | Input buffer [% mBC1 od
| H 1,
MBCZ | Input buffer [1% mBC2
| .—. N
MBC3 . Input buffer |~ mC3 N
H > igital controller
e = o o] =B oo I
| .—. { Ly
Groupt — Input buffer L% Groupt
Group2 —F Input buffer | —3 Group2

b
Figure 3: Tﬁl} mixed-signal router (d)esign (a) archi-
tecture (b) digital controller.
which have less than 60 neurons in the input layer [19]. Ap-
plications requiring larger connection matrices can be par-
titioned into smaller tasks and executed on multiple MBC
arrays simultaneously or sequentially.

In this centralized hierarchical architecture, the data com-
munication is performed at both inter-group and intra-group
levels. The central router shown in Figure 2 connects to the
CPU and all group routers. Each group router talks to the
four local MBC arrays within the group, three other group
routers, and the central router. This architecture offers easy
routing paths between different components as well as a good
design scalability.

3.2 Mixed-signal Interconnection Network

The signal transmission within RENO can be realized in
either digital or analog form. Digital signal transfer has
good controllability and supports high-frequency operations.
However, as the computation of MBC arrays is in analog
form, digital-to-analog/analog-to-digital (DA/AD) conver-
sions are required at the interface of MBC arrays and routers,
which inevitably degrades the signal precision and results in
significant area and power overheads. The small footprint
of the MBC arrays limits the data communication distance,
e.g., within 0.53mm in our design, making it possible to
transfer signals in also analog form. Moreover, the impact
of signal distortion generated during the analog signal trans-
mission on computation reliability can be tolerated by the
intrinsic high fault resistance of ANN algorithms.

We propose a mixed-signal interconnection network called
M-Net to assist the task mapping and data migration over
the MBC arrays. M-Net maintains the data in analog form
while it transfers the control and routing information in dig-
ital form so as to simplify the synchronization and commu-
nication between CPU and RENO.

Router Design. Figure 3(a) shows the group router de-
sign. Its analog data path consists of input buffers and data
multiplexer /switches. Each input port can receive up to 64

0

out0 1
2

\ 2
out1 J_A 4
in out 5

6

7

Transmission gate
(b) 9 AT

Figure 4: The analog component design in router:
(a) the transmission path; (b) the multiplexer.

MLP | V[H| Addr[4:0] | Addr,[4:0] | ... | CPU Addr]

AAM [V[H]| Addro[4:0] | Loop[6:0] |[CPU Adar|
Figure 5: Routing information format.

analog signals corresponding to a set of the inputs/outputs
of a MBC array, referred as a packet. During operations,
a switched-op-amp (SOP) based sample-and-hold (S/H) cir-
cuit in Figure 4(a) [7] serves as an analog buffer, which holds
and passes the analog data to the next destined MBC ar-
ray or router. The S/H circuit adopts a pseudo-differential
topology and turns off the transistor in the saturation region
to minimizes the nonlinear distortion.

Figure 4(b) depicts the conceptual implementation of an
8 x 8 multiplexer using transmission-gate based analog cross-
bar switches. The multiplexer can dynamically establish the
routing path from any input port to any output port under
the guidance of the digital control logic. 64 copies of such
a multiplexer are required at each port of a group router to
transmit a packet of up to 64 signals simultaneously.

The digital controller of a router is shown in Figure 3(b).
The routers in RENO are responsible for not only trans-
ferring data as a traditional Network-on-Chip (NoC) does,
but also processing routing information. Thus, a work queue
(WQ) is introduced. Once the WQ receives the routing in-
formation of a data packet, it will decode the information to
generate the control signals for the other components in the
router. The routing path configuration in the multiplexer
is controlled through a switch allocator (SA). Each WQ en-
try is associated with a multi-bit computing counter (CO)
to monitor the computation status of a local MBC array by
counting the number of the executed loops. In this work, we
utilize a 7-bit CO (supporting up to 128 loops) because all
the selected benchmarks can complete executions within 100
loops. As a local MBC array approaches to the end of its
computation, the CO notifies its WQ. The computation re-
sult will be sent to the CPU or another MBC group with the
routing information generated by packet generator (PG). At
this time, the corresponding WQ entry is released and the
updated routing information remains in the group router.
Status recorder (SR) logs and broadcasts the availability of
a local MBC array to all the connected routers.

Routing Management. Figure 5 presents the format of
the routing information adopted in RENO, including 1-bit
valid bit (V'), 1-bit routing field (H), address field (Addr;),
and looping field (Loop). An address field contains 5 bits:
Addr;[1:0] identifies the group router, Addr;[3:2] denotes a
MBC array within the group, and Addr;[4] indicates if the
data shall be sent back to CPU. According to the CO design,
the looping field contains 7 bits supporting up to 128 loops.

Bit H represents the type of ANN implementations (MLP
or AAM) and determines the format of routing information.
The MLP configuration does not require a looping field. The
address fields of MLP includes the addresses of the MBC ar-
rays that the data will go through and the address represent-
ing the CPU. The AAM configuration needs both address
and looping fields to guide the destined router address and
the related number of computation loops, respectively. A
routing information always ends at CPU address, indicating
the completion of data transmission. Once an input data
packet goes through the corresponding router, these address
and looping fields can be recycled by PG.

4. EXPERIMENTAL METHODOLOGY

Table 1: The component parameters of RENO

Memristor

Table 3: The description and implementation details
of the seven selected benchmarks

4.1 Circuit Implementation & Simulation

We created a Verilog-A memristor model by adopting the
device parameters from [14] and scaling them to a 65nm
node based on the relation of device resistance and area.
To achieve high speed and small form factor, we adopt the
flash analog-digital converter (ADC) and current steering
digital-analog converter (DAC) [10] designs. The resolution
is set to 4-bit to comply with the data resolution required
by the selected benchmarks. We estimate the delay and
power of all these components and extract the layout areas
under Cadence Virtuoso environment. The detailed design
parameters and area estimation can be found in Table 1.

The area of RENO is mainly occupied by the routers.
The analog signal transmission in the concerned distance is
simulated, e.g., among the routers. Our simulation shows
that a voltage swing between 0V and 1V can be transferred
from one end of an 0.53mm interconnect to the other end
in 0.5ns by considering signal fluctuations and distorations.
All the major noise resources, including 1/f noise in am-
plifier, thermal noise produced by memristor and amplifier,
and quantization noise caused by ADC, have been evaluated.
The result shows that the quantization noise up to 18mV
dominates the overall noise. Such noise magnitude is much
smaller than the resolution of 4-bit DAC/ADC (62.5mV’) so
that the introduced impact remains under a tolerable level.
The device mismatch can be calibrated by a predetermined
look-up table. Finally, an inline calibration scheme is de-
signed to ensure run-time execution accuracy of RENO by
monitoring the resistance shifting of MBC arrays during op-
eration and restoring the resistance with a set of training
vectors. The inline calibration can be conducted anytime
between executions of two RENO inputs, and hence, does
not affect the execution continuity of RENO and generates
very marginal impacts on the execution time (e.g., <0.35%
in MLP and <0.67% in AAM, respectively).

Reliability analysis is conducted using Monte-Carlo sim-
ulations. We assume both the resistance of the memristors
and the analog inputs of the MBCs follow normal distribu-
tions. In each Monte-Carlo simulation, the initial memristor
resistance of a MBC sample is fixed as it is decided by the
offline training. However, the signal fluctuation is generated

Rp=2000, Rg=160K®, Vi, =2V B h K Training error|[MBC usage Topology
MBC Array & M-Net enchmark TPl AAM |MLP[AAM MLP
Neuron logic] Network MBC DAC | ADC cancer _ [0.02%] 0.07% [2im1[2in 1] 36162
Power| 126pW 0.88, W 0.72uW 5.2mW_ | 3.8mW connect-4__[0.02%| 0.08% [2ini|3in1| 42-530-3
Speed 0.93ns 4.9ns 3.1ns 333MHz [333MHz gene 0.00%| 0.03% |6 in 2|12 in 3| 120=100—3
Area Estimation lymphography[0.05%| 0.02% [2in 1[4 in 1 29—19—4
RENO area NoC (mm?) DAC/ADC| MBC MNIST 0.35%| 0.02% |5 in 2|10 in 3[64—128—32—10
(mm?) [Input/output|Channel[Control| (mm?2) | (mm?) mushroom [0.01%| 0.01% |3 in 1|8 in 2 125—32—2
M-Net 0.943 0.598 0.014 0.252 0.072 0.007 thyroid 0.15%| 0.11% [2in 1|3 in 1 21—-32—-3
D-Net 1.793 0.268 0.065 0.301 1.152 0.007
Table 2: The simulation platforms on-the-fly during the entire execution.
cu ||§MEC eroups, 4 MBC arrays/group, 4 MBG/array,| 4.2 Architecture Level Simulation Setup
64x4-bit In-quoue/Out-quoue, 128 X 64-bit We modify MacSim [1], a PIN-based cycle-level X86 simu-
RENO| 10 o005 64 parallel DACs, 64 parallel ADC ~ X
onlig-queue, 52 paralle S, b4 paralle S lator, by adding a cycle-accurate RENO module to conduct
M-Net||Mixed-signal CMesh, 333 MHz for digital control . . .
— - architecture level evaluations. The CPU is configured as an
16 digital PEs, Input/Output Buffer 64x4-bit, A . A e ..
CU ||4-bit Multiply-add unit, Weight Cache 4096 x 4-bit, Intel Atom-like processor. A compilation flow similar to [8]
D-NPU Sigmoid Unit LUT 512x4-bit is utilized to generate a RENO-aware binary of which the
10 _[64x4-bit In/Out-queue, 128X 64-bit Config-queue target ANN code is executed in RENO. Since all the selected
D-Net [|Digital CMesh, 1.332 MHz, 64-bit datapath

benchmarks are ANN oriented, on average, 99% of execu-
tion time is consumed on running the target codes. Thus, in
the following evaluations, the execution time of the target
codes is used to represent the overall performance. Table 2
summarizes the parameters of our simulation platform. The
energy consumption of the CPU core is estimated using Mc-
PAT [15]. We generate a detailed log of RENO utilization
during the execution to calculate the energy consumption
of RENO based on the circuit level simulation results. The
data traffic and the power consumption of the M-Net are
simulated by a modified booksim simulator [13].

We choose seven representative learning benchmarks de-
scribed in Table 3. Cancer, gene, mushroom and thyroid are
selected from Probenl [18]. connect-4 and lymphography
from UCI machine learning repository [3] are tailored for
neural network implementations. MNIST [2] is a widely used
benchmark of learning and recognition algorithms®. We im-
plement all the benchmarks within MLP and AAM models
and measure the execution quality in classification rate. We
define training error as the mean square error (MSE) be-
tween the actual and target outputs under the training vec-
tors. Table 3 summarizes the implementation details and
the initial training errors.

5. EXPERIMENTAL RESULTS

We investigate the design and optimization of RENO by
thoroughly evaluating the impacts of MBC sizes, training
effort, device variations and signal fluctuations. The quality
of RENO from the perspectives of computation accuracy,
performance, and energy consumption are also explored by
comparing with general-purpose CPU and other two ANN
accelerators: D-NPU and MBCs+D-Net.

5.1 MBC Training Effort

As the DAC/ADC resolution is capped by the resolution
of computation data provided in the benchmarks, the com-
putation accuracy and energy consumption of RENO are
greatly influenced by the training effort, which can be mea-
sured by the size of a used training data set. For a specific
benchmark, the computation accuracy can be improved by
increasing the size of training data set. However, it even-

!The image of MNIST is compressed from 28 x 28 pixels into
8 x 8 pixels and the gray scale is reduced from 256 to 16.

m100% @90% ®80% W70% ®60% D50%

1
0.9

0.8
0.7
0.6

1
0.9

0.8 -
0.7
0.6

cancer connect-4 gene lymphography —mnist mushroom thyroid
Figure 6: The normalized classification rates of (a)
MLP and (b) AAM under different MBC training

efforts. The DAC/ADC resolution is set to 4-bit.

tually gets saturated when the number of the training data
reaches a threshold, i.e., the saturated training data set size.

Figure 6 (a) and (b) respectively compare the computation
accuracy (i.e., the classification rate) degradations of MLP
and AAM implementations under different training efforts.
The classification rates have been normalized to the ideal
baseline where the execution is performed by the floating-
point unit of the CPU. Here the training effort is normalized
to the saturated training data set size of each benchmark.

Generally, the MLP implementation is more sensitive to
the reduction of training effort. In particular, gene, mnist
and mushroom experience considerable reduction in classi-
fication rate due to their large network scale. Benefiting
from the iterative feedback loop, the AAM implementation
demonstrates much better computation accuracy than MLP
under the same training effort. For AAM, the average clas-
sification rate of all benchmarks keeps above 83% even the
training effort is as low as 50%. In the following evalua-
tions, we set a training effort of 70% which can simultane-
ously satisfy the computation accuracy requirements of both
MLP and AAM implementations and maintain reasonable
hardware and performance overheads of training.

5.2 Device Variations & Signal Fluctuations
Figure 7 shows the impacts of device variations and signal
fluctuations on the computation accuracy of RENO. Here
op denotes the standard deviation of memristor resistance
incurred by process variations; oy denotes the standard de-
viation of the magnitude of the analog signals generated
from DA/AD conversion, routing/buffering, sum-amplifier
and sigmoid function. Since oy has greater impact on the
,=0.97% _g08. 6«’0\ ' .00 0 46,0707 2,070°
1o I - o7 "- °-_

0.9
0.8
0.7C

cance‘ “ﬂeo’&A ge“ \,\Ograph

~o
o~

—~
O
~—

ush‘oom tnyro"

Figure 7: The 1mpact of device variations and signal
fluctuations on accuracy: (a) MLP, (b) AAM.

[16x16 [32x32 [64x64 I 128x128]

(a) (b)

performance
o o -~
o ® o N

o
N

(c) d)

Normalize Class. rate Normalized

0.80
03(\0 e gz“eav“\’ “‘5 © «\\;‘0‘\;\6"‘“@(\0“9 ge o \5\‘0 w@{\[\e\\“

o R
Figure 8: The normalized RE\INO performance and
the classification rate (0,=0.05 and 0;=0.1) at dif-
ferent MBC sizes in MLP (a,c) and AAM (b,d) con-
figurations.

computation accuracy than o, [16], we choose very pes-
simistic settings of o to cover even the extreme cases.

As expected, the increase of device variations and signal
fluctuations generally degrades the computation accuracy
of RENO with both MLP and AAM configurations. In-
terestingly, the normalized classification rate of mnist de-
grades slightly faster than other benchmarks, indicating a
less robust ANN realization. Nonetheless, both MLP and
AAM maintain a very moderate computation accuracy de-
terioration when o, and oy are within a realistic range,
i.e., 0p=0.05 and oy=0.1. Again, the AAM configuration
demonstrates better tolerance to process variations and sig-
nal fluctuations than the MLP.

5.3 Impact of MBC Sizes

On one hand, increasing MBC size improves the compu-
tation efficiency of RENO as more calculations can be done
simultaneously. It will also reduce the overheads of the com-
putation partitioning and the signal routing among MBCs
if the ANN size is larger than the MBC size. On the other
hand, a larger MBC is more vulnerable to process varia-
tions and signal fluctuations.Moreover, when the MBC size
exceeds the ANN size, part of power consumption and com-
putation capacity of RENO will be wasted.

In Figure 8, we compare the execution time and the clas-
sification rate of all benchmarks when MBC size varies from
16x16 to 128x128. As the MBC size increases, the NCA
performance of a particular benchmark keeps improving un-
til the MBC size exceeds the largest scale of the ANN topol-
ogy. Continuing increasing the MBC size does not further
enhance the system performance. Nonetheless, the aggra-
vated vulnerability of RENO to process variations and signal
fluctuations at a large MBC size causes slight degradation
on the classification rate, as shown in Figure 8(c,d). In this
work, we selected 64x64 MBCs as the optimized configura-
tion offering balanced computation efficiency and accuracy.

5.4 Comparison to Other Design Alternatives

We also explore the potential of RENO by comparing with
other ANN accelerators. First, we construct a digital neural
processing unit (D-NPU) which adopts the RENO topology
but replaces MBC arrays and M-net with digital processing
elements (PEs) [8] and a digital interconnection network D-
Net, as shown in Figure 10. To perform a fair comparison,

[CINPU B MBC+D-net IEBRENG

(a) (b)
() ‘
e

o
S
S

Performance Speedup

1000 (d)

1=}
S

Energy Efficiency
>

(f)

o o
© ©
o o

Classification Rate
&
&

D;i%gﬁ\eﬂ\\:“%ggg(20" x(f‘\\‘\‘;ZQ\t 0°§wé?§\l NS C;;reg(e\‘“efz\\\; :“%igg(av\"\’ x:‘\\‘\\)‘:%“ o°§‘€h\gg}‘(}\1 N
Figure 9: Comparisons of three ANN accelerators
with MLP (a,c,e) and AAM (b,d,f) configurations.
the input/output FIFO and weight cache of each PE are
scaled up to match the computational capacity of a MBC ar-
ray. The PE latency and power are extracted from a Verilog-
HDL model synthesized with 65nm library using VCS and
Design Compiler. The detailed D-NPU configuration is de-
picted in Table 2. In addition, to study the efficacy of M-
Net, we also construct an alternative design by solely re-
placing the M-Net in RENO with D-Net. The configuration
of D-Net is estimated in booksim to offer the similar trans-
mission capacity as M-Net. Meanwhile, DAC/ADC pairs
are required at the interface of each router for the frequent
DA/AD conversions before/after any MBC-based computa-
tion. Figure 9 compares the performance, energy efficiency,
and classification rate of three ANN accelerator designs: D-
NPU, MBC+D-Net, and RENO. Here, the energy efficiency
is defined as the inverse of system energy consumption. The
performance and energy efficiency are normalized to those
obtained from the baseline CPU execution.

As shown in Figure 9 (a,b), RENO demonstrates the high-
est speedup due to the higher computation ability than D-
NPU and the reduction of DA/AD conversions compared
with MBCs+D-Nets: The geometric mean speedup (GMS)
values rise to 178.41x (MLP) and 27.06x (AAM). Rela-
tively speaking, the AAM configurations obtain less speedup
due to the costly iterative computation. Figure 9(c,d) com-
pare the energy efficiency of all the designs, which demon-
strates a similar trend as the performance results. MLP and
AMM configurations of RENO achieve on average 184.24x
and 25.23x energy savings, respectively. RENO generally
achieves more than 2x higher energy efficiency than that of

Weight buffer

Multiply-ads

Input buffer|

Figure 10: A D-NPU built with digital PEs in [8].

MBC+D-Net due to the dramatically reduced DA/AD con-
version overhead. Figure 9(e,f) compare the classification
rate of all the designs. In MLP results, RENO demonstrates
the lowest computation accuracy as other designs benefit
from digital data transferring and computation with better
resolution. In AAM results, however, RENO obtains very
high (i.e., 92%) average classification rates that are close to
(i.e. discrepancy < 2.8%) that of D-NPU and MBCs with
D-Net by paying the cost of more computing iterations.

6. CONCLUSION

In this work, we propose a reconfigurable memristor-based
neuromorphic computing accelerator (RENO). Compared to
a conventional CPU, RENO achieves on average 177.67x
(27.2x) performance speedup and 184.71x (25.18) energy
reduction over the simulated benchmarks processed by MLP
(AAM) neural networks. The computation accuracy degra-
dation is well constrained within an reasonably low range.
Although only two ANN configurations are presented, RENO
can support a variety of ANNs by properly reconfiguring the
M-Net and guiding data routing among the MBC arrays.

ZT REFERENCES

“Macsim,” http://code.google.com/p/macsim/.

[2] “The mnist database,” http://yann.lecun.com/exdb/mnist/.

[3] “Uci machine learning,” http://archive.ics.uci.edu/ml/.

[4] F. Alibart et al., “High precision tuning of state for
memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, 2012.

[5] B. Belhadj et al., “Continuous real-world inputs can open up
alternative accelerator designs,” in ISCA, 2013, pp. 1-12.

[6] L. O. Chua, “Memristor-the missing circuit element,” Circuit
Theory, vol. 18, no. 5, pp. 507-519, 1971.

[7] L. Dai and R. Harjani, “Cmos switched-op-amp-based
sample-and-hold circuit,” in IEEE Transactions on
Solid-state circuits, 2000.

[8] H. Esmaeilzadeh et al., “Neural acceleration for general-
purpose approximate programs,” in MICRO, 2012, pp.
449-460.

[9] J. Gu et al., “Implementation and evaluation of deep neural
networks (dnn) on mainstream heterogeneous systems,” in
APSys, 2014, p. 12.

[10] M. Gustavsson, J. J. Wikner, and N. Tan, CMOS data
converters for communications, 2000.

[11] S. O. Haykin, Neural Networks and Learning Machines.
London: Prentice Hall, 2008.

[12] M. Hu et al., “Hardware realization of bsb recall function
using memristor crossbar arrays,” in DAC, 2012, pp.
498-503.

[13] N. Jian et al., “A detailed and flexible cycle-accurate
network-on-chip simulator,” in ISPASS, 2013, pp. 86-96.

[14] K.-H. Kim et al., “A functional hybrid memristor
crossbar-array/cmos system for data storage and
neuromorphic applications,” Nano letters, vol. 12, no. 1, pp.
389-395, 2011.

[15] S. Li et al., “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore
architectures,” in MICRO, 2009, pp. 469-480.

[16] B. Liu et al., “Digital assisted noise eliminating training for
memristor crossbar based analog neuromorphic computing
engine,” in DAC, 2013, pp. 1-6.

[17] X. Liu et al., “A heterogeneous computing system with
memristor-based neuromorphic accelerators,” in HPEC,
2014, pp. 1-6.

[18] L. Prechelt, “Probenl-a set of neural network benchmark
problems and benchmarking rules,” University of Karlsruhe,
Tech. Rep., 1994.

[19] O. Temam, “A defect-tolerant accelerator for emerging
high-performance applications,” in ISCA, 2012, pp. 356-367.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

