
UNDERSTANDING GNN COMPUTATIONAL GRAPH: A COORDINATED
COMPUTATION, IO, AND MEMORY PERSPECTIVE

Hengrui Zhang * 1 Zhongming Yu * 1 Guohao Dai 1 Guyue Huang 2 Yufei Ding 2 Yuan Xie 2 Yu Wang 1

ABSTRACT
Graph Neural Networks (GNNs) have been widely used in various domains, and GNNs with sophisticated
computational graph lead to higher latency and larger memory consumption. Optimizing the GNN computational
graphs suffers from: (1) Redundant neural operator computation. The same data are propagated through the
graph structure to perform the same neural operation multiple times in GNNs, leading to redundant computation
which accounts for 92.4% of total operators. (2) Inconsistent thread mapping. Efficient thread mapping schemes
for vertex-centric and edge-centric operators are different. This inconsistency prohibits operator fusion to reduce
memory IO. (3) Excessive intermediate data. For GNN training which is usually performed concurrently with
inference, intermediate data must be stored for the backward pass, consuming 91.9% of total memory requirement.

To tackle these challenges, we propose following designs to optimize the GNN computational graph from a novel
coordinated computation, IO, and memory perspective: (1) Propagation-postponed operator reorganization.
We reorganize operators to perform neural operations before the propagation, thus the redundant computation is
eliminated. (2) Unified thread mapping for fusion. We propose a unified thread mapping scheme for both vertex-
and edge-centric operators to enable fusion and reduce IO. (3) Intermediate data recomputation. Intermediate
data are recomputed during the backward pass to reduce the total memory consumption. Extensive experimental
results on three typical GNN models show that, we achieve up to 2.75× end-to-end speedup, 6.89× less memory
IO, and 7.73× less memory consumption over state-of-the-art frameworks.

1 INTRODUCTION

Graph Neural Networks (GNNs) explore features of ver-
tices and edges using neural operators and relationships
through the graph structure. GNNs have shown great po-
tentials in various domains, including Recommendation
Systems (Ying et al., 2018; Wang et al., 2019a), Computer
Vision (Yan et al., 2018; Qi et al., 2018), Natural Language
Processing (Nguyen & Grishman, 2018; Yao et al., 2018),
et al (Kipf & Welling, 2016; Hamilton et al., 2017).

With the fast development of GNNs, GNN models have
evolved into more diversity and complexity in the compu-
tational graph, putting forward expensive requirements on
both computation and memory resources. For example,
training a GNN-based recommendation model consumes 16
GPUs (384 GB memory in total) using days of time (Ying
et al., 2018). Improving the performance of GNNs with
less resources suffers from: (1) From the computation per-

*Equal contribution 1Tsinghua University 2University of
California, Santa Barbara. Correspondence to: Guo-
hao Dai <daiguohao@mail.tsinghua.edu.cn>, Yu Wang <yu-
wang@tsinghua.edu.cn>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

spective, GNN models perform neural operators through the
graph structure, meaning that the same data of a vertex may
be propagated to different edges. Thus, the same operation
applied on these edges are executed multiple times for the
same vertex data after propagation, leading to redundant
computation in GNNs. We measure that such redundant
computation account for 92.4% of total operators in an Edge-
Conv model (Wang et al., 2019c), with the detailed setup
in Section 7. (2) From the IO perspective, current systems
involve writing/reading graph-sized feature data between
two graph operators. Operators performed on vertices and
edges usually have inconsistent thread mapping schemes,
which hinder applying fusion for these operators to reduce
IO. (3) From the memory perspective, GNN models usually
perform concurrent training and inference passes. Thus,
excessive intermediate data produced during executing
fused operators must still be stored for backward, leading to
large memory space requirement. We measure in a Graph
Attention Network (GAT) (Veličković et al., 2017) model
that the intermediate data consume 91.9% of total memory.

To tackle these challenges and accelerate GNN computa-
tion with less memory consumption, we need a systematic
GNN computational graph optimization framework which
considers computation, IO, and memory. DGL (Wang et al.,

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

Gather

Scatter

ApplyVertex

ApplyEdge

Aggregate

ReduceScatter

(Scatter + ApplyEdge + Gather)

(Gather + Scatter + ApplyEdge)

vertex

edge

edge

edge

vertex

edge

edge

edge

Lightweight

vertex vertex

Linear
Projection

vertex vertex
ReLU

Expensive

Lightweight

edge edge

Linear
Projection

edge edge
ReLU

Expensive

(Lightweight)

(Lightweight)

Figure 1. Operators in Graph Neural Networks (GNNs).

2019b) provides two high-level operators, gSpMM and gS-
DDMM, to express various GNN models, while such an ab-
straction fails to explore the redundant computation hidden
in neural operators performed through the graph structure.
FuseGNN (Chen et al., 2020) fuses edge operators to accel-
erate GNN computation, but it lacks the technique to fuse
a vertex-centric operator with an edge-centric one. Huang
et al., (Huang et al., 2021) also proposes fusion technique
for GNNs, while it cannot handle GNN training because the
intermediate data are missing.

All previous studies fail to comprehensively consider the
computation, IO, and memory perspectives for both GNN
training and inference. Thus, we put forward a systematic
framework to accelerate GNN computation and reduce mem-
ory consumption on GPUs with following contributions:

• Propagation-postponed operator reorganization.
Since the redundant computation is caused by performing
neural operators on graph structure, we reorganize
operator to perform neural operations before propagation
and achieve an average of 1.68× speedup.

• Unified thread mapping for fusion. Since different
thread mapping scheme prohibits fusing vertex-centric
and edge-centric operator and further reducing IO, we
propose a unified thread mapping scheme for both types
of operators and save up to 5.45× memory IO.

• Intermediate data recomputation. Since the intermedi-
ate data consume the majority of memory but are only
stored for the backward pass, we introduce a recomputa-
tion mechanism to reproduce intermediate data just before
they are needed for backward use and save the memory
consumption by up to 2.21×.

We implement three popular GNN models with the tech-
niques above, achieving up to 2.75× speedup, 6.89× less
IO, and 7.73× less memory consumption. We even en-
able running large-scale GNN models with an NVIDIA
RTX 2080 GPU (8 GB), which would require the newest
NVIDIA RTX 3090 GPU (24 GB) without our technique,

with a comparable latency.

Note that in this project, we mainly focus on single-GPU
GNN computing, which is the key component of state-of-
the-art GNN frameworks such as DGL (Wang et al., 2019b).
We focus on GPUs because GPUs are the most commonly-
used hardware platform for machine learning in the industry.
And we focus on the setting of single-card for mainly two
reasons: (1) Many GNN applications only have graphs that
can easily fit into the memory of a single GPU, such as
proteins or point clouds. (2) For those applications that
cannot fit into a single card, such as social networks, there
are already well-studied graph partition strategies that can
cut the giant graph into small subgraphs so that they can fit
into a single device. NeuGraph (Ma et al., 2019) utilizes a
straight forward partitioning by tiling the adjacency matrix
into equally-sized chunks. ROC (Jia et al., 2020) introduces
an online learning strategy based on a cost model that pre-
dicts the execution time to discover balanced partitioning.
DistGNN (Md et al., 2021) adopt a minimum vertex-cut
graph partitioning algorithm and communication avoidance
with delayed-update algorithms to optimize GNN training
on CPU clusters. As GNN training on multi-card can be di-
vided into out-of-GPU graph partitioning and in-GPU GNN
computing, the overall performance still largely depends
on the performance of a single GPU, and multi-card GNN
training can also benefit from our optimizations.

The following of this paper is organized as follows. Sec-
tion 2 introduces preliminaries of GNNs. Section 3 intro-
duces an overview of our optimization recipe. Our three
techniques, propagation-postponed operator reorganization,
unified thread mapping for fusion, and intermediate data re-
computation are detailed in Section 4, 5, and 6, respectively.
Section 7 presents evaluation results. Section 8 elaborates
related work. Section 9 concludes the paper.

2 PRELIMINARIES

2.1 GNN Operators

On a graph G = (V, E) with the set of vertices V and edges
E , a GNN layer is composed of the following operators:

me = Scatter(hv, hu), (u, e, v) ∈ E ,
mnew

e = ApplyEdge(me[,m
′
e, · · ·]),

hv = Gather({me : (u, e, v) ∈ E}),
hnew
v = ApplyVertex(hv[, h

′
v, · · ·]).

In the above equations, v, u are vertex indices and e is an
edge index. hv refers to feature attached to vertex v, and
me attached to edge e.

Figure 1 visualizes the definitions of operators. Gather is
a reduction operation that generates the feature of a vertex
from features of edges connecting to it. Scatter generates
the feature of an edge from features of vertices that the edge

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

Scatter Apply-
Edge

Gather
Apply-
Vertex

𝐻! 𝐻" 𝐻#𝑀! 𝑀"

𝑊!

d/dH
𝜕𝐻#

d/dW

𝛼𝐻"

d/dH

d/dW
𝜕𝑊!

𝛼𝑀"𝛼𝑀!𝛼𝐻!

Gather +
ApplyVertex

Scatter +
ApplyEdge

Vertex Feature Edge Feature Weight
Vertex Gradient Edge Gradient Weight Gradient

𝑊" 𝜕𝑊"

Forward Pass Backward Pass Gradient Update

Figure 2. Dataflow in GNN training, showing both the forward pass (top) and backward pass (bottom). All intermediate features are used
for backward and need to be stashed in the memory.

connects to. ApplyEdge and ApplyVertex are graph-
irrelevant operators that transform the features of each edge
and vertex, respectively. We further categorize Apply-
operators based on their computation cost: element-wise
operations are considered as lightweight Apply-, while
computation-intensive operations like linear projection are
considered expensive Apply-.

The four operators above are comprehensive enough to ex-
press any GNN model, but there are some widely-used
combinations of operators, which current GNN systems also
provide dedicated optimizations to. We name two most com-
mon combinations: Aggregate and ReduceScatter,
as defined below. We add them to our operator abstraction
operators for the convenience of expressing models.

hnew
v = Aggregate({(hu,me) : (u, e, v) ∈ E}, hv)

= Gather({ApplyEdge(Scatter(hv, hu),me)})
mnew

e = ReduceScatter({me′ : (u ∈ N(v), e′, v) ∈ E}, hu)

= ApplyEdge(Scatter(Gather({me′}), hu),me),

(u, e, v) ∈ E

Aggregate generates a new vertex feature by re-
ducing features from its neighbor vertices and edges.
ReduceScatter generates a new edge feature by reduc-
ing and scattering among the group of edges that connect to
the same vertex, a typical example being the edge-softmax
operation in the Graph Attention Network (GAT). Cur-
rent GNN systems widely support fused Aggregate and
ReduceScatter implementations when ApplyEdge is
lightweight (Huang et al., 2020; Wang et al., 2019b).

Compared with related work, our operator abstraction
is both comprehensive and optimization-friendly. In
terms of comprehensiveness, the Aggregation-Combination
abstraction in previous work (Yan et al., 2020; Wang et al.,
2021), equivalent to our Aggregate and ApplyVertex,
does not cover ApplyEdge. Therefore, the Aggregation-

Combination can only express GNN models without apply-
ing neural networks to edge features, such as the vanilla
GCN (Kipf & Welling, 2016) or GraphSAGE (Hamil-
ton et al., 2017). Our proposed operator abstrac-
tion, in constrast, can construct whatever Aggregation-
Combination constructs, and also Graph Attention Network
(GAT) (Veličković et al., 2017), EdgeConv (Wang et al.,
2019c), and other models with arbitraty message-passing
procedure. Figure 3(a) shows how to construct GAT us-
ing our operator abstraction, and the construction of more
GNN models are elaborated in Appendix to demonstrate its
comprehensiveness. In terms of optimization convenience,
the abstraction in DGL (Wang et al., 2019b), gSDDMM
and gSpMM, can be lowered to any operator-combination
that outputs edge and vertex features. respectively. Such
general abstraction hinders chances of local, global or adap-
tive optimizations, e.g. optimizing only Gather part, or
fusing the last Scatter in gSDDMM with first Gather
in gSpMM. DGL leverages a limited set of built-in oper-
ators to tackle optimization challenges in such a general
abstraction. On the contrary, this paper uses a fine-grained
operator abstraction to express GNN models for generality,
and leverage inter-operator optimizations to systematically
improve performance.

2.2 Back-Propagation in GNN

The back-propagation algorithm is applied to train GNN
models. One can prove that the backward pass of above set
of operators still fall into this set. We list the key conclusions
below, while the detailed proof is elaborated in Appendix.

• The backward pass of Gather (Scatter) is Scatter
and ApplyVertex (Gather and ApplyEdge).

• The backward pass of ApplyEdge (ApplyVertex) is
two ApplyEdge (ApplyVertex) operations.

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

Fused
Graph-related

Op

ApplyVertex

ApplyVertex

Store for
backwards

Fused
Graph-related

Op

ApplyVertex

ApplyVertex

Recompute for
backwards

Scatter

ApplyEdge

Graph-related Op

ApplyVertex

Scatter

ApplyEdge

Graph-related Op

ApplyVertex

ApplyVertex
(a) Original GNN computation graph

(b) Propagation-postponed operator reorganization (Section 4)

(c) Unified thread mapping for fusion (Section 5)

(d) Intermediate data recomputation (Section 6)
Vertex feature Edge feature Off-chip/Global memory On-chip/Local memory Gradients

Scatter
u_concat_v (CC)

ApplyEdge
Linear Projection (LP)

LeakyReLU (LR)

ReduceScatter
Edge Softmax (EM)

Aggregate
Reduce Sum (RS)

ApplyVertex
MLP

u_add_v
LP

LR EM RS MLPLPCC

Fused Graph-related Op (LR-EM-RS)

Recompute Recompute

Stored for backwards

Figure 3. Design Overview. The left part shows the high-level abstraction of a typical GNN computation flow, and the right part shows the
example of a GAT (Veličković et al., 2017) model when applying techniques proposed in this paper. (a) The original computation graph.
(b) After applying operator reorganization, the linear projection operator is preposed and applied on vertices to reduce computation. (c)
After applying operator fusion with the unified thread mapping scheme, operators are fused while the intermediate data are still stored for
the back propagation phase. (d) After applying recomputation, intermediate data are not required to be stored.

The backward pass of Aggregate (ReduceScatter)
can be analyzed by decomposing them into the four fine-
grained operators. In summary, we can express both forward
and backward pass of GNN using the same operator abstrac-
tion. Figure 2 shows a dataflow graph with both passes
and expressed by the four basic operators. Figure 2 also
shows that the intermediate features are needed for com-
puting gradients in the backward pass of the same layer.
Therefore, during the forward pass, all intermediate fea-
tures must be stashed and later used to calculate parame-
ter gradients in the backward pass. Take the GAT models
an example, Figure 3(a) marks all the feature tensors that
are stashed and where they are used in the backward pass.
State-of-the-art GNN systems follow the general strategy
of saving outputs of all operators in the model, and only
provide fused implementations for some common operator-
combinations to avoid saving an O(|E|) intermediate tensor
(e.g., DGL’s built-in edge-softmax for GAT), however, a gen-
eral approach for reducing memory consumption in training
is lacked.

3 DESIGN OVERVIEW

This paper proposes a systematic approach to optimize
the GNN at inter-op level. In this section, we pro-

vide an overview of our designs by walking-through
them on the model architecture of Graph Attention
Network (GAT) (Veličković et al., 2017). As Fig-
ure 3(a) shows, a GAT layer is composed of Scatter,
ApplyEdge, ReduceScatter, Aggregate, ended by
an ApplyVertex. We tackle the aforementioned three de-
sign challenges with methods below:

Eliminating redundant computation through propaga-
tion postponed reorganization. Recall that the redundancy
is caused by performing expensive Apply- (e.g. linear
transformations) many times on the features propagated
from the same source. We propose to reorder the opera-
tor sequence to eliminate this redundancy by first applying
expensive Apply- on the vertex features, and then prop-
agating the results to edges. For example, we show that
in GAT (Veličković et al., 2017) models, the Scatter-
ApplyEdge operator sequence can be substituted by linear-
projection on vertex features and then Scatter-ing the
result, as shown in Figure 3(b).

Reducing IO through completely fusing graph-related
kernels. We propose to fuse a sequence of operators as long
as they are graph-related kernels or lightweight Apply-.
We choose not to fuse expensive Apply- like linear trans-
formations because they can often be tackled with primitives

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

in highly-optimized libraries, e.g. cuBLAS or cuDNN. The
challenge here is that vertex-centric and edge-centric oper-
ators, i.e. operators that produce vertex- or edge-features,
apply vertex-balanced and edge-balanced thread mapping in
current GNN systems, respectively. The unmatched thread
mapping schemes prohibit reusing intermediate data locally
and force dumping data to the DRAM. With novel kernel
designs, we show vertex- and edge-balanced thread map-
ping can both be applied no matter the operator produces
vertex- or edge-features. This allows us to choose a unified
thread mapping for a sequence of graph-related kernels to
fuse them. As shown in Figure 3(c), this step fuses operators
like Scatter, ReduceScatter, Aggregate into one
single kernel and greatly reduces IO.

Avoiding saving intermediate data for backward pass
through recomputation. Recall that GNN training requires
saving all intermediate features in the forward pass for com-
puting gradients, leading to excessive memory consump-
tion. We borrow the idea of gradient checkpointing in DNN
training to tackle this challenge. We selectively save the
intermediate features in the forward pass (checkpoints), and
recompute the unsaved features just before they are needed
in the backward pass, as shown in Figure 3(d). The non-
checkpoint features originally requires a memory size of
O(f × |E|), where f stands for the feature length and |E|
is the number of edges. With recomputation and the afore-
mentioned kernel-fusion technique, we can eliminate this
O(f × |E|). To maximize the benefit of memory savings
and minimize the cost of recomputation, we choose to re-
compute edge rather than vertex features.

4 REDUCING COMPUTATION:
PROPAGATION-POSTPONED OPERATOR
REORGANIZATION

Motivation. Many GNN models perform Scatter fol-
lowed by a computation-intensive neural network (NN) as
ApplyEdge. The same vertex feature is propagated to all
of its adjacent edges, and this duplication causes repeated
NN computation in the ApplyEdge step.

Challenge. We describe above the intuition why propaga-
tion + NN operator causes redundant computation, but we
lack a general formulation to identify and eliminate such
redundancy. In particular, Scatter involves both redun-
dant computation and per-edge unique computation: the
redundant part is because multiple edges connected to the
same vertex share identical vertex feature as input, and the
unique part is because each edge combines features from a
unique pair of two vertices. Separating the two parts and
reducing the redundant part require a careful surgery on the
original computational graph.

Insight. Our key insight is that the root of this possible

𝑣!

𝑣"

𝑣#

𝜙($)

𝜙(𝑣")

𝜙(𝑣!)

(a) (b)

𝜙(𝑔(𝑣!, 𝑣"))𝑔(𝑣!, 𝑣")

redundant computation for

|Vertex| |Edge|

𝑔(𝜙(𝑣!), 𝜙(𝑣"))

|Vertex| |Edge|

𝑣$

Figure 4. Diagram of the propagation-postponed operator reorga-
nization. (a) Redundant neural operator computation on a same
vertex. (b) Operation reorganization to postpone graph operators
and eliminate redundant computation.

computation redundancy is performing repeated neural com-
putation on features scattered from the same source. Take
figure 4(a) as an example. Figure 4(a) shows the computa-
tion and data flow for a part of one EdgeConv layer with one
Scatter operator followed by an ApplyEdge operator.
Features on vertices are first scattered to edges with func-
tion g(u, v) = u− v, after that a linear-projection function
φ(·) is applied. Vertex features are scattered and applied
φ(·) independently on different edges. Therefore we might
apply φ(·) to the same feature more than once, which causes
possible redundancy in computation.

Approach: identify redundancy. Following our insight
that the possible redundancy occurs in the Scatter-
ApplyEdge phase, we find a sufficient condition to iden-
tify this possible redundancy in computing: if the Scatter
function g and ApplyEdge function φ follows the com-
mutative law and distributive law, there is redundancy
in this Scatter-ApplyEdge procedure. Take figure 4(a) as
an example. We first compute g(v1, v2) and g(v1, v3) dur-
ing Scatter, then compute φ(g(v1, v2)) and φ(g(v1, v3)).
Under the commutative law and distributive law, we ob-
tain φ(g(v1, v2)) = g(φ(v1), φ(v2)) and φ(g(v1, v3)) =
g(φ(v1), φ(v3)). Therefore, we actually compute φ(v1)
more than once. For the whole procedure, the computa-
tional expensive function φ(·) is computed |E| times.

Approach: eliminate redundancy. We propose
propagation-postponed operator reorganization to elimi-
nate this redundancy while keeping functional equiva-
lence. The main idea is, as the redundancy is caused
by edges that share the same source performing transfor-
mation to the same feature, if we postpone Scatter
and perform ApplyFunction first, we will only per-
form transformation to the same feature for only once.
In figure 4(b), we first compute φ(v1), φ(v2) and φ(v3),
then scatter them to edges to compute g(φ(v1), φ(v2))
and g(φ(v1), φ(v3)), which actually change the execution
order from Scatter-ApplyEdge to ApplyVertex-
Scatter. For the whole procedure, function g is still

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

computed |E| times, but the computational expensive func-
tion φ(·) is computed only |V| times. In most cases, g
is arithmetic operator and φ(·) is linear operator, which
means the distributive law and commutative law are met,
and we can always eliminate this redundancy with operator
propagation-postponed operator reorganization.

Example. In GATConv, the Scatter-ApplyEdge com-
putes the attention score between two vertices by concate-
nating and applying a one-layer neural network mechanism,
as in Equation 1:

eu→v = LeakyReLU
(
~aT
[
~hu‖~hv

])
(1)

where ~hu,~hv ∈ Rf are the feature vector of the destination
and source, and ~a ∈ R2f are weight parameters to learn.

As Figure 3(a) shows, a Scatter operator u concat v
is first applied to propagate features to edges and con-
catenate the feature vector of the source and destination
into

[
~hu‖~hv

]
, followed by a LP (Linear Projection) and

LeakyReLU to compute the final attention score. The com-
putation cost is 2|E|f for u concat v, 4|E|f for LP and |E|
for LeakyReLU , with a total of 6|E|f + |E|.

Although concatenate and the non-linear neural operation
do not follow the commutative and distributive law, we find
that the LP and concatenate can be seen as two LP fol-
lowed by an add: ~aT

[
~hu‖~hv

]
=
[
~al
T ‖ ~arT

] [
~hu‖~hv

]
=

~al
T~hu + ~ar

T~hv . Therefore, there is redundancy in com-
putation if we don’t perform operator reorganization, and
we postpone Scatter and change the execution order from
Scatter-ApplyEdge into ApplyVertex-Scatter.
As shown in Figure 3(b), we first apply LP to features on
vertices, then scatter them to edges and perform add, fol-
lowed by a LeakyReLU, which still need to be applied on
edges. The total computation cost is reduced to 4|V|f+2|E|.

5 REDUCING IO: UNIFIED THREAD
MAPPING FOR FUSION

Motivation. GNN systems suffer from excessive global
memory writing/reading between production-consumption
operators. Take the GAT model in Figure 3 as an exam-
ple: the edge features produced by the ApplyEdge step
needs to be written-out to the global memory, and read-in
again by the next ReduceScatter operator. The output
of ReduceScatter step is again stored and loaded by
the succeeding Aggregate kernel. Both procedures in-
volve writing/reading a O(|E|)-sized feature tensor. Kernel
fusion is widely exploited to reduce the data movement. In
fact, the edge-softmax in current systems are commonly
implemented by a hand-optimized fused kernel to reduce IO.
Our target is to apply kernel fusion to further eliminate the
aforementioned two edge feature store/load, and completely

(a)

Ed
ge
-b
al
an

ce
d

V
e
rt
ex
-b
al
an

ce
d

Vertex-centricEdge-centric

cross thread reduction

for-loop

for-loop
ThreadGroup0

ThreadGroup1

for-loop

Id
le

Id
le

Scatter Gather

va
lid

in
p
re
vi
o
u
s
w
o
rk

in
va
lid

in
p
re
vi
o
u
s
w
o
rk

(p
ro
p
o
se
d
in
th
is
p
ap

e
r)

Th
re
ad

1

Th
re
ad

2

Th
re
ad

3

Th
re
ad

0

Th
re
ad

1

Th
re
ad

2

Th
re
ad

3

Th
re
ad

0

Th
re
ad

1

Th
re
ad

0

(b) (c) (d)

Cannot
be fused

I II

III IV

Figure 5. Diagram of the unified thread mapping. (a) We enable
different thread mapping schemes for different graph operators. (b)
A Scatterwith the edge-balanced mapping cannot be fused with
a Gather with the vertex-balanced mapping. (c) Vertex-balanced
fusion. (d) Edge-balanced fusion.

fuse all graph-related operators (Scatter, ApplyEdge,
ReduceScatter, Aggregate).

Challenge. The challenge in applying fusion to graph-
related operators is the diverged thread-mapping schemes
between edge-centric and vertex-centric operators. By edge-
centric, we mean the operator whose output is edge fea-
tures, and by vertex-centric the ones producing vertex fea-
tures. For example, Scatter is an edge-centric operator,
Gather being vertex-centric, and ReduceScatter and
Aggregate are hybrid of both. We find current GNN sys-
tems commonly implement edge-centric operators in edge-
balanced thread-mapping, and vertex-centric ones in vertex-
balanced thread mapping. As shown in Figure 5(a)I, edge-
balanced thread mapping bind parallel workers to different
edges. This parallelization strategy naturally matches the
edge-centric operator: imagine each worker independently
calculate the features for different edges, with no cross-
thread communication involved and perfect work-balancing.
On the other hand, vertex-balanced thread mapping bind
parallel workers to different vertices. This strategy suits
the Gather operator because the reduction can be carried
by the same worker via a sequential loop as Figure 5(a)IV.
Although the above two strategies are reasonable when seen
separately, the issue comes up when we try to fuse operators
with different thread-mapping schemes. As shown in Fig-

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

ure 5(b), the edge-balanced scheme in Scatter and the
vertex-balanced scheme in Gather prohibits reusing the
intermediate data in the thread’s local scope, because the
same thread is assigned to an edge at first but a vertex next.

Insight. Our key insight is that thread-mapping schemes can
be decoupled from the operator type: edge-centric operator
can also apply vertex-balanced mapping and vise versa. We
illustrate these two scenarios in Figure 5(a)II and III. To
apply vertex-balanced mapping to edge-centric operator,
each worker is assigned to loop over the incoming-edge set
of a vertex and compute features for these edges. We can
increase the number of threads in the same group to exploit
parallelism, since features for each edge can be calculated in
parallel. The example in Figure 5(c) reveals a potential issue
of imbalanced workload, but the issue is minor as long as we
have enough parallelism to fully occupy the GPU, and worth
taking if it enables kernel fusion and saves excessive IO. On
the other hand, when applying edge-balanced mapping to
vertex-centric operator, we need to handle the cross-thread
reduction shown in Figure 5(d). Cross-thread reduction can
be implemented on GPU via atomic arithmetics. Observe
that edge-balanced mapping improves workload balancing,
but atomic arithmetics can introduce overhead, which we
need to compare against the benefit of kernel fusion.

Approach. Following our insight that both edge-balanced
and vertex-balanced schemes can be applied to all operators,
we propose to eagerly fuse all graph-related operators with
unified thread mapping. By the phrase graph-related, we re-
fer to all operators except the expensive Apply- ones such
as linear projection. In the GAT example, the sequence of
Scatter, ReduceScatter, Aggregate all fall into
this definition, and we are able to fuse them into one single
kernel by applying the same thread-mapping. In general,
we can select between vertex-balanced or edge-balanced
mapping based on performance profiling. A special case is
when ReduceScatter is involved: since an intermediate
vertex-feature needs to be reused between two operators, we
can only apply the vertex-centric mapping and buffer the
vertex-feature in the GPU shared-memory.

Example. In GAT, there are three graph-related operators
that have a potential to fuse: Scatter, ReduceScatter
and Aggregate. As ReduceScatter requests vertex-
centric mapping, we apply unified vertex-balanced mapping
to fuse these three operators into one kernel, which saves
excessive IO. Assuming one GAT layer has h heads and a
feature length of f , before operator fusion, the IO of these
graph-related operators is 4|E|h for Scatter, 3|E|h for
ReduceScatter, and 3|E|hf + |V|hf for Aggregate,
with a total of |V|hf + 7|E|h + 3|E|hf . With operator
fusion, since the intermediate data are reused, the total IO is
reduced to |V|hf + 5|E|h+ 2|E|hf .

|Vertex|

(a) (b)

excessive
intermediate

data
gradient

off-chip
storage

|Edge||Vertex|
gradient

off-chip
storage

on-chip
storagerecompute

Scatter Gather Scatter Gather

Figure 6. Diagram of the intermediate data recomputation. (a)
Edge features are stored for the backward propagation. (b) Edge
features are recomputed without storing in the off-chip memory.

6 REDUCING MEMORY: INTERMEDIATE
DATA RECOMPUTATION FOR TRAINING

Motivation. GNN systems suffer from excessive memory
consumption, because all the intermediate feature tensors
are saved for the backward pass. Section. 5 described our
techniques to fuse all graph-related operators in the forward
pass. Fusion saves not only IO but also memory since no
intermediate tensors need to be written-out and read-in. We
intend to extend operator fusion for the back-propagation
based training scenario to reduce memory consumption.

Challenge. The challenge of avoiding saving intermediate
data is back propagation. The role of intermediate data is
two folds: (1) it passes the values on the forward computa-
tional graph; (2) it passes the intermediate features in the
forward pass to the backward computational graph for gradi-
ents computing. We can fuse operators both in forward and
backward pass, which solves (1). But this is not enough for
training, as intermediate data are still needed for backward.

Take Figure 6(a) as an example, which shows a toy example
composed of one Scatter step and one Gather step,
with operator fusion technique already applied. For the
forward pass, we’ve successfully eliminated the O(|E|) in-
termediate data produced by Scatterwith operator fusion
technique by fusing the Scatter-Gather procedure into
one operator, in which the values of the intermediate data
are temporarily stored in on-chip memory instead of the
off-chip memory. But as we still need this intermediate data
for backward propagation, we have to stash the intermediate
data in off-chip memory.

Insight. Our key insight is that we can trade memory with
computation: if the intermediate data is memory consuming
but light weight to compute, we can recompute these inter-
mediate data during the backward pass. Based on this, we
propose a recomputing technique to deal with the intermedi-
ate data in the backward pass, which solves (2).

Approach. Following our insight that memory can be
traded with computation, we propose an empirical criterion
ComputationCost
MemoryCost to identify the recomputing opportunity

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

of an operator. If ComputationCost
MemoryCost is no more than O(1),

which means we can save one element’s memory with no
more than one computation, we just recompute the value
during the backward pass, because we can save memory
with little damage to the runtime latency. Otherwise, we
stash the intermediate data as the benefit of recomputing is
limited. In the toy example in figure 6(b), we recompute the
O(|E|) intermediate data instead of stashing it because the
computation cost of Scatter is small. By recomputing,
we save O(|E|) memory consumption with O(|E|) compu-
tation. We will show later by experiments that this overhead
is usually no more than 10% in GNN.

Recomputation with fusion. Our recomputing technique
usually works for graph-related operators and lightweight
Apply- operators, which take up much memory space but
lightweight to compute. Occasionally, our proposed fusion
technique is also applied to graph-related operators and
lightweight Apply- operators. If we perform fusion with-
out recomputation, we have to stash those needed intermedi-
ate data, which still costs a lot of memory space and impair
the benefits brought by fusion. With fusion-recomputation
combo, we are able to eliminate those intermediate data in
the whole training process.

Example. In GAT, three operators are fused: one
Scatter, one ReduceScatter (edge-softmax), and
one Aggregate. So there are two intermediate data
we need to handle: output of Scatter and output
of ReduceScatter, both of which are O(|E|). As the
ComputationCost
MemoryCost of this Scatter is only O(1), we can

just recompute it during backward propagation. The
ReduceScatter operator edge-softmax first perform re-
duction to compute the maximums and the sum of all
the exponential as denominator, which is a Gather, fol-
lowed by a O(1) division to compute the final edge value
(Scatter and ApplyEdge). The recomputing score
ComputationCost
MemoryCost is O(|log |E||V| |) for Gather and O(1) for

Scatter and ApplyEdge. According to our standard
for recomputing, we store all the maximums and denom-
inators during the forward pass, which only takes O(|V|),
and recompute the other results later within O(1) time. By
our proposed recomputing technique, two O(|E|) intermedi-
ate data are eliminated at a cost of only O(1) overhead in
latency.

7 EXPERIMENT

In this section, we implement our proposed techniques and
evaluate them on multiple GNN models and datasets. We
(1) demonstrate the overall performance improvements; (2)
conduct ablation studies to provide detailed analysis on
the benefits brought by each technique; (3) evaluate our
implementations on devices with smaller DRAM which
wouldn’t fit in without our optimization.

7.1 Experimental Setup

7.1.1 Benchmarks

• Graph Attention Network (GAT) (Veličković et al.,
2017) is one of the most classic GNN models, which
adopts attention mechanisms to learn the relative weights
between connected vertices instead of the identical or pre-
determined weights. It first Scatter features to edges
and compute attention scores with learnable parameters,
then perform ApplyEdge followed by Aggregate.

• Edge Convolution (EdgeConv) (Wang et al., 2019c)
transforms the point clouds into a k-nearest neighbor
graph to represent the topological information, in which
points are viewed as vertices and their relative position
is modeled as edges. It first Scatter vertex features
to edges to compute their relative position, then Apply
neural operations on edges and performs Gather to gen-
erate vertex embeddings.

• Mixture Model Network (MoNet) (Monti et al., 2016)
introduces pseudo-coordinates to determine the relative
position among vertices to learn the weight function adap-
tively. It first performs ApplyEdge to compute gaussian
kernel, followed by Aggregate.

We choose these models because we believe they represent
the trend that GNN models will evolve into more diversity
and complexity, from static edge value without gradient
(Kipf & Welling, 2016; Hamilton et al., 2017) to gradient
computation on edge feature (Veličković et al., 2017; Monti
et al., 2016; Wang et al., 2019c), which improves the expres-
sivity of GNNs.

7.1.2 Baselines

• Deep Graph Library (DGL) (Wang et al., 2019b) is
one of the mainstream GNN framework on GPUs, which
adapts to existing deep learning software such as PyTorch.
It outweighs PyG (Fey & Lenssen, 2019) in various GNN
models. (Chen et al., 2020)

• FuseGNN (Chen et al., 2020) is a system for GNN train-
ing on GPUs with efficient CUDA kernel implementa-
tions and applies operator fusion technique. As fuseGNN
does not implement EdgeConv and MoNet, we only com-
pare with it on GAT.

7.1.3 Datasets

For GAT and MoNet, we use four commonly-used GNN
datasets for evaluation, including Cora, Citeseer, Pubmed,
and Reddit (Kipf & Welling, 2016; Hamilton et al., 2017).
For EdgeConv, we use ModelNet40 classification task with
12,311 meshed CAD models from 40 categories, consisting
in predicting the category of a previously unseen shape (Wu
et al., 2015; Wang et al., 2019c).

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Speedup IO Memory

(2
0,
32
)

(2
0,
64
)

(4
0,
32
)

(4
0,
64
)

(2
0,
32
)

(2
0,
64
)

(4
0,
32
)

(4
0,
64
)

(2
0,
32
)

(2
0,
64
)

(4
0,
32
)

(4
0,
64
)

Speedup IO Memory

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Co
ra

Pu
bm

ed

Ci
te
se
er

Re
dd
it

Speedup IO MemorySpeedup IO Memory Speedup IO Memory Speedup IO Memory

GAT EdgeConv MoNet3

2

1

0

N
or
m
al
ize

d
Pe
rfo

rm
an
ce

(to
DG

L)

Our FuseGNN DGL

Figure 7. Normalized (to DGL) end-to-end performance on three GNN models from computation (speedup), IO, and memory perspectives.

7.1.4 Platforms & Metrics

We implement our proposed technique with a C++ and
CUDA backend and a Pytorch-based front-end. Our main
evaluation platform is a server with a 10-core 20-thread
Intel Xeon Silver 4210 CPU running @ 2.2GHz and an
NVIDIA RTX 3090 GPU with CUDA 11. Besides, we use
an NVIDIA RTX 2080 GPU to demonstrate our design can
achieve comparable performance against RTX 3090.

7.2 End-to-End Performance

GAT. As fuseGNN doesn’t support multi-head attention,
we use the setting: 2 layers with 128 hidden dimensions
for evaluation and the end-to-end training results are shown
in Figure 7. Compared with DGL, we achieve an average
of 2.07× (up to 2.75×) speedup and save an average of
1.48× (up to 3.53×) memory consumption. Compared with
fuseGNN, we achieve an average of 1.85× (up to 3.41×)
speedup and save an average of 1.29× (up to 2.55×) less
memory consumption. The average IO is increased by 1.3%
due to recomputation. On Cora, Citeseer and PubMed, we
achieve great speedup mainly because we perform unified
vertex-balanced fusion, which is friendly for these datasets.
The memory consumption is not greatly saved because what
we eliminate is the O(|E|) intermediate data and the num-
ber of edges is small in these datasets. But on Reddit with
233K vertices and 115M edges, we save great memory
consumption (3.88GB) compared with DGL (13.7GB) and
fuseGNN (9.89GB) mainly because our proposed fusion-
recomputation combo eliminates the O(|E|) intermediate
data during training. The memory saving will be more sig-
nificant if applying multi-head mechanism as in the original
paper (Veličković et al., 2017).

EdgeConv. We use the same setting as the original pa-
per (Wang et al., 2019c): EdgeConv layers=4 with hid-
den dimensions={64, 64, 128, 256}, the number of nearest
neighbors k=20/40, and the batch size=32/64, with a to-
tal of four different settings, and the end-to-end training
results are shown in Figure 7. Compared with DGL, we
achieve an average 1.52× (up to 1.69×) speedup and save
an average of 4.58× (up to 7.73×) peak memory usage

and 5.32× (up to 6.89×) IO. We apply operator organiza-
tion and operator fusion technique in EdgeConv. As the
Gather function is max, only an O(|V|) array is needed
for back propagation, and recomputation is not applied to
further reduce memory consumption. Note that the training
process of EdgeConv consists of two parts: transforming
point clouds into a graph on CPU and GNN computing on
GPU. As a great portion of the computation is transform-
ing point clouds into a graph, the end-to-end speedup is
not as significant as it should be. However, the memory is
largely saved because we optimize the graph-related opera-
tors which cause large memory consumption. Note that our
memory consumption remains unchanged when k changes,
for k is the average number of edges for each vertices. By
implementing fusion-recomputation combo, we eliminate
all the O(|E|) intermediate data.

MoNet. We use the setting: 2 layers with 16 hidden dimen-
sions, k=3 r=2 for Cora, k=3 r=3 for Pubmed and Citeseer,
k=2 r=1 for Reddit, where k is the gaussian kernel size and
r is the dimension for pseudo coordinates in gaussian mix-
ture model. As shown in Figure 7, compared with DGL, we
achieve an average of 1.69× (up to 2.00×) speedup and save
an average of 1.47× (up to 3.93×) peak memory usage and
1.30× (up to 2.01×) IO. Similar with GAT, the performance
improvement comes from operator fusion and recomputing.
Different from GAT, as MoNet doesn’t have Scatter in
the beginning, operator reorganization is not needed.

7.3 Ablation Studies

Without special declaration, we use the setting as follows.
(1) GAT: head=4 with feature dimension=64, on Reddit.
(2) EdgeConv: k=40, batch size=64, layer=4 with hidden
dimensions={64, 64, 128, 256} for training, layer=1 with
feature dimensions=64 if only forward. (3) MoNet: k=2,
r=1 with feature dimension=16, on Reddit.

Reorganization. Figure 8 illustrates the benefits of opera-
tor reorganization for reducing computation, IO, and mem-
ory consumption in GAT and EdgeConv. MoNet has no
Scatter and therefore no need for operator reorganiza-
tion. Due to memory limitation of our device, we evalu-

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

0

1

2

Speedup IO Memory

GAT
EdgeConv

N
or
m
al
ize

d
Pe
rfo

rm
an
ce

Figure 8. Normalized performance improvements brought by
propagation-postponed operator reorganization.

0
1
2
3
4

Speedup IO Memory

GAT
EdgeConv

N
or
m
al
ize

d
Pe
rfo

rm
an
ce

MoNet

Figure 9. Normalized performance improvements brought by uni-
fied thread mapping operator fusion.

ate GAT with Pubmed. The baseline is implemented with
Scatter before ApplyEdge, and the implementation
with operator reorganization postpone Scatter and per-
form ApplyVertex first. To clearly show the impacts
brought by operator reorganization, We use forward pass for
comparison. The experiment results are consistent with the-
oretical analysis: as redundant computation is eliminated, la-
tency is reduced and redundant IO caused by redundant com-
putation is also eliminated; as we perform ApplyVertex
before Scatter, one O(|V|) and one O(|E|) intermediate
data are generated, but if we perform Scatter first fol-
lowed by ApplyEdge, two O(|E|) intermediate data are
generated. For the forward pass, operator reorgnization im-
proves latency by 1.68×, IO by 3.06×, and peak memory
usage by 1.30× on average.

Fusion. Figure 9 illustrates the benefits brought by operator
fusion. We fuse all the graph-related operators with our
proposed unified thread mapping scheme, and our proposed
fusion technique can be applied to all of these three models.
More details about our implementation can be found in
appendix. For GAT, fusion has a little negative impact
on latency, slightly reduces IO and greatly reduces memory
consumption. As we use shared memory to perform operator
fusion, which introduces extra overhead and Reddit is a very
unbalanced graph, the latency is still largely determined
by the unbalanced workload after performing fusion. As
the neural operators consumes the major part of IO, the
relative IO reduction is not significant. The absolute value
of IO reduction and memory reduction are about same level.
For EdgeConv, IO and memory consumption are greatly
reduced, and latency is slightly improved, mainly because
of saving write-in and read-out for intermediate data. As
the absolute value of IO in EdgeConv is much smaller than
GAT, the relative IO reduction is much more significant.
For MoNet, latency, IO, and memory are all significantly
saved, mainly because of the largely improved data locality

0

0.4

0.8

0
10
20
30

w/o
fusion

w/
fusion&stashing

w/
fusion&recompution

GAT

M
em

or
y
(G
B)

MoNet

Latency
(s)

Figure 10. Benefits and overhead brought by intermediate data re-
computation. “w/o fusion”: disable fusion. “fusion&stashing”:
fuse operators but stash the needed intermediate data for back-
ward. “fusion&recomputation”: perform operator fusion as well
as recomputation.

and saving for broadcast. For the forward pass, the operator
fusion technique improves latency by 1.68×, IO by 1.16×
(up to 5.45×), and peak memory usage by 4.92× on average.

Recomputation. Figure 10 illustrates the benefits brought
by intermediate recomputation on GAT and MoNet. As the
Gather function in EdgeConv is max, only the indices of
the maximum have to be stashed (which isO(|V|)) and there
is no need for recomputation. We use three implementations
for comparison: (1) without our unified thread mapping
operator fusion technique; (2) with the fusion technique but
without recomputation technique, which means intermediate
data have to be stashed; (3) with both our proposed fusion
technique and recomputation technique. For GNN training,
only fusion cannot reduce memory consumption, as even if
we eliminate some intermediate data during the forward pass
with operator fusion, we still need to stash them to perform
back propagation. However, with our proposed recompu-
tation technique, we can also eliminate those intermediate
data during backward propagation at a small cost of compu-
tation. In GAT, recomputation saves 2.21× memory at the
cost of slowing down by 7.1%. In MoNet, recomputation
saves 1.55× memory and accelerates by 5.9%.

7.4 Evaluation on Different GPUs

With our proposed three techniques, we are able to perform
the same training task on devices with much smaller memory
capacity. We evaluate our models with the same setting as
Section 7.3 on RTX 2080, all of which cannot be done
without our proposed techniques due to memory capacity
limits. Figure 11 show that our implementation on RTX
2080 can even achieve 1.17× end-to-end speedup over DGL
on RTX 3090 with 7.73× less memory for EdgeConv.

8 RELATED WORK

8.1 GNN Systems

NeuGraph (Ma et al., 2019) first introduces SAGA (Scat-
ter, ApplyEdge, Gather and ApplyVertex) abstraction to
describe GNNs. It is the first system that bridges the gap
between graph processing systems and DNN systems. After
that, GNN systems can be categorized as following types:

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

0

10

20

30

0

1

2

3

Latency Memory Latency Memory Latency Memory

GAT EdgeConv MoNet

M
em

ory
(G
B)La

te
nc
y
(s
)

Our on RTX 3090
DGL on RTX 3090
Our on RTX 2080

Figure 11. End-to-end performance on different GPUs. Our de-
signs enable running large-scale GNN models with an NVIDIA
RTX 2080 GPU, which require the newest NVIDIA RTX 3090
GPU, with a comparable latency.

GNN computation graph optimization includes operator
reorganization, operator fusion, data flow optimization, etc.,
and many efforts have been made to solve the challenges in
optimizing GNN computation graph: (1) Redundant neu-
ral operator computation. Prior work attempts to tackle
the computation redundancy via manually modifying the op-
erator combinations to a functionally-equivalent but efficient
version. For example, DGL (Wang et al., 2019b) provides a
GAT implementation in its GNN-module library, where the
ApplyEdge (the linear projection) is separated into two
functions applied to vertex-features ahead of propagation.
However, a theory inside this practice needs to be extracted
for optimizing similar scenarios, as we do in this paper. (2)
Inconsistent thread mapping. Fusion is widely used in
conventional Deep Neural Networks (DNNs) (Niu et al.,
2021). FuseGNN (Chen et al., 2020) manages to fuse any
two edge-centric operators, but lacks the technique to fuse
a vertex-centric operator with an edge-centric one, which
we address in this paper via unified thread mapping. (3)
Excessive intermediate data. Huang et al., (Huang et al.,
2021) reduces intermediate data during forward but cannot
handle back propagation because the intermediate data are
missed. FuseGNN (Chen et al., 2020) stashes the inter-
mediate data during forward, but lacks the recomputation
technique, which still consumes great memory space.

GNN runtime optimization includes neighbor grouping,
graph reordering etc, which introduces a preprocessing pro-
cedure to schedule the workload assignment and memory
layout. GNNAdvisor (Wang et al., 2021) and Huang et
al., (Huang et al., 2021) both utilize neighbor grouping to
balance the workloads among GPU threads and blocks and
exploit memory locality. GNNAdvisor further use Rabbit
Reordering (Arai et al., 2016) to maximize the graph mod-
ularity by clustering. By neighbor grouping and graph re-
ordering, the runtime workload balance and memory locality
are improved by introducing some preprocessing overhead.
Although we mainly focus on GNN computation graph opti-
mizations in this paper, our work can also benefit from these
GNN runtime optimizations.

8.2 DNN Systems

TASO (Jia et al., 2019) proposes a novel computation graph
optimizer for DNNs that can automatically generate graph
substitutions. DNNFusion (Niu et al., 2021) proposes a set
of fusion methodologies to work in conjunction with compu-
tation graph rewriting for DNN inference. Chen et al., (Chen
et al., 2016) introduces the recomputation technique to DNN
training to trade computation with memory. Our proposed
operator reorganization technique is more of eliminating
computing redundancy, while DNN computation graph sub-
stitution is more of finding a better substitution. Our unified
thread mapping operator fusion technique is also different
from operator fusion in DNNs, as GNN introduces graph-
related operator, which brings about the divergent thread
mapping between edge-centric and vertex-centric operators.
And unlike DNN recomputation, which incurs roughly 30%
of additional latency (Chen et al., 2016), overhead by our
proposed recomputation technique is <10% as we utilize
the characteristics of GNN training and graph data.

9 CONCLUSION

In this paper, we present a thorough study of GNN computa-
tional graph optimization. We point out GNN systems suffer
from redundant neural operator computation, inconsistent
thread mapping, and excessive intermediate data. We pro-
pose a systematic framework with propagation-postponed
operator reorganization, unified thread mapping for fusion,
and intermediate data recomputation. We achieve up to
2.75× end-to-end speedup, 6.89× less memory IO, and
7.73× less memory consumption over state-of-the-art frame-
works. We even enable running large-scale GNN models
with an NVIDIA RTX 2080 GPU, which would require the
newest NVIDIA RTX 3090 GPU without our technique,
with a comparable latency. More specifically, we provide an
optimization-friendly perspective to understand GNN com-
putational graph, which can be extended to other hardware
platforms.

ACKNOWLEDGEMENT

This work was supported by National Natural Sci-
ence Foundation of China (No. 62104128, U19B2019,
61832007); China Postdoctoral Science Foundation (No.
2019M660641); National Key R&D Program of China
(No. 2017YFA02077600); Tsinghua EE Xilinx AI Research
Fund; Beijing National Research Center for Information
Science and Technology (BNRist); Beijing Innovation Cen-
ter for Future Chips; Biren Technology. This work will be
included in dgSPARSE project1.

1The dgSPARSE project (https://dgsparse.github.
io/) is an open source project for fast and efficient graph process-
ing on GPUs.

https://dgsparse.github.io/
https://dgsparse.github.io/

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

REFERENCES

Arai, J., Shiokawa, H., Yamamuro, T., Onizuka, M., and
Iwamura, S. Rabbit order: Just-in-time parallel reordering
for fast graph analysis. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 22–31,
2016.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016.

Chen, Z., Yan, M., Zhu, M., Deng, L., Li, G., Li, S., and
Xie, Y. fuseGNN: Accelerating Graph Convolutional
Neural Network Training on GPGPU. In IEEE/ACM
International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. 2019.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive Rep-
resentation Learning on Large Graphs. In International
Conference on Neural Information Processing Systems
(NeurIPS), pp. 1025–1035, 2017.

Huang, G., Dai, G., Wang, Y., and Yang, H. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on
gpus for graph neural networks. In International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020.

Huang, K., Zhai, J., Zheng, Z., Yi, Y., and Shen, X. Under-
standing and Bridging the Gaps in Current GNN Perfor-
mance Optimizations. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pp. 119–132, 2021.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M.,
and Aiken, A. Taso: Optimizing deep learning compu-
tation with automatic generation of graph substitutions.
In ACM Symposium on Operating Systems Principles
(SOSP), pp. 47–62, 2019.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the accuracy, scalability, and performance of graph
neural networks with roc. Proceedings of Machine Learn-
ing and Systems, 2:187–198, 2020.

Kipf, T. N. and Welling, M. Semi-supervised Classifica-
tion with Graph Convolutional Networks. arXiv preprint
arXiv:1609.02907, 2016.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L., and
Dai, Y. Neugraph: Parallel deep neural network com-
putation on large graphs. In USENIX Annual Technical
Conference (ATC), pp. 443–458, 2019.

Md, V., Misra, S., Ma, G., Mohanty, R., Georganas,
E., Heinecke, A., Kalamkar, D., Ahmed, N. K., and
Avancha, S. Distgnn: Scalable distributed training
for large-scale graph neural networks. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’21, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450384421. doi: 10.
1145/3458817.3480856. URL https://doi.org/
10.1145/3458817.3480856.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. 2016.

Nguyen, T. and Grishman, R. Graph Convolutional Net-
works With Argument-Aware Pooling for Event Detec-
tion. In AAAI Conference on Artificial Intelligence
(AAAI), 2018.

Niu, W., Guan, J., Wang, Y., Agrawal, G., and Ren, B. DNN-
Fusion: Accelerating Deep Neural Networks Execution
with Advanced Operator Fusion. In ACM SIGPLAN Inter-
national Conference on Programming Language Design
and Implementation (PLDI), pp. 883–898, 2021.

Qi, S., Wang, W., Jia, B., Shen, J., and Zhu, S.-C. Learn-
ing Human-Object Interactions by Graph Parsing Neural
Networks. arXiv preprint arXiv:1808.07962, 2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph Attention Networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M.,
Li, W., and Wang, Z. Knowledge-aware Graph Neural
Networks with Label Smoothness Regularization for Rec-
ommender Systems. arXiv preprint arXiv:1905.04413,
2019a.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li,
M., Zhou, J., Huang, Q., Ma, C., et al. Deep Graph
Library: Towards Efficient and Scalable Deep Learning
on Graphs. 2019b.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. 2019c.

Wang, Y., Feng, B., Li, G., Li, S., Deng, L., Xie, Y., and
Ding, Y. Gnnadvisor: An adaptive and efficient runtime
system for GNN acceleration on gpus. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pp. 515–531, 2021.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. 2015.

https://doi.org/10.1145/3458817.3480856
https://doi.org/10.1145/3458817.3480856

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

Yan, M., Deng, L., Hu, X., Liang, L., Feng, Y., Ye, X.,
Zhang, Z., Fan, D., and Xie, Y. Hygcn: A gcn accel-
erator with hybrid architecture. In IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pp. 15–29, 2020.

Yan, S., Xiong, Y., and Lin, D. Spatial Temporal Graph Con-
volutional Networks for Skeleton-Based Action Recogni-
tion. arXiv preprint arXiv:1801.07455, 2018.

Yao, L., Mao, C., and Luo, Y. Graph Convolutional
Networks for Text Classification. arXiv preprint
arXiv:1809.05679, 2018.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph Convolutional Neural Net-
works for Web-scale Recommender Systems. In ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (KDD), pp. 974–983, 2018.

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

APPENDIX

A GNN Operators

This section formally describes our taxonomy of GNN op-
erators, briefly introduced in Section 2.1 as 4 basic opera-
tors: Scatter, Gather, ApplyEdge, ApplyVertex,
and 2 high-level operators: ReduceScatter and
Aggregate. We further illustrate how to construct popular
GNN models from this set of operators.

A.1 Operator Definition

Let a graph be G = (V, E), where V represents the set of
vertices, and E represents the set of edges. The elements in
E is tuples of (u, e, v), where u, v ∈ V and e is a unique id.
The tuple (u, e, v) indicates there is an edge indexed by e
pointing from u to v. 2 We define four basic operators as
follows:

Scatter: me = φ(hu, hv), (u, e, v) ∈ E . For every edge,
perform a binary operation (function φ(·, ·)) on the features
attached to the two vertices that the edge connects to.

Gather: hv = ψ({me : (u, e, v) ∈ E}). For every vertex,
perform a reduction operation to the features attached to all
edges that connects to it.

ApplyEdge: mnew
e = fe(me[,m

′
e, · · ·]), (u, e, v) ∈ E .

For every edge, perform the same function fe that trans-
forms its current feature (and any history features). This
operator is graph-irrelevant , meaning that its outcome does
not change if the graph structure (connections) changes.

ApplyVertex: hnewv = fv(hv[, h
′
v, · · ·]), v ∈ V . For

every vertex, perform the same function fv that transforms
its current feature (and any history features). This operator
is also graph-irrelevant like ApplyVertex.

Through composing the above four operators, we also pro-
pose two high-level operators that are widely seen in GNN
models:

Aggregate:
hnewv = ψ({fe(φ(hu, hv),me)}), (u, e, v) ∈ E . It is
a sequence of three basic operators: Scatter to gen-
erate edge features, ApplyEdge to transform the edge
feature or combine it with any history features, and fi-
nally Gather to reduce edge features and generate new
vertex features. A typical example is the neighborhood
feature-reduction in vanilla GCN, where each vertex takes
the sum of all its neighbor-vertices’ features, essentially
hnewv = sum({we · hu : (u, e, v) ∈ E}). This step can be
expressed by Aggregate by binding φ as copying source-
vertex’s feature, fe as multiplying the edge weight we, and

2Here we assume directed edges, but can generalize the theory
to undirected edges by seeing each edge u ↔ v as two directed
ones u→ v and v → u.

ψ as summation.

ReduceScatter:
mnew
e = fe(φ(ψ({me}), hu),m′e), (u, e, v) ∈ E . It is

a sequence of three basic operators: Gather to reduce
edge features into vertex features based on the vertex’s
adjacent edge group, and Scatter to broadcast the re-
duction results to all edges, and finally ApplyEdge to
combine the broadcast values and any history features into
new edge features. This operation can be used when the
edge features are normalized within a neighborhood set,
as happens in the edge-softmax. Edge-softmax performs
mnew
e = softmax({m′e : (u ∈ N (v), e′, v})[e], where

softmax(x1, · · · , xn)[i] =
e(xi−maxk(xk))∑n
j=1 e

(xi−maxk(xk))

. This step can be expressed by the following code snippet:

RS1: ψ ← max, φ← copy, fe ← substraction,
RS2: ψ ← sum, φ← copy, fe ← division.

A.2 Construct GNN Models

GCN

Vanilla GCN is defined as:

h(l+1)
v = σ

b(l) +
∑

u∈N (v)

euvh
(l)
u W

(l)

where σ is an activation function, b is a bias, and W is
weight to learn. With four basic operators, we first perform
ApplyVertex, then copy source vertex’s feature to edges
(Scatter) and multiply the edge weights (ApplyEdge)
to obtain euvh

(l)
u W (l), followed by a gather with summation

(Gather) and an activation (ApplyVertex), as shown in
figure 12(a). Figure 12(b) shows how to describe the same
procedure with an high-level opeartor Aggregate.

GAT

GAT is defined as:

h(l+1)
v =

∑
u∈N (v)

euvW
(l)h(l)

u

elij = edge-softmax
(
LeakyReLU

(
~aT [Whi‖Whj]

))
where W and a are learnable parameters. Figure 12(c)
shows one way to compute this. Assume the input node
feature vectors are concatenated into a feature matrix
H(l) ∈ Rn×f(l)

, and operator reorganization technique
is already applied. We first perform a dense matrix ma-
trix multiplication to transform this feature matrix into

H̃(l) = H(l) ×W (l) ∈ Rn×f(l+1)

with torch.nn.linear.
We decompose the weight vector a ∈ R2f(l+1)

into [al||ar]

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

and compute attention scores Al = H̃(l) × al ∈ Rn×1 and

Ar = H̃(l) × ar ∈ Rn×1.

After that, M0 ∈ Rn are generated by

M0 = u add v(Al,Ar)

An ApplyEdgeoperator is then applied to generate

M1 = LeakyReLU(M0) ∈ Rn

followed by a ReduceScatter operator to generate

M2 = edge softmax(M1) ∈ Rn

An Aggregateoperator is performed to generate

H(l+1) = reduce sum(M2, H̃
(l)) ∈ Rn×f

(l+1)

In our implementation, we fuse the computation of
M0,M1,M2,H

(l+1) into one operator, as shown in fig-
ure 12(d).

EdgeConv

Figure 12(e) shows one way to compute EdgeConv. The
mathematical definition of one EdgeConv layer is

h(l+1)
v = max

u∈N (v)

(
Θ ·
(
h(l)
u − h(l)

v

)
+ Φ · h(l)

v

)
where N (v) is the neighbor of v.Θ and Φ are linear layers.
In SOTA gnn framework DGL, one edgeconv layer is com-
puted as shown in figure 12(e). Define the input node feature
matrices as H(l) ∈ Rn×f . The (h

(l)
u − h(l)

v) is computed
by

E(l) = u sub v
(
H(l)

)
∈ Re×f

(l)

followed by one linear ApplyEdge

E
(l)
Θ = Θ ·E(l) ∈ Re×f

(l+1)

An linear ApplyVertex is performed to compute Φ ·h(l)
v :

N
(l)
Φ = Φ ·H(l) ∈ Rn×f

(l+1)

followed by

E
(l)
Θ+Φ = e add v

(
E

(l)
Θ ,N

(l)
Φ

)
∈ Re×f

(l+1)

In the end, a reduce function is called to update the node
features

H(l+1) = reduce max
(
E

(l)
Θ+Φ

)
∈ Rn×f

(l+1)

GMMConv

GMMConv is defined as:

muv = f(xu, xv), xu ∈ N (v)

wk(m) = exp(−1

2
(m− µk)TΣ−1

k (m− µk))

f here is a linear projection, Σk is a covariance matrix of the
gaussian kernel, µk is the mean of the gaussian kernel. By
setting covariance matrix and mean as parameters with gra-
dient, GMMConv could learn weight wk in training process
(ApplyEdge).

h(l+1)
v =

1

K

∑
u∈N (v)

K∑
k

wk(muv)hu
(l)
k

To get node feature, GMMConv multiplies node embedding
with gaussian weight, followed by gathering the sum of
multi-kernels of embeddings (Gather).

B Back-propagation of GNN Operators

In this subsection, we derive the backward pass of the four
GNN operators, and show that they can still be constructed
by the four basic operators. Here ◦ represents composition
of operators where the latter operator gets applied first.

Gather: The backward pass of Gather is a Scatter
followed by an ApplyEdge.

Forward: hv =ψ({me : (u, e, v) ∈ E}),

Backward: gradme =gradhv ×
∂ψ

∂me

=ApplyEdgefe←(×gradme)

◦ Scatterφ←copy v

Scatter: The backward pass of Scatter is a Gather
followed by an ApplyVertex.

Forward: me =φ(hu, hv), (u, e, v) ∈ E ,

Backward: gradhv =
∑

(v,e,u)∈E

gradme ×
∂φ

∂hv

+
∑

(v,e′,u′)∈E

gradme′ ×
∂φ

∂hu

=ApplyEdgefe←(×[∂φ∂hv ,
∂φ
∂hu

]T)

◦ Gatherφ←[
∑

gradme,
∑

gradme′]

Apply-: The backward pass of graph-irrelevant Apply-
is also graph-irrelevant , and can be derived in the same way

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

linear copy_u
Multi-

ply
sumh v1v0 e0

edge
value

e1 activate h’

linear Aggregateh v0 v1

edge
value

activate h’

(a) GCN in four basic operators.

(b) GCN in four basic operators and two high level operators.

(c) GAT computation graph before our optimization.

(d) GAT computation graph after our optimization.

linear u_concat_vh v0 e0 linear e1
Leaky
ReLU

e2
Edge

softmax
Aggreg

ate
e3 h’

linearh v0 h’

linear

linear v1

v2

(e) EdgeConv computation graph before our optimization.

h

u_sub_v e0

linear v0

linear e1

v_add_e max h’e2

h

linear v0

h’

linear v0

(f) EdgeConv computation graph after our optimization.

(g) MoNet computation graph before our optimization.

linear Aggregateh v0

e0

h’

edge
value

Gaussian

linearh v0 h’

edge
value

(h) MoNet computation graph after our optimization.

linear

linear

Scatter

Aggregate

ApplyVertex

Applyedge

Data

Fused kernel

Gather

Figure 12. Construct GNN models with GNN operators.

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

copy

𝝍(𝒎𝒆)

×
𝜕𝜓

𝜕𝑚𝑒

[

𝑣,𝑒,𝑢 ∈ℇ

grad𝑚𝑒 ,

𝑢,𝑒,𝑣 ∈ℇ

grad𝑚𝑒]

𝜙(𝑥, 𝑦)

×
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦

′

Gather Scatter

𝑓 𝑥, 𝑤

Apply-

×
𝜕𝑓

𝜕𝑥

×
𝜕𝑓

𝜕𝑤

Vertex Feature

Edge Feature

Vertex/Edge Feature

Vertex Gradient

Edge Gradient

Vertex/Edge Gradient

Weight Weight Gradient

Forward pass

Backward pass

Update

Figure 13. Back-propagation dataflow of GNN operators.

as operators in neural networks.

Forward: y =f(x,w)

Backward: gradw =grady × ∂f

∂w

gradx = grady × ∂f

∂x

Hence the backward of Apply- is two Apply-, one cal-
culating the gradient of input and one for the gradient of
weight parameters.

Figure 13 visualizes the forward-backward dataflow of each
GNN operator.

Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective

A ARTIFACT APPENDIX

A.1 Abstract

Our work propose a systematic methodology to optimize
the computational graph for GNNs on GPUs. Our work
consists of two parts. The first part is the GPU kernels
which are responsible for the major computation of GNN
models and are implemented with our proposed operator re-
organization, operator fusion, and re-computation technique.
The second part is the python code that wraps the kernels
to provide a PyTorch-based front-end, and uses them as
building blocks to build up different GNN models. Our
work improves the performance of GNN computing with
careful designs and surgeries in GNN computational graph
to reduce computation, IO, and memory consumption, while
preserves functional equivalence. Moreover, we show how
to analyze and optimize GNN computational graph with
three examples and our proposed techniques can also be
applied to many other GNN models.

A.2 Artifact check-list (meta-information)
• Program: https://github.com/mlsysAE2022/
ae_mlsys_gnn.

• Hardware:

– Intel CPU x86 64 with host memory ≥ 64GB. Tested
on Intel Xeon Silver 4210 (10-core 20-thread) CPU
with 512 GB host memory.

– NVIDIA GPU with device memory ≥ 24GB. Tested
on RTX3090 and RTX2080. We mainly evaluate our
design on RTX3090 and the execution time may be
different across different devices but the peak memory
usage remains same.

• Compilation: Ubuntu 18.04+, CUDA 11.0+.

A.3 Description

A.3.1 How delivered

The source code and scripts are available at https://github.
com/mlsysAE2022/ae_mlsys_gnn. They are also avail-
able at https://doi.org/10.5281/zenodo.6402643.

A.3.2 Hardware dependencies

Our implementation works on Intel x86 CPUs and Nvidia GPUs.

A.3.3 Software dependencies

• CUDA 11.0+

• PyTorch 1.8.0+

• DGL 0.7.0+

• Ninja 1.10+

• GPUtil 1.4+

A.4 Installation

To build our software, you need to install Ninja and PyTorch as
shown in dependencies. We use the just-in-time compilation of the
pytorch cpp-extension work flow.

A.5 Experiment workflow
• Go to script/ directory.

• IO result: ./io.sh to run all the IO results.
Generate figure7 io.csv, figure8 io.csv, and
figure9 io.csv.

• Figure 7 result: ./figure7.sh to run end-to-end exper-
iments on three GNN models. Generate figure7.csv.

• Figure 8 result: ./figure8.sh to run ablation study for
operator reorganization. Generate figure8.csv.

• Figure 9 result: ./figure8.sh to run ablation study for
operator fusion. Generate figure9.csv.

• Figure 10 result: ./figure10.sh to run ablation
study for intermediate variable re-computation and gener-
ate figure10.csv.

• Figure 11 result: run figure11 3090.sh on RTX3090
and figure11 2080.sh on RTX2080. Generate
figure11 3090.csv and figure11 2080.csv

• fuseGNN result: run training main.py in the
gcnLib submodule. Use the better result of gas and gar
in --mode.

A.6 Evaluation and expected result

Once you have run the experiment workflow, you can see the .csv
result under the script/ directory. The latency and memory
results are stored in figureX.csv. The IO results can be seen
in the corresponding figureX io.csv.

Example output is given in the folder example data. We ran
an extra experiment on Tesla V100 (16GB) to show how to run
the experiments on smaller devices, although some of the results
are missing because of CUDA out of memory, such as MoNet
from DGL on Reddit. Although our implementations consume less
than 8 GB device memory, our baselines such as DGL consume
device memory as large as 23.1GB (MoNet from DGL on Reddit),
so a minimum of 24 GB device memory is needed to run the
whole experiment. The memory consumption will remain the
same across different devices, and although the absolute value of
latency may vary among devices, the speedup ratio between our
implementations and baselines remains similar to the results in the
paper.

A.7 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging

https://github.com/mlsysAE2022/ae_mlsys_gnn
https://github.com/mlsysAE2022/ae_mlsys_gnn
https://github.com/mlsysAE2022/ae_mlsys_gnn
https://github.com/mlsysAE2022/ae_mlsys_gnn
https://doi.org/10.5281/zenodo.6402643
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

