
Black Box Search Space Profiling for Accelerator-Aware
Neural Architecture Search

Shulin Zeng1∗, Hanbo Sun1∗, Yu Xing2, Xuefei Ning1

Yi Shan2, Xiaoming Chen3, Yu Wang1, Huazhong Yang1
1Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China

2Xilinx, Beijing, China, 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract— Neural Architecture Search (NAS) is a promising
approach to discover good neural network architectures for
given applications. Among the three basic components in a NAS
system (search space, search strategy, and evaluation), prior work
mainly focused on the development of different search strategies
and evaluation methods. As most of the previous hardware-
aware search space designs aimed at CPUs and GPUs, it still
remains a challenge to design a suitable search space for Deep
Neural Network (DNN) accelerators. Besides, the architectures
and compilers of DNN accelerators vary greatly, so it is quite
difficult to get a unified and accurate evaluation of the latency
of DNN across different platforms. To address these issues, we
propose a black box profiling-based search space tuning method
and further improve the latency evaluation by introducing a
layer adaptive latency correction method. Used as the first stage
in our general accelerator-aware NAS pipeline, our proposed
methods could provide a smaller and dynamic search space with
a controllable trade-off between accuracy and latency for DNN
accelerators. Experimental results on CIFAR-10 and ImageNet
demonstrate our search space is effective with up to 12.7%
improvement in accuracy and 2.2x reduction of latency, and also
efficient by reducing the search time and GPU memory up to
4.35x and 6.25x, respectively.

I. INTRODUCTION

Neural Architecture Search (NAS), first proposed in [1],

can automatically discover good architectures for a specific

application. Researchers have demonstrated that NAS can dis-

cover Deep Neural Network (DNN) architectures with surpass-

ing accuracy than the human-designed ones (e.g., VGGNet,
GoogleNet, ResNet). However, there are two major issues in

the early NAS frameworks. One is that the lengthy search

time can be up to thousands of hours due to the large search

space and the training process of each candidate network. The

other is that many NAS frameworks are only optimized with

accuracy as the mono-objective. This could lead to a violation

of latency constraints when deployed on the DNN accelerators.

Recently, many researchers have begun to study the effi-

ciency and multi-objective optimization of NAS. A typical

NAS workflow that could address these issues is shown in

Fig.1. The first step is to change the Search Space (SS) from

a larger one into a smaller one. The basic idea is to manually

design the network backbone and the structure of each candi-

date block based on expert experience, thus limiting the SS to

the selection of candidate blocks at each layer. The second step

is to automatically find the optimal candidate network from

the SS by a carefully designed search strategy. For example,

*: Both authors contributed equally to this work.

Reinforcement Learning (RL) [2], evolutionary algorithms [3],

and Differentiable NAS (DNAS) method [4] are common

search strategy algorithms in recent NAS frameworks. The

final step is the evaluation of multi-objective optimization.

That is, not only should we obtain high accuracy, but also

ensure a low latency when deployed on the target hardware

platform. Accuracy can be obtained by training and validating

on the target data sets directly, while the evaluation of latency

requires a simulator or a latency model obtained by running

the candidate blocks on the target accelerator in advance.

As mentioned above, it should be noted that the second step

is an algorithm-level optimization, while the first and third

steps are highly dependent on the target platform, including

the hardware architecture and the software compiler. Prior

work [5], [6] has studied the implementation of hardware-

aware NAS frameworks on the algorithm level. However,

most of these hardware-aware NAS frameworks are targeted

for mobile CPUs, other hardware platforms such as Field

Programmable Gate Arrays (FPGAs) and Application Specific

Integrated Circuits (ASICs) are not discussed. Take FBNet [5]

as an example, its candidate blocks in the SS are inspired

by MobileNet [7], which is specially designed for mobile

CPU platform. As there are more and more DNN accelerators

based on FPGAs and ASICs, their architecture design and

compilation tools are quite different from each other. We can

not guarantee that the CPU-optimized MobileNet can still

achieve high utilization and low latency on these acceler-

ator platforms. As reported in [8], VGG-16 can achieve a

high utilization rate of 87.30% while MobileNet-v1 can only

achieve 28.62% on a DNN accelerator. Since the SS restricts

the upper bound of the network performance obtained by NAS,

ignoring the relationship between the SS and the accelerator

platform will lead to the failure of NAS to obtain the optimal

network. Besides, in most cases, we are unable to obtain any

information about the hardware architecture and the software

compiler, making it hard to accurately evaluate the latency of

each candidate network on these black box accelerators.

Recently, there has been some work paying attention to the

NAS targeted for FPGA-based accelerator. Hao [9] proposed

a hardware-oriented DNN model design by introducing a

DNN template to guide the DNN generation with predictable

performance and resource utilization. Jiang [10] built up an

FPGA-implementation aware NAS framework with a graph

model to provide the basic support for latency analysis.

Both of these two work aimed at providing a NAS solution

for template-based accelerator on FPGA, and their SS only

consisted of simple operations such as 3 × 3 Conv layer

and 2 × 2 Pool layer. In this paper, we focus on another

type of DNN accelerator, which is based on Instruction Set
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Fig. 1. A typical workflow of NAS consists of three steps: (1) search space,
(2) search strategy, and (3) evaluation.

Architecture (ISA) and widely used on both the FPGAs and

ASICs. Besides, we treat the DNN accelerator as a black

box hardware model, meaning that we have no access to

any prior knowledge about the DNN accelerators. In addition,

the SS we studied is composed of complex network blocks,

which are commonly used in the state-of-the-art [5], [3], [6]

NAS framework. To overcome these challenges, we propose

a black box profiling-based search space tuning method and

a layer adaptive latency correction method to build a general

accelerator-aware NAS framework with a controllable tradeoff

between accuracy and latency.

The main contributions of this paper are as follows.

• We propose a black box profiling-based search space

tuning method to generate a smaller and dynamic search

space for the target DNN accelerator platform with a

controllable tradeoff between accuracy and latency.

• We propose a layer adaptive latency correction method

with a policy-aware latency LUT for fast and accurate

latency estimation.

• We demonstrate a general hardware-aware NAS frame-

work using an ISA-based DNN accelerator on FPGA as

an example to show the efficiency and effectiveness of

our proposed methods.

• Experimental results show that on the CIFAR-10 and

ImageNet data sets, our search space can achieve an

average of 1.4% improvement in accuracy, 1.9x reduction

of latency, 2.7x and 4x reduction of the search time and

GPU memory, respectively.

II. PRELIMINARY

A. Neural Architecture Search
The process of a NAS algorithm usually goes as follows.

At each iteration, an architecture a ∈ A sampled from the

SS A, is a directed acyclic graph (DAG). This architecture is

further assembled as a candidate network N(w, a), where w
is the weight to be trained. The objective evaluation results of

the candidate network will be used to instruct the sampling

process. The goal of the NAS problem is to discover the

architecture that maximizes the chosen objective, which can

be formulated as:

a∗ = argmax
a∈A

Rv(N(w∗, a))

s.t. w∗ = argmin
w

Lt(N(w, a))
(1)

In the purest formulation of NAS, for each architecture a,

the w∗ should be found by optimizing the loss of the candidate

network on the training data set, and then the architecture that

can achieve the best performance on the validation data set

should be found.

Originally, the reward R in Equ.1 is the accuracy mono-

objective. To introduce multiple objectives other than the

accuracy, there are mainly two ways: as the constraints, or use

the weighted sum of multiple objectives as the reward. Using

the weighted sum in the reward can provide explicit trade-off

in the searching process, in which case the scalarized reward

of multiple objectives R can be written as:

R(a) = (1− β)Accv(N(w∗, a)) + βT (a) (2)

where the T could be latency, FLOPs, and energy.

The NAS frameworks can be classified into three categories

according to the search strategy: (1) reinforcement-learning-

based methods [1], [2], [11], that employ RL-based methods to

optimize the controller using the objective evaluation results

of the candidate network; (2) evolutionary algorithms [12],

in which the trained candidate networks are treated as the

population, and the next generation of candidate networks are

sampled using crossover and mutations; and (3) differentiable

methods [5], [4], in which relaxed differentiable formulation

of the NAS problem is used, and gradient-based methods are

used to train both the weights and the architecture parameters.

Although great progress has been made from the search

strategy and evaluation perspective, there is still a lack of

research on the impact of the SS. The SS of prior work is

designed based on the prior knowledge of how DNNs perform

on the General-Purpose Processors (GPP), such as GPUs and

CPUs. When it comes to the Specialized Domain Accelerators

(SDA) on FPGAs and ASICs, due to the heterogeneity of the

various platforms, it’s quite difficult to acquire unified prior

knowledge. The mismatch between SS and hardware will be

detrimental to the effectiveness of NAS.

B. DNN Accelerator

DNN accelerator is a kind of SDAs to provide up to 100x-

1000x energy efficiency than GPPs in the neural network

computing domain. There is a lot of work focusing on the

design of DNN accelerators implemented in FPGAs [13], [14]

and ASICs [15], [16]. There are two main design tracks in

the DNN accelerators: (1) mapping DNN layers into sev-

eral computing blocks using High-level Synthesis (HLS) or

Register-Transfer Level (RTL) templates on FPGA, such as

fpgaConvNet [17] and DnnWeaver [18], and (2) ISA-based

architecture [19], [15], that utilizes compiler to map DNN

network to the instructions for the underlying hardware.

Recently, hardware-aware NAS work [10], [9] has taken the

template-based FPGA accelerator designs into consideration.

However, there is currently no research on NAS frameworks

for the second type of DNN accelerator as far as we know.

Since the hardware architectures and software compilers of

the ISA-based DNN accelerators are of various types and have

their own characteristics, it is impractical to analyze each kind

of accelerator design to obtain a unified prior knowledge for

the SS. In this paper, we regard all kinds of DNN accelerators
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Fig. 2. A general accelerator-aware NAS framework consists of two parts: (1) search space profiling for black box accelerator, and (2) typical NAS flow.

TABLE I
ACCURACY, LATENCY, SEARCH TIME, AND MEMORY CONSUMPTION OF

FOUR DIFFERENT SEARCH SPACE ON CIFAR-10 WITH A 10-LAYER

NETWORK BACKBONE USING RL-NAS AND DNAS: RESNET-BASED,
VGG-BASED, MOBILE-BASED, AND ALL OF THE THREE BLOCKS.

Method DNAS RL-NAS

Search Acc. Lat. Time Mem. Acc. Lat. Time Mem.
Space (%) (ms) (min) (MB) (%) (ms) (min) (MB)

Res 86 1.287 165 1800 83.5 1.385 140 1200
Mobile 85.4 0.825 125 1700 82.7 0.865 104 1400
VGG 83.8 0.775 70 1800 82.2 0.812 65 1300
All 84.1 0.859 326 6000 73.8 1.113 180 3000

as a black box model, thus the method of building a latency

model [10] will no longer be applicable here. The latency

Look-Up Table (LUT) proposed in [5] is a fast and effective

method to estimate the latency layer by layer for a black box

accelerator, but it ignores the inter-layer effects introduced by

layer fusion policies [20] of the compiler. Thus, a latency

correction model is proposed to evaluate the latency of each

layer more accurately.

III. FRAMEWORK

In this section, a general accelerator-aware NAS framework

is demonstrated at first. Next, we will give a comprehensive

illustration of the proposed black box search space profiling

method and a layer adaptive latency correction method.

A. Framework Overview

A general accelerator-aware NAS framework targeted for

the black box accelerator platform is shown in Fig.2. We

introduce a black box search space profiling method, which

will be further explained in section III.III-B, as the first

step of the proposed framework to provide an efficient and

effective SS. As for the second step of the accelerator-aware

NAS process, we use the accelerator-aware SS obtained in

the first step to construct the supernet of each layer. Then

the search strategy of RL-NAS and DNAS are used as two

examples to optimize the supernet. It should be noted that our

framework is also applicable to other NAS search strategies.

In addition, we apply a layer adaptive latency correction

method to obtain a policy-aware latency LUT. The red arrow

in both steps represents a typical deployment flow of ISA-

based DNN accelerators. A DNN model is at first transformed

from a float-point dense network into a fixed-point sparse

one with the utilization of compression methods, such as

pruning and quantization. Secondly, the compiler takes the

compressed model as input and then generates the files needed

for deployment on the accelerator platform.

B. Search Space Profiling for Black Box Hardware

Search space limits the accuracy of NAS-derived network

architecture on the target application and its latency when

deployed on the accelerator platform. Without the prior knowl-

edge of the candidate network blocks and accelerator archi-

tecture, an intuitive idea is to use all the candidate network

blocks to form a large SS and apply the NAS process on

this SS directly. However, this will bring quite a high search

cost, including lengthy search time and large GPU memory

consumption, and even lead to performance degradation of

the network obtained by NAS. As shown in Table I, compared

with three different SS, directly merging all candidate network

blocks into a large SS leads to 1.3x-4.7x longer search

time, 2.1x-3.5x larger memory consumption, and sub-optimal

network architecture on CIFAR-10 data set. Thus, in the case

where multiple candidate network blocks are provided, we

should profile and evaluate such a large SS, so that a small

and effective one can be obtained to ensure the efficiency of

the NAS process and the desired performance of accuracy and

latency on the target application and accelerator. Next, we will

give a detailed description of the flow of search space profiling

for black box hardware, as shown in Fig.3.

Search Space Base Networks. For evaluating each SS

consisting of different candidate blocks, we introduce the

concept of Search Space Base Networks (SSBNs) and present

a cost function for evaluating the SS. As shown in Fig.2,

there are multiple candidate blocks in the supernet of each

layer. For a network backbone of L layers with N candidate

network blocks on each layer, there will be NL possible

choices. It is impractical to evaluate all the possible choices.

The idea of SSBNs is as follows: On the basis of a certain

network in the SS, at most one supernet on a certain layer

is changed at a time, thus constituting the SSBNs based on a

Specified Network (SN). For example, for a two-layer network

backbone, the possible choice of supernet on each layer are

selected on {1, 2}. Based on a SN (1, 1), we generate the

SSBNs of {(1, 1), (1, 2), (2, 1)}. Thus, we can reduce the size

of SS from NL to N × L, making it possible for efficient

profiling. The idea of SSBNs is under the basic hypothesis

that each network in the original SS can be regarded as a

linear combination of some networks in the SSBNs. Such

an assumption of linear independence between each layer of

supernet has been validated in [5] and proved to be effective

for the NAS process. Based on the proposed method, we

present the cost function for SS:

Cost(SS) =
1

card(SSBN)

∑

Net∈SSBN

Cost(Net) (3)
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Fig. 3. The flow of search space profiling for black box accelerator. A cost-
based search space selection algorithm is proposed to find a accelerator-aware
SS from the extended basenet SS.

where card is a counting function and Net represents a child

network. Cost(Net) is the cost calculated by Equ.6, which

will be introduced later. The optimization goal is to minimize

the Cost(SS).
Cost Function for Candidate Blocks. For a better evalua-

tion of the multi-objective constraints of accuracy and latency,

we propose several cost functions to evaluate the candidate

network blocks in the SS.

(a) Accuracy. For a specific application, users usually put

forward a threshold requirement for accuracy. When the accu-

racy of the DNN model can not meet the user’s requirements,

this model can not be deployed on the accelerator platform.

Therefore, we can use the step function to describe the

impact of accuracy for a target application. Considering the

discontinuity of the step function, we use the exponential

function to fit the impact of accuracy. The cost function for

accuracy is given as follows:

Costacc = exp

(
−accuracy − thres

scale

)
(4)

where thres represents the user-defined accuracy threshold

and scale denotes the transformation coefficient, which is used

to describe the tolerance of low accuracy.

(b) Latency. The latency of DNN models deployed on

the accelerator should be as low as possible. In practical

applications, people tend to use the reciprocal of the latency

as a measurement. The cost function for latency is as follows:

Costlatency = − 1

latency
(5)

here the negative sign is to ensure that Costlatency decreases

as latency decreases.

(c) Total Cost Function. In practical scenarios, accuracy and

latency are often negatively correlated. To describe the overall

impact of accuracy and latency, the formula is shown below:

Cost = Costacc + λ ∗ Costlatency (6)

Algorithm 1 Cost-based Search Space Selection Algorithm

Require: Basenet Pool: BP , Size Threshold: Thr
Require: Cost function: Cost
Require: Search space base networks generator: SSBNG
Ensure: Optimized Search Space
1: Wider search space : WSS ← []
2: for backbone B in enumerate(BP ) do
3: SSBN ← SSBNG(B)
4: WSS.append(SSBN )
5: Count(B) ← 0
6: List(B) ← []
7: end for
8: Cost list : CL← []
9: for network N in enumerate(WSS) do

10: CL.append(Cost(N ))
11: end for
12: Rearrange WSS in ascending order of corresponding value in CL.
13: for network N in enumerate(WSS) do
14: Count(type(N )) ← Count(Type(N )) + 1
15: List(type(N )).append(N )
16: if Count(type(N )) > Thr then
17: return List(type(N ))
18: end if
19: end for

where λ is a coefficient to balance Costacc and Costlatency .

When λ is large, the network with a better latency is more

likely to be found, while the network with higher accuracy is

likely to be found when λ is small.

Search Space Profiling and Selection. Based on the

proposed SSBNs and cost functions, we illustrate the flow

of the search space profiling method, as shown in Fig.3.

Firstly, we generate the SSBNs for each candidate SS,

which has a different architecture of candidate network block

and multiple parameters to be searched. Secondly, once we

have the basenet pool consists of different SSBNs, we need

to evaluate the accuracy and latency of each candidate network

in the basenet pool. The latter is easier by running each base

network on the accelerator platform. As for the accuracy, we

directly train the specified network of each candidate SS on

the target data set with 20 epochs, which is the same as used in

[9] for evaluating different operators. Then we use the weights

of the specified network to finetune each base network with

a few epochs to obtain the accuracy. Next, we can compute

the cost of each base network using Equ.6. At last, in order

to minimize the Cost(SS) in Equ.3, we design a cost-based

search space selection algorithm as shown in Algorithm 1.

Using the proposed algorithm, we can derive an optimized

SS, of which the size is much smaller and controllable by

size threshold Thr, and its performance can provide a tradeoff

between accuracy and latency with the user-defined parameter

λ. What’s more, our profiling method can generate a dynamic

SS with a different number of candidate blocks at each layer.

We will demonstrate that dynamic SS can be more efficient

and effective than fix SS in section IV.

C. Layer Adaptive Latency Correction Method

Our layer adaptive latency correction method supports two

different search strategies: whole supernet and single path.

As for the first one, all the candidate network blocks in the

supernet are optimized simultaneously. The latency of the n-th

candidate block at the l-th layer can be estimated as followed:
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TABLE II
RESULTS OF DNAS AND RL-NAS ON CIFAR-10 IN A PROXYLESS MANNER. THE RESNET-BASED, MOBILENET-BASED, AND VGGNET-BASED SEARCH

SPACE ARE OBTAINED USING OUR PROPOSED SEARCH SPACE PROFILING METHOD WITH λ OF 0.01, 0.1, AND 1, RESPECTIVELY.

Method DNAS (Proxyless) RL-NAS (Proxyless)

Search Acc. Lat. Cost (λ =) Time (min) Acc. Lat. Cost (λ =) Time (min)
Space (%) (ms) 0.01 0.1 1 Pre. Search Total (%) (ms) 0.01 0.1 1 Pre. Search Total

Res 86.7 1.30 0.9838 0.9146 0.2217

23

90 113 86.5 1.29 0.9848 0.9149 0.2161

23

80 95
Mobile 85.6 0.83 0.9850 0.8765 -0.2078 68 91 85.7 0.84 0.9845 0.8767 -0.2011 64 87
VGG 84.0 0.78 0.9923 0.8775 -0.2705 42 75 84.2 0.80 0.9915 0.8789 -0.2476 51 60
All 84.1 0.86 0.9929 0.8881 -0.1596 0 326 326 73.8 1.11 1.0486 0.9678 0.1591 0 180 180

TABLE III
RESULTS OF DNAS AND RL-NAS ON IMAGENET IN A PROXYLESS AND TRANSFER MANNER, RESPECTIVELY. THE RESNET-BASED AND

VGGNET-BASED SEARCH SPACE ARE OBTAINED USING OUR PROPOSED SEARCH SPACE PROFILING METHOD WITH λ OF 0.01 AND 1, RESPECTIVELY.

Method DNAS (Proxyless) RL-NAS (Transfer)

Search Acc. Lat. Cost (λ =) Time (min) Memory Acc. Lat. Cost (λ =) Time (min) Memory
Space (%) (ms) 0.01 1 Pre Search Total (GB) (%) (ms) 0.01 1 Pre. Search Total (GB)

Res. 71.2 3.553 0.9912 0.7126
360

355 715 24 71 3.605 0.9922 0.7176
360

90 450 1
VGG 68.7 1.021 0.9967 0.0271 365 725 24 68.9 1.324 0.9980 0.2502 60 420 1
All 69.2 1.708 0.9982 0.4185 0 1440 1440 150 67.8 2.877 1.0076 0.6635 0 180 180 3

LBNblock(n, l) = LBN (n, l)− LSN + LSNblock(l) (7)

where LBN (n, l) and LSNblock(l) denotes the latency of

SSBN with the target block being substituted and the single-

layer l in the specified network, respectively.

The single path method samples a child network from the

whole supernet at each iteration. Thus, we first generate N
specified networks SNi(i = 0, 1, 2, ..., N − 1), each consists

of only one kind of candidate network block. Secondly, the

SSBNi of each SNi are generated. Next, we can get the

LBNblock(n, l, i) in each SSBNi using Equ.7. Then, for a

choice block n at the l-th layer of a child network, its latency

LCNblock(n, l) can be estimated as followed:

LCNblock(n, l) =
1

L

∑
(n′,l′)∈CN

LBNblock(n, l, n
′) (8)

where (n′, l′) denotes the choice block n′ at layer l′ in the

child network. By weighted averaging the effects of all layers

in the child network, we can get a more accurate latency

estimation of the choice block. Using the proposed layer

adaptive latency correction method, we can set up a policy-

aware latency LUT for fast and accurate latency estimation.

IV. EXPERIMENTS

A. Experiment Setup

Accelerator Platform. We use Xilinx DPU [20] as the

target accelerator platform, which has been released as a

Vivado IP for accelerating CNNs on Xilinx FPGA. A Xilinx

DPU IP, with the parallelism of 4096 operations per cycle, is

synthesized with 333 MHz on Xilinx ZCU102 FPGA using

Vivado 2018.2. CNN models are first trained with Caffe. Then

the weights and biases are transformed from a 32-bit floating

point to an 8-bit fix point using the quantization method in

[19]. We evaluate the actual latency on the accelerator directly.

NAS Environment. We implement two kinds of search

strategies in our NAS framework: ENAS [11] and FBNet [5],

corresponding to RL-based and Differentiable method, respec-

tively. We follow the hyperparameters in [11] and [5] for better

comparison. The search epoch is 200 for ENAS and 90 for

FBNet, and we train the NAS-derived network for 200 epochs

on CIFAR-10 and 100 epochs on ImageNet. Since there are no

TABLE IV
THE AVERAGE ACCURACY AND LATENCY OF THREE CANDIDATE SEARCH

SPACE IN THE BASENET POOL ON CIFAR-10 AND IMAGENET DATA SETS.

Data sets CIFAR-10 ImageNet (100 classes)

Basenet Pool Acc. (%) Lat. (ms) Acc. (%) Lat. (ms)

Res. 83.10 1.87 60.72 3.89
Mobile. 81.22 1.12 59.77 3.52
VGG. 80.15 0.95 59.02 2.61

hardware constraints in ENAS, we modify its reward function

by adding a penalty of latency, as shown in Equ.2. Our NAS

framework and the training process for the searched models

are both implemented in PyTorch. The target datasets include

CIFAR-10 and ImageNet. Kindly noted that we randomly

sample 100 classes from the original 1000 classes of ImageNet

to reduce the overall search time.

Search Space. Three hand-designed SS, VGG-based,

ResNet-based, and MobileNet-based are provided as candidate

SS. The number of candidate choices of the ResNet-based and

MobileNet-based network blocks is both 9 while the VGG-

based network blocks are 13. We follow a similar macro-

architecture of 12 layers as in FBNet [5]. The average accuracy

and latency of the three SS on CIFAR-10 and ImageNet are

listed in Table IV.

B. Effectiveness and Efficiency of Search Space Profiling

Effectiveness of Cost Function Design. As shown in Table

II, we obtain three different kinds of SS using our proposed

search space profiling method on CIFAR-10 with thres and

scale set to 0.85 and 2, respectively. The λ is set to 0.01,

0.1, and 1 to get the accuracy-optimized, accuracy-latency-

balanced, and latency-optimized SS, each corresponding to

ResNet-based, MobileNet-based, and VGGNet-based SS. Both

of the RL-NAS and DNAS demonstrate that the NAS-derived

network on the obtained SS has the lowest cost compared

to the other two. As for the accuracy and latency, it is

indeed that the ResNet-based SS has the best accuracy of

86.7% and 86.5%, the VGGNet-based one has the lowest

latency of 0.78 ms and 0.8 ms, and the MobileNet-based

one provides a tradeoff between accuracy and latency. The

experimental results of ResNet-based and VGGNet-based SS

on the ImageNet also validate the effectiveness of our cost

function design, as shown in Table III.
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TABLE V
RESULTS OF FIX AND DYNAMIC SEARCH SPACE OF RESNET-BASED

NETWORK BLOCKS ON CIFAR-10.

Fix Search Space dynamic search space

Method
Acc. Lat.

Cost λ
Acc. Lat.

Cost(%) (ms) (%) (ms)

DNAS 86 1.287

0.9872 0.01 86.7 1.299 0.9838
0.9173 0.1 86 1.28 0.9169
0.2180 1 85.8 1.255 0.1992

RL-NAS 83.5 1.385

1.0003 0.01 86.5 1.292 0.9848
0.9353 0.1 85.4 1.27 0.9193
0.2855 1 84.7 1.25 0.2015

Dynamic vs Fix Search Space. We also compare the

performance between dynamic and fix SS using ResNet-

based network blocks as an example on CIFAR-10, as shown

in Table V. The size threshold Thr of the SS is 60. The

experimental results show that the dynamic SS under three

different λ configurations has the lowest cost compared with

fix SS. This means that our proposed search space profiling

method can preserve the useful information of the original SS,

while pruning away redundant information in SS, thus making

the search process fastly converge to a better result more faster.

Compared with Baseline. We use the case that all candi-

date blocks constitute a SS as the baseline. The experimental

results on CIFAR-10 show that the networks derived from

our SS all have a lower cost than the baseline with 2.6% to

12.7% improvement in accuracy and 1.1x to 1.4x reduction

of latency, and the total search time is reduced by 1.89x to

4.35x. As for the ImageNet, a lower cost is also achieved

with 2% to 3.2% improvement in accuracy and 1.7x to 2.2x

reduction of latency. The total search time of DNAS is reduced

by 2x. While the baseline of RL-NAS is faster than ours. It

is because we need to do the search space profiling on the

ImageNet, which takes a much longer time than searching

on the CIFAR-10 for transferring. However, the NAS-derived

network of our SS is much better than the baseline. Besides,

we can save the GPU memory from 3x to 6.25x.
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Fig. 4. Results of the Pareto curve with or without the latency optimization
on: (a) CIFAR-10, and (b) ImageNet.

C. Impact of Latency Correction Method

As shown in Fig.4, we evaluate the impact of our proposed

layer adaptive latency correction method on CIFAR-10 and

ImageNet. The blue lines represent the results with the opti-

mization of the latency correction method, as shown in Table

II and Table III, while the orange line represents the results

without the latency optimization. It can seem that a better

Pareto curve can be obtained if we can get a more accurate

estimation of the latency using the policy-aware latency LUT.

V. CONCLUSIONS

In this paper, we proposed a black box search space

profiling tuning method to generate a smaller and dynamic

search space for the target DNN accelerator without any prior

knowledge of the underlying hardware architecture. Next, we

design a layer adaptive latency correction method to provide

a policy-aware latency-LUT for fast and accurate latency

estimation. By using the proposed methods, we demonstrate a

general hardware-aware NAS framework using an ISA-based

DNN accelerator on FPGA. Experimental results show that on

the CIFAR-10 and ImageNet data sets, our search space can

achieve an average of 1.4% improvement in accuracy, 1.9x

reduction of latency, 2.7x and 4x reduction of the search time

and GPU memory, respectively.
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