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MR-GMMapping: Communication Efficient
Multi-Robot Mapping System via Gaussian

Mixture Model
Haolin Dong, Jincheng Yu , Yuanfan Xu , Zhilin Xu, Zhaoyang Shen, Jiahao Tang, Yuan Shen , and Yu Wang

Abstract—Collaborative perception in unknown environments
is a critical task for multi-robot systems. Without external posi-
tioning, multi-robot mapping systems have relied on the transfer
of place recognition (PR) descriptors or sensor data for the relative
pose estimation (RelPose) and share their local maps for relative
localization. Thus, in a communication limited environment, data
transmission can become a significant communication bottleneck
in the multi-robot mapping system. To address this limitation,
we propose MR-GMMapping, a Multi-Robot GMM-based map-
ping system in which robots perform relative localization only
with GMM submaps to reduce data transmission and storage.
For mapping, we propose GMM submap construction strategy with
an adaptive model selection method, which makes robots dynami-
cally select the appropriate number of Gaussian components. For
applications, we realize fully GMM-submap-based PR, RelPose,
and local planner. Robots are able to perform relative localization
without the aid of other forms of maps or information, which makes
them favorable for environments with communication constraints.
Experiments show that our GMM Submap extraction strategy
improves 11% translation precision and 30% rotation precision in
RelPose, compared to RelPose on point clouds and GMM frames.
Our experiments also show the feasibility of the GMM-based local
planner and a 98% data transmission reduction compared to point
cloud maps. MR-GMMapping is published as an open-source ROS
project at https://github.com/efc-robot/gmm_map_python.git.

Index Terms—Multi-robot SLAM, mapping.

I. INTRODUCTION

RAPID perception in an unknown environment is impor-
tant for disaster search and rescue applications, where

communication is constrained and external positioning meth-
ods fail. The multi-robot system can improve the efficiency of
perception, but in the absence of external positioning, robots
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have to transfer sensor data and maps for relative pose esti-
mation (RelPose), which may become the system bottleneck
in communication-limited environments. For example, the data
rate of the Mars-to-Earth communications is constrained to ap-
proximately 10 KB/s [1]. However, the transfer of 3D grid maps
and place recognition (PR) descriptors consumes 2.6 MB/s [2],
which precludes the transmission of perceptual models and
human operations between Mars and Earth.

The Gaussian Mixture Model (GMM) is favourable for map-
ping in communication-constrained and storage-limited envi-
ronments due to its small data volume and strong representation
ability as a continuous probability model. A GMM map reduces
the data volume by approximately 200× that of occupancy grid
maps (from 1 MB/s to 5 KB/s) and meets the Earth-to-Mars
communication bound [3]. When the robots know each other’s
relative pose, the GMM map is also proved to be communication-
efficient for multi-robot systems to accomplish path planning
and exploration [4].

To perform relative localization, robots share additional in-
formation besides GMM maps to determine whether they have
observed the same place. Previous works accomplish PR and
map merging by sharing sensor data [5] or PR descriptors [6]
among robots. If robots can perform relative localization barely
based on GMM maps, without transmitting the descriptor at all,
data transmission will be further reduced by 25% [7].

The performance of GMM mapping depends on the model se-
lection strategy. Previous works construct a hierarchical GMM to
provide multi-scale analysis. They either require point clouds [8]
or are designed for specific applications [9], which limits their
potential applicability for map updating and merging in the
multi-robot system. When it comes to multi-robot exploration,
the scale and characteristics of the environment can change
dramatically. For complex environments, an insufficient number
of Gaussian components results in the reduction of mapping
precision. While for simple environments, excessive Gaussian
components result in unnecessary data transmission and a high
use of computational resources. Thus, determining the parame-
ters in advance is unable to accomplish the efficient perception
of the environment.

To address the challenges above, we propose a commu-
nication efficient Multi-Robot GMM-based mapping (MR-
GMMapping) system with the following contributions:
� We realize a GMM-submap-based Decentralized Simul-

taneous Localization and Mapping (SLAM) system with
three applications: PR, RelPose, and local planner. Robots
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Fig. 1. Overview of MR-GMMapping framework. Different robots only trans-
fer GMM submaps for PR, map registration, and local planner.

only transfer GMM submaps for relative localization, re-
sulting in a 98% reduction in data transmission.

� We propose the GMM submap construction method, in-
cluding the adaptive GMM model selection strategy. Our
method improves 11% translation and 30% rotation preci-
sion in RelPose, making robots merge redundant Gaussian
components dynamically.

� The open-source MR-GMMapping package, incorporating
the two contributions above.

As illustrated in Fig. 1, the GMM mapping process consists
of two steps (detailed in Section IV). Firstly, each robot first
constructs GMM submaps using the subsequent point cloud
frames. Secondly, the model selection module then chooses the
GMM model with the least amount of data by merging similar
Gaussian components. The GMM submaps are mainly used for
three applications: 1) PR (detailed in Section V-A), 2) Map
Registration (detailed in Section V-B), 3) Local Planner (de-
tailed in Section V-C). In MR-GMMapping, robots only transfer
GMM submaps used for global map construction after knowing
their relative poses. The experimental results are presented in
Section VI. Section VII gives the conclusion and future work.

II. RELATED WORK

A. Multi-Robot Mapping System

SLAM is the most famous example of the multi-robot system.
Previous multi-robot SLAM systems, either centralized [10],
[11] or decentralized [4]–[6], [12], consist of two basic com-
ponents: 1) PR, 2) RelPose. Different PR methods all calculate
descriptors to determine whether robots have observed the same
place, but use different data types. For example, NetVLAD [13]
uses image sensor data, Bag of Words (BoW) [14] uses image
feature points, and Segmatch [15] uses 3D laser sensor data.
Similarly, different map registration methods with distinct data
types are used to estimate and optimize relative positions. For
example, Perspective-n-Point needs image feature points [5],
and Iterative Closest Point (ICP) requires point clouds [10].
Therefore, currently proposed Decentralized-SLAM systems

need to share the PR descriptors and the sensor data among
robots; this incurs high transmission costs.

In communication-limited environments, it’s not feasible to
transfer PR descriptors or sensor data among robots. One pos-
sible solution is to let robots share their submaps [16] for
PR [17] and RelPose [18]. Yu et al. [7] propose a submap-based
multi-robot mapping system, where robots share 2D occupancy
grid submaps and achieve high exploration efficiency. However,
the discrete occupancy grid submaps for 3D mapping still suffer
from the huge storage and communication consumption.

B. GMM Mapping in Robotic Applications

A GMM map is a continuous probabilistic representation that
models the environment as a series of Gaussian distributions
rather than a set of discrete grids. O’Meadhra et al. [19] propose
a memory-efficient GMM mapping method to generate variable
resolution occupancy grid maps from GMMs. Due to its out-
standing representation ability and small data volume, the GMM
map outperforms other map types in some particular environ-
ments such as tunnels and mines [20], which in turn promotes the
study of GMM-based applications. On the perception side, Tabib
et al. [20] present a robust distribution-to-distribution registra-
tion method to improve GMM-based mapping and navigation
performance in subterranean environments. Huang et al. [21]
present a cross-modality method for visual localization, which
tracks the camera in a priorly generated GMM map. On the
exploration side, Dhawale et al. [22] leverage the geometric
properties of GMM maps to accomplish real-time collision
avoidance and safe flight of UAVs given a time-parameterized
trajectory. Tabib et al. [3] propose a GMM-based framework
for real-time perception and exploration in large and cluttered
3D environments. As for the multi-robot system with commu-
nication constraints, Corah et al. [4] employ the GMM map
to describe complex environment geometries while maintaining
a small memory footprint which enables distributed operation
with a low volume of communication. However, if there is
no external positioning method such as GPS, additional infor-
mation such as sensor data and scene descriptors needs to be
shared, which makes their work infeasible for application in
communication-limited environments.

C. GMM Model Selection

Choosing a suitable number of components to model a GMM
is an open area of research. Some methods intend to determine
the elbow-point where adding additional components does not
significantly add information. Work in this area has explored
information-theoretic criteria such as the Bayesian Information
Criterion (BIC) and Akaike Information Criterion (AIC) or
application evaluations such as mapping accuracy [19] and reg-
istration precision [9]. Others methods construct Hierarchical-
GMM (HGMM) to achieve better performance. Eckart et al. [23]
develop a top-down strategy that produces a GMM by succes-
sively partitioning the point clouds into Gaussian component
leaf nodes. Sriviasta et al. [8], [24] propose a bottom-up strategy
that successively merges components until a prior knee-point
is reached. Thus, we agree with the idea that the number of
Gaussian components should not be decided in advance [4].
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Fig. 2. Two robots observe the same area along different trajectories [Fig. 2(a)]. The previous GMM submap construction method generates GMM maps for
each frame of point clouds and then integrates them (Fig. 2(b) top). In this way, the weight distribution of Gaussian components in the submap is affected by the
observation trajectories. As a result, the GMM submaps of the same scene cannot be recognized correctly. Therefore, we temporarily store the point clouds in each
submap, use voxel filtering to remove the duplicate information, and then generate the GMM submap one time (Fig. 2(b) bottom). By doing so, the GMM submaps
of different trajectories are consistent in the Gaussian component weight, so the multi-robot RelPose can be correctly completed.

In communication-limited environments, we should adjust the
model for different scenes on component level to reduce data
transmission.

III. MAPPING VIA GAUSSIAN MIXTURE MODELS

GMM is a probabilistic model that uses different weighted
Gaussian distributions to represent certain probabilistic distribu-
tions. The probability density function of the GMM is defined as

p(x) =
N∑

k=1

πkN (x|μk,Σk) (1)

where each component is a Gaussian distribution N (x|μkΣk)
with a mean value μk and the co-variance matrix Σk. πk is
the probabilistic weights of each component which satisfies∑N

k=1 πk = 1. Through the EM algorithm [25], the parameter
set Θ = {πk, μk,Σk}Nk=1 can be optimized to uniquely identify
a GMM.

Suppose a robot obtains M frames of point clouds in total
while perceiving the environment. Let V = {Vj}Mj=1 be all of
the point clouds and Vj be the jth frame’s data. Considering a
map coordinate transformation, we extend the parameter set to

Θ =
{
{πk, μk,Σk}Nk=1 , {Rj , tj}Mj=1

}
(2)

where Rj ∈ R3×3is the rotation matrix and tj ∈ R3 is the trans-
lation vector.

In multi-robot mapping systems, V expands by adding novel
point clouds Vj into the set, Θ is updated by integrating novel
GMM submaps. Robots then perform weight normalization to
satisfy

∑N
k=1 πk = 1.

IV. MULTI-ROBOT GMM MAPPING

A. GMM Submap Construction

The construction of the GMM map directly impacts its per-
formance in robotic applications. submap-based frameworks,

such as SMMR-Explore [7], are favourable for multi-robot sys-
tems because robots only transfer submaps for collaborative ex-
ploration under communication-intensive scenarios. However,
in multi-robot systems where robots use GMM submaps for
relative localization, merging GMM frames directly to build
submaps may cause the map registration to fail.

As illustrated in Fig. 2(a), two robots observe the same scene
while moving along their respective trajectories. The previous
submap extraction strategy [22] generates GMM frames for each
sensor input and then integrates these GMM frames with weight
normalizations [shown in Fig. 2(b)]. Although GMM submaps
constructed by the method above describe the correct occupancy
status of the scene, different observation paths lead to the in-
consistency in Gaussian components’ distribution and weights.
The different weights of Gaussian components in submaps may
make the GMM-based PR fail, and the different distribution of
Gaussian components in submaps may make the GMM-based
map registration fail [shown in the upper half of Fig. 2(c)
and (d)]. In conclusion, two challenges of unsuitable GMM
submaps are: 1) different weights of GMM components may
make the PR descriptors of GMM submaps unable to match; 2)
different distributions of GMM components may make the sum
of squared L2 norm between all the Gaussian components in two
GMM submaps difficult to converge. To solve this problem, we
integrate the adjacent point clouds together instead of building
GMM maps frame by frame. After one submap is determined,
we conduct voxel filtering on the overall point clouds to remove
duplicate information and then use EM algorithm to generate
GMM submaps once [shown in the bottom half of Fig. 2(c) and
(d)]. In this way, the weights of Gaussian components in the
GMM submaps can correctly reflect the distribution of point
clouds in the real environment, which improves the precision of
scene matching and map registration at the same time (experi-
mental results are in Section VI-B).

As for implementation, our GMM submap construction con-
sists of three steps: Submap Construction, Submap Transmis-
sion, and Submap-based Trajectory Optimization. Each GMM
submap goes through these steps sequentially, while these steps
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Fig. 3. Example of the original GMM map under global coordinate, colored
by height [shown in Fig. 3(a)]. Fig. 3(b) shows the GMM map after model
selection, where the overlapping components are merged into one. Transparency
represents the number of Gaussian components. The fewer components, the more
transparent the map will be.

are always active in three separate threads, processing successive
map inputs.

Submap Consturction: each robot has a PointBuffer (PtBuffer)
to store the point clouds of each submap temporarily. When a
novel point cloud frame is received, the robot conducts voxel
filtering in PtBuffer to remove duplicate points. We integrate 40
frames of point clouds for generating each GMM submap, which
guarantees enough characteristics of the environment in each
GMM submap for PR and the similarity of the GMM submaps
describing the same scene for map registration. The robot gen-
erates GMM submap from the buffered points (introduced in
Section IV-B) and then extracts scene descriptors locally for
each GMM submap in preparation for the subsequent PR step.

Submap Transmission: when the robot receives the GMM
submap published by other robots, it successively conducts PR
and map registration steps (detailed in Section V).

Submap-based Trajectory Optimization: robots perform
backend optimization using the results of RelPose from Submap
Transmission. The optimized transformation (TF) is updated in
the TFGraph which is the data structure we proposed to maintain
TF trees for multiple robots. TFGraph can prevent the TF trees of
different robots from forming a loop when the Robot Operating
System (ROS) looks for the relative pose between two robots.

B. Adaptive Model Selection

The number of components in a GMM directly impacts the
amount of data transmission among robots. As the point clouds
distribute unevenly in the real world, directly generating GMM
maps through the EM algorithm may result in the waste of its rep-
resentation ability. For example, even with down-sampling, the
number of points representing the floor is much higher than those
representing the walls. Thus, without GMM model selection,
overlapping Gaussian components can occur [Fig. 3(a)]. This
results in redundant information transmission in the multi-robot
system. In MR-GMMapping, robots conduct Adaptive Model
Selection after one submap is determined inside Submap Con-
struction thread to solve this problem.

If the number of Gaussian components is given in advance,
submaps for small areas may have similar components in shape
and position. From point clouds obtained by high-resolution
RGBD camera in indoor scenarios, we observe that the point
clouds are collected from the surface of obstacles, so most

Gaussian components are flat. We define the direction of eigen-
values as the principal direction of each Gaussian component.
Robots first classify Gaussian components representing planes
in different directions according to their principal direction.
Then, robots regard mean vectors as components’ physical
locations to divide each category into more subsets. Finally,
robots use Kullback-Leibler (KL) divergence [26] to merge those
components with high similarities in each subset. Due to the
drastic changes in environmental features, robots may make
some inevitable mismatchings. Thus, our GMM model selection
strategy is a trade-off between data transmission and mapping
accuracy, but it still can improve the utilization efficiency of
GMM parameters.

Suppose N overlapping Gaussian components θ are similar
in physical position (expressed by μn) and shape (expressed by
Σn).nk is the number of points represented by the k-th Gaussian
component. We believe each Gaussian component can represent
a large number of points, so each element represents the number
of points nk → ∞. (3) shows the point set where xk

i is the i-th
point in the k-th Gaussian component.{

xk
i

}nk→∞
i=1

∼ N (μk,Σk) (3)

We adopt diagonal matricesΣk to reduce the delay of generat-
ing GMM maps [27], [28], while Σk may become non-diagonal
after transformed to other robots’ coordinate.

We assume the Gaussian component after merging as
{π, μ,Σ} and the parameters can be calculated by (4)–(6), where
xk
i ∈ R3, μk ∈ R3,Σk = diag{σ1, σ2, σ3}, and the square of a

vector is defined by outerproduct.

π =

N∑
k=1

πk (4)

μ = lim
nk→∞

k=1...N

∑N
k=1 nkμk∑N
k=1 nk

=

∑N
k=1 πkμk∑N
k=1 πk

(5)

Σ = lim
nk→∞

k=1...N

∑N
k=1

∑nk

i=1

∥∥xk
i − μ

∥∥2∑N
k=1 nk − 2

= lim
nk→∞

k=1...N

1∑N
k=1 nk − 2

·
(

N∑
k=1

(
nk∑
i=1

∥∥xk
i − μk

∥∥2 + nk ‖μk − μ‖2

+ 2

nk∑
i=1

(
xk
i − μk

)
(μk − μ)

))

= lim
nk→∞

k=1...N

N∑
k=1

(nk − 1)Σk + nk ‖μk − μ‖2∑N
k=1 nk − 2

=

N∑
k=1

πk

(
Σk + ‖μk − μ‖2

)
∑N

k=1 πk

(6)

As the weights of Gaussian components can express the
relationship between the number of points described by different
GMM maps, (5) and (6) can be simplified to the expression
only containing GMM parameters rather than the point clouds
information.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 11,2022 at 05:31:14 UTC from IEEE Xplore.  Restrictions apply. 



3298 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

V. APPLICATIONS WITH GMM MAP

A. GMM Place Recognition

PR is the process that robots use to decide whether they
observe the same scene. Previous work on multi-robot PR
uses vision-based methods to extract scene descriptors, such as
BoW [29] and NetVlad [13]. Other submap-based PR methods
leverage the occupancy grid maps from different robots [7].
However, in communication-limited environments, it is not fea-
sible to transfer sensor data or grid maps among robots. To make
GMM-based PR possible, we design a GMM-based descriptor
extractor f(·) to calculate the submap descriptor f(mαi

) from
the GMM-submap list mαi

.
As shown in Fig. 4, our f(·) consists of two components: 1) re-

sampling 3D point clouds frommαi
and 2) PointNetVLAD [30],

which encodes 3D point clouds to a descriptor vector. We define
d
βj
αi as the cosine distance [31] between vectors f(mαi

) and
f(mβj

). PointNetVLAD is trained to lower the d
βj
αi for the

same scene mαi
and mβj

, while relatively increasing the d
βj
αi

if mαi
and mβj

represent the different scene. In our MR-
GMMapping, each robot computes scene descriptors locally
instead of frequently sharing descriptors among robots. Once
the robot receives a new submap, it selects the GMM submaps
having distance below a given threshold dthr for later RelPose;
the others are filtered out.

B. GMM Map Registration

The map registration module estimates the relative transform
of the candidate submap pairs provided by the PR module;
it filters out the results with large errors. Previous work has
proposed GMMreg [33], a robust distribution-to-distribution
registration method to enable GMM mapping and navigation in
subterranean environments. In GMMreg, an optimizer is trained
to lower the errors between Gaussian components of two maps.
To extend the idea of GMMreg, we make two improvements to
make it favourable for the multi-robot system. First, we use map
registration as a means to prevent PR mismatches as the regis-
tration results are vulnerable to incorrect place association. We
regard the final loss of the GMMreg optimizer as the Geometric
Confidence C

βj
αi of the relative pose z

βj
αi . Then, the candidate

pairs whose Geometric Confidence is larger than the threshold
Cthr are filtered out. Second, in the multi-robot system, GMM
submaps from different robots may have different numbers of
Gaussian components. Thus, we adjust the loss function for
GMM submaps with different component numbers.

C. GMM-Based Local Planner

The local planner is based on the gradient field of the GMM
map. As noted in (1), p(x0, y0) is the occupancy probabil-
ity at a position (x0, y0), where the gradient is g(x0, y0) =
∇p|x=x0,y=y0

, which is a vector. The component of the vector g
on a direction r is noted as g(r). In the implementation, we select
two nearby points on the direction r and calculate the gradient
by g(r) = limε→0

f((x0,y0)+ε·r)−f(x0,y0)
ε . Fig. 5(b) shows the

gradient field of g.

Fig. 4. Data flow of GMM-submap-based PR and map registration. When
the robot receives a new GMM submap, it first resamples the GMM submap
through Monte Carlo approximation [32], and then uses the PointNetVLAD [30]
to extract scene descriptors. We use the cosine distance between vectors to filter
out candidate GMM map pairs. Our GMM-based map registration regards the
error of the transformed GMM maps as the geometric confidence to prevent scene
mismatching, confirming the result of PR. The output of the map registration
module is the credible relative global pose (Z̃β0

α0
).

Fig. 5. GMM-based local planner on gradient field. The robot divides 360◦
into 12 discrete values and find a direction where the gradient is smaller than a
threshold (g(r3) < gthr).

Fig. 5(a) demonstrates the GMM-based local planner. We
divide 360◦ into 12 discrete directions and set the direction
(r1) directly connecting the robot position and the goal as the
candidate moving direction. If the gradient along r1 (noted as
g(r1)) is smaller than a threshold gthr, the robot will move in r1
direction. However, if g(r1) > gthr, it indicates that obstacles
will be encountered in this direction. We will then choose the
peripheral direction as the candidate direction [r2 and r3 in
Fig. 5(a)], and if g(r2) < gthr or g(r3) < gthr, the robot will
move in r2 or r3 direction. If it is still not satisfied, we will select
the more peripheral direction as the candidate direction until the
gradient in one direction is less than gthr. In this method, we
realize local planning using GMM maps instead of converting
them to grid maps. It verifies the potential of using GMM directly
for local navigation and expands the application scenario of
GMM maps.

VI. EXPERIMENTS

Previous work on GMM maps has reported extensive ex-
perimental results in representation ability [19]. We implement
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Fig. 6. Experiment setups.

Fig. 7. Average recall of the PointNetVLAD and our GMM-based place
recognition (GMM PR). The same model, trained on the Oxford RobotCar
dataset [36], is used for drawing two average recall curves. The table at lower
right also shows that the performance of the two methods is similar.

our system in both different scales Gazebo simulators [7] and
real robots (shown in Fig. 6). Our robot is equipped with Intel
RealSense T265 [34] which uses visual SLAM technology to
accomplish the real-time acquisition of the robot pose, and
depth camera D435i [35] which obtains point clouds from
the environment. For computation, we use the NVIDIA Jet-
son TX2 with a 4-core ARM CPU and an embedded GPU.
To guarantee the stable and real-time data transmission under
low communication bandwidth, we design each robot with a
separate router instead of using the TX2 network port. Our
robots use the LAN to share GMM submaps. Our experimental
results prove that our proposed GMM submap approach is able
to preform PR (Section VI-A), map registration (Section VI-
B), and local path planning (Section VI-C). On the system
level, MR-GMMapping’s data transmission is much smaller
(Section VI-D).

A. Place Recognition

We compare our GMM-based PR with PointNetVLAD [30]
on the Oxford RobotCar dataset [36]. Oxford RobotCar dataset
has point clouds downsampled to a fixed number of points with
zero coordinate means. We use the same model trained from
PointNetVLAD for both GMM-based PR and point-cloud-based
PR. Fig. 7 shows the recall curves of each model for the top 25
matches from each database pair in the dataset. Our method has
similar performance with PointNetVLAD. As for the Top 1%
recall, GMM-based PR can reach 87.4%, while point-cloud-
based PR can reach 88.3%. In practice, the small difference is
not anticipated to affect the performance of PR on real robots.

We also test the improvement of the precision-recall curve
when robots use the confidence of map registration to further

Fig. 8. Compared with the point-cloud-based PointNetVLAD with ICP, our
GMM PR with GMMreg [33] has a higher recall in the range of high-precision,
to find as many PR matched places as possible with less mismatching. The two
boxes on the upper-right corner compare the map registration’s improvement
on PR between point-cloud-based and GMM-based methods. The box on the
lower-right corner shows that our combination of GMM PR with GMMreg has
a better performance than PointNetVLAD with ICP.

confirm the PR results (shown in Fig. 8). However, multi-robot
SLAM systems are vulnerable to PR mismatching and consume
additional computing and communication resources to handle
the PR mismatching [5]. Thus, we are more concern about the
higher recall under less mismatching (the recall on the high-
precision range of precision-recall curve). We combine the PR
with map registration and select the baseline as the point-cloud-
based PointNetVLAD with ICP. We select the baseline corre-
sponding to the 70% precision rate of scene recognition and com-
pare the results between the GMM-based PR with GMMreg and
the point-cloud-based PR with ICP. Two ICP methods are used to
perform point cloud registration: primitive ICP and GICP [37],
whose results only have slight differences. We utilize Point
Cloud Library (PCL) [38] version 1.8 to calculate ICP and GICP.
We use GMMreg as the registration step after GMM-based PR,
and ICP as the registration step after point-cloud-based PR.
Registration step can improve the recall of PR in the range of
high precision for both GMM-based and point-cloud-based PR
(shown in the upper two boxes in Fig. 8). As for the overall
improvement of PR, our GMM-based method achieves higher
recall compared to the point-cloud-based method at the same
high precision (shown in the lower box in Fig. 8).

B. Map Registration

We adopt two different submap extraction strategies and con-
duct experiments on freiburg3 long office household RGBD se-
quence in the TUM dataset [39]. Two submap construction meth-
ods are A. splicing adjacent GMM map frames (GMM+GMM
submap), and B. storing point clouds and generating the GMM
submap one time (Point-to-GMM submap in proposed method).
We use GMMreg [33] for both types of submaps and GICP
for the point-cloud-based baseline to perform map registration.
We preprocess the point clouds by integrating a sequence of 5
frames, so the full 2509 frames of the sequence are divided into
approximately 500 GMM submaps. 5 frames for one submap
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TABLE I
MAP REGISTRATION RESULTS ON THE TUM DATASET

TABLE II
NAVIGATION TRAJECTORY LENGTH IN THE SIMULATOR

is feasible because it makes submaps able to describe the
same scene while sharing a certain degree of overlapping for
map registration evaluation. Besides, our experiments show that
submaps with more or fewer frames do not provide higher
registration accuracy.

Table I shows the results of average pose error and Root Mean
Squared Error (RMSE) of the trajectory. We use the evaluation
toolkit provided by TUM dataset [39] to calculate these results.
The results prove that map registration with Point-to-GMM
submaps outperforms GMM+GMM submaps. We believe this is
because the overall probability description of the environment
is destroyed after the GMM frame integration and the weight
normalizations. This affects the accuracy, especially for those
submaps with large angles of rotation. Although the frame-by-
frame map registration’s (no submap) accuracy only decreases
slightly compared to the Point Cloud-to-GMM submap registra-
tion, it results in significant data transmission, which is infeasible
for multi-robot systems with communication constraints.

C. GMM-Based Local Planner

We compare the trajectory length of our GMM-based local
planner and ROS Move Base [40] (shown in Table II) in the
four different simulation scenarios: regular corner (Scene 1),
straight passageway (Scene 2), clustered environment (Scene 3),
and front obstacles (Scene 4). Our GMM-based local planner
and the Move Base plan paths with similar lengths. In scenes
where the robot has to turn at a large angle, such as Scene 1
and Scene 4, our method’s trajectory length is less than Move
Base’s. We believe this is because our GMM-based local planner
prefers to take the shortest path, while Move Base guarantees
robots’ safety using Costmaps. The GMM-based local planner
is sensitive to the obstacles in the moving direction. It makes
the robot stay away from the obstacles by conducting real-time
path replanning. However, when the robot finds no obstacles
in its moving direction, it directly moves toward the local goal
along the shortest path without considering the distance to the
obstacles.

In this work, we realize local planning using GMM maps
instead of converting them to grid maps, and verify it in some
simple scenarios. The experiments show the potential of using

Fig. 9. Data transmission between two robots. We construct a submap using
20 adjacent point cloud frames and initialize each submap with 100 components.
In the simulation environment, two robots construct 13 and 16 submaps, respec-
tively. The average data transmission of submap data is shown in the red caption
on the right. For each frame of the point cloud map, the 0.1 * 0.1 * 0.1 voxel
downsampling is used for sensor data. If the place descriptors are transferred and
the model selection method is not applicable, the map data volume per frame
is constant. After using the model selection method, the amount of map data
are reduced by approximately 10%, and the fluctuation of the amount of data is
similar to that of point cloud maps.

GMM directly for local navigation and expand the application
scenario of GMM maps.

D. Data Transmission in Multi-Robot System

Fig. 9 shows the data transmission of submaps for two robots
in our simulation environment. After downsampling and novel
information checking, the rate of adding novel point clouds into
the submap is approximately 0.6 seconds per frame. We deter-
mine a submap for GMM generation using 20 frames of point
clouds to ensure each submap contains enough environment
information for place recognition. In 200 seconds’ exploration,
the two robots construct 13 and 16 frames of submaps, respec-
tively. If robots transfer point clouds, the average submap data
volume is 204356 KB. If robots transfer GMM submaps with 100
Gaussian components and a 1024 KB scene descriptor for place
recognition, the average submap data volume is 6624 KB. While
in MR-GMMapping, robots transfer GMM submaps without
descriptors after the model selection, which reduces the average
data transmission to 5099 KB. In addition, we can see that the
trend of data volume between point clouds and GMM submap
in MR-GMMapping is similar, proving that our model selection
method can effectively reduce redundant information according
to the scale of the environment.

In summary, compared with the point clouds map, MR-
GMMapping reduces the data transmission by approximately
98%. In comparison to the GMM map with descriptors, MR-
GMMapping reduces the data transmission by approximately
23%. On the one hand, we eliminate descriptor transmission
among robots, contributing to 15% (1024 KB) reduction in data
transmission. On the other hand, our model selection method can
improve the expression ability of GMM elements, reducing data
transmission by approximately 8% (∼500 KB). We select the
optimal number of components for the environment by merging
redundant components. These two technologies can be used for
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multi-robot GMM SLAM in different environments to reduce
data transmission.

VII. CONCLUSION AND FUTURE WORK

This letter proposes a communication efficient Multi-robot
GMM Mapping System with three submap-based robotic appli-
cations: place recognition, map registration, and local planner.
Robots can accomplish all three robotic applications after the
submap extraction. By using our component-level model selec-
tion method, robots can eliminate redundant Gaussian compo-
nents within and between submaps. Robots in MR-GMMapping
only transfer GMM submaps, which not only reduces the total
amount of data transmissions by 98% but improves the accuracy
of RelPose by 11% in average translation error and 30% in
average rotation error.

Since collaborative exploration is an essential task for multi-
robot systems, we plan to propose novel multi-robot exploration
methods in the future that can be integrated into the GMMap-
ping approach. In addition, we also plan to expand the MR-
GMMapping to Unmanned Aerial Vehicle (UAV) applications
that utilize 3D maps.
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