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Abstract—As the Large Language Model (LLM) becomes
increasingly important in various domains, the performance of
LLM inference is crucial to massive LLM applications. However,
centering around the computational efficiency and the memory
utilization, the following challenges remain unsolved in achieving
high-throughput LLM inference: (1) Synchronous partial softmax
update. The softmax operation requires a synchronous update
operation among each partial softmax result, leading to ~20%
overheads for the attention computation in LLMs. (2) Under-
utilized computation of flat GEMM. The shape of matrices
performing GEMM in LLM inference tends to be flat, leading
to under-utilized computation and 50% performance loss after
padding zeros in previous designs (e.g., cuBLAS, CUTLASS, etc.).
(3) Memory redundancy caused by activations. Dynamic allocation
of activations during inference leads to redundant storage of
useless variables, bringing 22% more memory consumption.

We present FlashDecoding++Next, a high-throughput inference
engine supporting mainstream LLMs and hardware backends.
To tackle the above challenges, FlashDecoding++Next creatively
proposes: (1) Asynchronous softmax with unified maximum.
FlashDecoding++Next introduces a unified maximum technique for
different partial softmax computations to avoid synchronization.
Based on this, a fine-grained pipelining is proposed, leading
to 1.18x and 1.14x for the prefill and decode phases in LLM
inference, respectively. (2) Flat GEMM optimization with double
buffering. FlashDecoding++Next points out that flat GEMMs
with different shapes face varied bottlenecks. Then, techniques
like double buffering are introduced, resulting in up to 52%
speedup for the flat GEMM operation. (3) Buffer reusing
and unified memory management. FlashDecoding++Next reuses
the pre-allocated activation buffers throughout the inference
process to remove redundancy. Based on that, we unify the
management of different types of storage to further exploit the
reusing opportunity. The memory optimization enables up to
1.57x longer sequence to be processed. FlashDecoding++Next
demonstrates remarkable throughput improvement, delivering up
to 68.88x higher throughput compared to the HuggingFace [1]
implementation. On average, FlashDecoding++Next achieves 1.25x
and 1.46x higher throughput compared to vLLM [2] and
TensorRT-LLM [3] on mainstream LLMs.

Index Terms—Large language model, inference, computation,
memory, efficiency.

I. INTRODUCTION

As the Large Language Model (LLM) achieved unprece-
dented success in various domains [S]-[8]], the LLM inference
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Fig. 1. Overview of comparison between FlashDecoding++ and the state-
of-the-art system. The results in the figure are reported with Llama3-8B
model [4]. The results on the left represent the latency with a single batch
size and the incremental memory usage per token, and the results on the right
show the throughput curves with increasing batch sizes. FlashDecoding++Next
achieves a significant throughput improvement based on latency and memory
optimization. vVLLM [2] is the SOTA baseline.

workload is skyrocketing. For example, OpenAl reports that
GPT-4 inference with 8K context length costs $0.03 per 1K
input tokens and $0.06 per 1K output tokens [9]]. Currently,
OpenAl has 180.5 million users and receives over 10 million
queries per day [10]. Consequently, the cost to operate
OpenATI’s model like ChatGPT is approximately $7 million per
day for the necessary computing hardware [11]. Thus, achieving
high throughput in LLM inference is essential for the service
providers to cut costs. Many recent works have proposed
techniques to optimize the throughput in LLM inference
tasks, including DeepSpeed [12], FlexGen [13], vLLM [2],
OpenPPL [14], FlashAttention [[15], [16], FlashDecoding [[17],
TensorRT-LLM [3]], and etc [[18]]-[20].

Throughput is defined as the number of output tokens
(e.g., some words) that LLM generates per second. Two
primary factors influence the throughput of such a system:
computational efficiency and memory utilization. For a given
workload, enhanced computational efficiency results in reduced
latency per token, thereby increasing throughput. Several
previous works, including DeepSpeed [[12]], FlashAttention [/15],
[16], FlashDecoding [[17]], and TensorRT-LLM [3] incorporate
highly optimized GPU kernels to accelerate the LLM inference
process. Moreover, substantial memory capacity is essential
for managing heavy workloads, allowing full exploitation
of the hardware’s computational capabilities. FlexGen [13]]
employs the offloading technique to expand the total available
memory capacity, while vLLM [2] introduces paged storage
to address memory fragmentation, significantly enhancing
memory utilization during LLM inference.

The LLM inference task generates tokens from the input
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Fig. 2. Overview of Large Language Model inference dataflow. FlashDecoding++Next propose three solutions for corresponding challenges in Large Language
Model inference. (a) The dataflow comparison between the prefill phase and the decode phase. The prefill phase mainly involves the GEMM operation, while
the decode phase mainly involves the GEMV/Flat GEMM operation. (b) FlashDecoding++Next proposes the asynchronous softmax with a unified max value
technique, avoiding synchronous updates to previous partial attention results. (c) FlashDecoding++Next optimizes flat GEMM by improving computation
utilization. (d) FlashDecoding++Next removes memory redundancy by pre-allocating and reusing buffers for activation storage.

sequence autoregressively, and can be organized into two typical
phases: the prefill phase and the decode phase. The prefill
phase generates the first token by processing the input prompt.
The decode phase generates the following tokens sequentially.
The prefill phase dominates total time for scenarios of long-
sequence input or generating short outputs [21], [22], while the
decode phase constitutes a significant portion of the time with
chatbot scenarios or processing long output sequences [23].
Fig. Pfa) shows the main dataflow of the LLM inference with
one transformer layer for both the prefill phase and the decode
phase. A transformer layer can be divided into GEMM (General
Matrix Multiplication) operations (e.g., K, Q, V, O weight
projection and the feedforward) and the attention/softmax
computation. The memory consumption during LLM inference
primarily comprises three parts: model weights, activations,
and the KVcache. The memory space occupied by the model
weights remains constant throughout the inference process.
Therefore, this discussion focuses on optimizing the memory
usage of the KV cache and activations in LLM inference.
Previous studies have highlighted the significance of KVcache
storage [2]], [18], acknowledging that KVcache occupies a
dominant portion of overall memory consumption. However,
we observe that inefficient management of activation storage
also leads to memory redundancy and fragmentation.

For the attention computation, a softmax operation is adopted
for a row in the attention matrix. To improve the parallelism,
previous designs [[15]], divide the attention matrices into
smaller tiles and rows are also split to compute partial softmax

results. A synchronous softmax operation is adopted to update
previous partial softmax results when a new partial softmax
result is calculated. Such a synchrononus partial softmax
update accounts for 18.8% for the attention computation of
Llama2-7B inference according to our profiling on NVIDIA
Tesla A100 GPU with 1024 input length, resulting in the
first challenge for accelerating LLM inference. Secondly, the
computation resources is under-utilized for the flat GEMM
operation during the decode phase. Because the decode phase
sequentially generates tokens, the GEMM operation tends
to be flat-shape (even turning into the GEMYV, i.e., General
Matrix-Vector Multiplication, when the batch size is 1). For
the small batch size (e.g., 8), previous designs [24], [25] pad
the matrix with zeros to perform GEMMs of larger sizes
(e.g., 64), leading to over 50% computation under-utilization.
Thirdly, the throughput of LLM inference suffers from
the memory redundancy caused by activations. Current
implementations [2], [3]], [12], allocate memory space to
store the output activations whenever an operator finishes. Such
dynamic allocation for the storage of activations at runtime
forces 1.22x more memory space to be detained.

To tackle these challenges and enable a high-throughput
Large Language Model (LLM) inference, we present FlashDe-
coding++Next in this paper. Compared to our prior work
FlashDecoding++, this work incorporates memory optimization
techniques, creatively forming a comprehensive perspective of
computational efficiency and memory utilization to enhance
inference throughput. FlashDecoding++Next includes the
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following contributions:

o Asynchronous softmax with unified maximum. FlashDe-
coding++Next leverages a unified maximum for different
partial softmax computations. Each partial softmax result
can be processed individually without synchronous up-
dates. Such a technique leads to 1.18x and 1.14x speedup
for attention computation in the prefill phase and decode
phase, respectively. Moreover, for decode phase, the sparse
implementation based on the proposed method achieves
1.98x speedup over FlashDecoding on average.

o Flat GEMM optimization with double buffering.
FlashDecoding++Next only pads the matrix size to 8
rather than 64 in previous designs for flat-shaped GEMM
to improve computation utilization. We point out that flat
GEMMs with different shapes face different bottlenecks,
and further improve the kernel performance by up to 52%
with techniques like double buffering.

o Buffer reusing and unified management. FlashDecod-
ing++Next pre-allocates activation buffers and reuses the
buffers throughout the LLM inference process, so that
no extra memory is allocated for activation storage at
runtime. Such a reusing technique reduces the activation
memory consumption by 22%, and further allows the
unified management for both KVcache and activations,
leading to 10% more memory space for KVcache usage.
The proposed memory optimization allows processing up
to 1.57x longer sequence length.

We conduct extensive experiments to validate the efficiency
of FlashDecoding++Next. FlashDecoding++ achieves up to
68.88 x higher throughput on NVIDIA GPUs compared with
the HuggingFace [1] implementation. The results show that
FlashDecoding++Next delivers an average of 1.25x and
1.46x throughput improvement compared with vLLM [2] and
TensorRT-LLM [3]], the state-of-the-art LLM inference engines
on various LLMs (e.g., Llama3, Qwenl.5, etc.).

The rest of this paper is organized as follows. Section
introduces preliminaries of LLMs and related works on
LLM inference acceleration. Our three techniques designed
specifically for the attention computation, the GEMMs and
the memory usage are detailed in Section and [V]
respectively. Section |[VI| presents the evaluation results. Related
works on LLM inference are introduced in Section and
Section concludes the paper.

II. BACKGROUND
A. LLM Inference Dataflow Overview

The task of LLM inference is to generate tokens from the
input sequence, which can be used to complete a sentence
or answer a question. An overview of the LLM inference
dataflow is shown in Fig. Pfa). As we can see, the LLM
inference dataflow can be organized into two typical phases
with similar operations: one prefill phase and several decode
phases. The prefill phase “understands” the input sequence (i.e.,
“What is the largest ocean?”). Each token (we set one word as
a token in Fig. a)) is encoded as an embedding vector, and
the input sequence is organized into a matrix. The main output
of the prefill phase is a new token, which is predicted to be

the next token after the input sequence (i.e., “Pacific” in this
figure). The decode phase “generates” the output sequence (i.e.,
“Pacific”, “Ocean”, etc.) The output token of the prefill phase
is taken as the input of the decode phase. The decode phase is
executed autoregressively, and each output token is used as the
input token for the next decode phase (e.g., “Ocean” is further
used as the input).

B. Operations in LLM Inference

The main operations in LLM inference are depicted as opera-
tion @ to ® in Fig. J[a), including the linear projection (@ and
®), the attention (®, @, and @), and the feedforward network
(®). For simplicity, operations like position embedding [26]],
non-linear activation [27], [28]], mask [26], and others are not
shown in the figure. Operations in the prefill phase and the
decode phase are different in the shape of data. Because only
one token (batch size=1) or few tokens (batch size>1) are
processed at one time, input matrices in the decode phase
are flat-shape matrices or even vectors.

Linear Projection. The linear projection performs as the
fully connected layer, multiplying the input with weight
matrices (i.e., Wg, Wqo, Wy, Wo, called K, Q,V projection
and O projection). For the prefill phase, the K, Q,V projec-
tion generates matrices K, (Q, V. For the decode phase, the
K, @,V projection generates three corresponding vectors and
concatenated with K and V (i.e., KVcache, yellow and light
blue in Fig. [J(a)) in the prefill phase.

Attention. The attention operation is mainly divided into
three operations (@ to @ Q x K, softmax, Attention x V),
as shown in Eq. . For P = Q x KT, the softmax operation is
performed for each row of the result matrix of P. The detailed
softmax computation is shown in Fig. 3[a). The maximum
value m(x) is first calculated. The exponent of each element
divided by e”™(®), f(z), is then processed. These exponents
are normalized to the summation of all exponents (i.e., [(x))
to get the softmax result.

softmaz(Q x K1) x V (1

Feedforward Network. The feedforward network primarily
comprises two fully connected layers. The first one (® F'F'Ny)
expands the feature dimensions to enhance the representative
capacity. The second one (® FF Ns) restores the feature
dimensions and serves as the output layer.

The main operations in the linear projection and the
feedforward network are GEMMs. As shown in Fig. ] the
attention operations and the GEMMs dominate the runtime of
LLM inference. Specifically, attention and GEMMs together
occupy more than 90% of the latency for 7B/8B LLMs, with
the latency portion of attention growing with the input sequence
length. Although parallelism brings communication overhead
for 70B/72B LLMs, attention and GEMMs still together take
up over 70% of the latency. Thus, the key to improving
computation efficiency lies in optimizing attention and GEMM
operations.

C. Attention Optimization

The softmax operation shown in Fig. [3[a) requires all global
data to be calculated and stored before it can proceed. This
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vector, and a synchronous update operation is required for all partial softmax results. (c) Computing partial softmax using a unified max value, and each partial
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Fig. 4. Inference runtime breakdown across different LLMs and input sequence
lengths with VLLM [2]. Attention operations and GEMMs are generally
dominant. The output length is set to 128 and the batch size is fixed to 16 for
all cases.

results in high memory consumption and low parallelism.

Latter works propose the partial softmax technique to reduce

memory consumption [15]], [16] or improve parallelism [[17]].
Fig. B[b) shows the diagram of the partial softmax operation.

The main idea is to divide the vector x into partial vectors
(i.e, ¥’ and z'). The partial softmax results of z’ and z”
are calculated separately according to Fig. 3[a), and then
synchronously updated by each other. The detailed computation
of this synchronized update is shown in Equation (2). With
the implementation of partial softmax, we can achieve efficient
parallelism of computation while reducing memory cost for
attention computation.

)
)
") = em(”””)‘m“”)f(w”) @
)
)

However, since the partial softmax needs to be updated
according to other partial softmax results, it unavoidably
introduces data synchronization operations. According to our
profiling result, such a synchronized update operation leads to
18.8% overheads in the attention computation on the NVIDIA
Tesla A100 GPU with 1024 input length.

D. Tiling in GEMM Optimization

GEMMs can be represented using M, N, K, where the sizes
of two multiplied matrices are M x K and K x N. Tiling is
an essential technique for efficiently computing GEMMs on
GPUgs. In this approach, the original matrices are tiled along
all the dimensions into multiple sub-matrices and distributed
among different computing units to facilitate parallel processing.
Previous works [24]], [25] discuss the impact of different tiling
strategies in computing GEMMs. The widely-used GEMM
library on NVIDIA GPUs, cuBLAS [24], applies several tile
sizes (e.g., 64, 128, and 256) to different workloads to maintain
versatility. However, the coarse-grained tiling employed by
cuBLAS is sub-optimal for computing the flat-shape GEMMs
during the decode phase.

III. ATTENTION OPTIMIZATION: ASYNCHRONOUS
SOFTMAX WITH UNIFIED MAXIMUM

Motivation. The partial softmax operation requires syn-
chronization among different partial vectors, leading to ~20%
overheads of the attention operation. As is shown in Fig. P{b),
synchronization is required after the maximum value of the
partial vector is calculated. The maximum value is used
to update previous partial softmax (i.e., recompute previous
attention) results. Thus, to reduce synchronization overheads,
the key problem to be solved is how to compute each partial
softmax result without requiring results from other partial
softmax computation.

Challenge. The reason that synchronization is required lies
in that the maximum value of each partial vector is different.
The maximum value is used to avoid overflow of the exponent
operation (f(z) in Fig. B{a)), and exponents are summed (I(z)
in Fig. [B[@)) as the denominator of the softmax operation. Such
a non-linear operation on each partial maximum value makes
the synchronization among each partial softmax computation
unavoidable.

Analysis and Insights. According to the formula of softmax
computation, the maximum value is used as the scaling factor
for both the numerator and the denominator (i.e., f(z) and I(z)
in Fig. 3(@)). Our key insight is, the scaling factor can be
an arbitrary number rather than using the maximum value
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Fig. 5. The statistical distribution of x; (elements in the input vectors of
softmax) in typical LLMs with different inputs.

mathematically, shown in Equation . When we set ¢ = 0,
it becomes the original softmax computation [29].

z1—m(x)
y ey

DoiehT

[e®179, ..., %479
= S eri Vo eR

However, the scaling factor cannot be an arbitrary number
considering the overflow of the exponent computation. For the
case where z; > ¢, e%i~? overflows and cannot be represented
using a fixed-width floating point number (e.g., £1oat32 for
exponent results in current LLM engines). For another case
where x; < ¢, eri—? (), leading to precision loss. Thus, a
proper scaling factor ¢ should be carefully selected to avoid
the two cases above. Fig. [5] shows the statistical distribution of
x; (elements in the input vectors of softmax) in typical LLMs
with different inputs [30]. Our key insight is, > 99.99% x;
are within a certain range. Specifically, for Llama2-7B, we
have —16.8 < z; < 6.5 for > 99.99% x,. Because e®~% and
e2~" can be represented by a float 32 format, we can set
¢ = a in Equation (3). For OPT-6.7B, we do not apply the
technique in this section because of the large range in Fig. [5]

Approach: Asynchronization. Based on the insights above,
each partial softmax computation shares a unified maximum
value ¢. After the softmax operation, an inner product operation
is executed between the softmax result and a column of
V (i.e., v). Assume that the input vector x can be divided
into p partial vectors, x = [z, ..., 2®)] (v = M), ... v®)]
correspondingly), we have:

[6 exd—m(ac)]

softmax(z) =

3

Ei exi—¢ -V,
e
d/p o j 4
- Z /p —¢ . (J)

d m
12“’

The inner accumulation in both the numerator and the
denominator only takes the partial vectors (/) and v(%) as input,
thus they can be processed asynchronously and individually.
The outer accumulation is only processed after all partial
vectors are processed. As we can see in Fig. c), each f (x(j ))
is calculated individually, and softmax(z) is calculated after
all () is calculated.

(softmax(zx),v) =

X v
=4 =5 - - 1 v2 Y3 Ya
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Fig. 6. Example of asynchronous partial softmax computation. (a) Each partial
softmax result is processed individually without the synchronous update. (b)
The recomputation process for all partial softmax computation is required
when an overflow happens.

Approach: Recomputation. Without loss of generality, we
assume a < x; — ¢ < b for each x; to ensure precision and
avoid overflow. Then, the partial softmax operation is processed
individually. However, when z; — ¢ < a or x; — ¢ > b,
the asynchronous partial softmax computation is terminated
for the vector x where z; belongs to. The softmax is then
recomputed using the synchronized partial softmax scheme
(used in FlashAttention [15]], [16] and FlashDecoding [17]])
shown in Fig. B(b). Such a recomputation scheme avoids
overflow while introducing negligible overheads based on the
statistical data shown in Fig. [3}

Example. Fig. [6] shows an example of the asynchronous
softmax scheme. We set a = —3,b = 3, ¢ = 6. Two vectors x
and y are calculated from @ x KT in Equation (I}, and are
divided into 2 partial vectors. We omit the process from Q x KT
to these partial vectors. For each x;, we have a < x; — ¢ < b,
we process e”1~?.u; +-e%2 7?0, and €' ~?+e2 ¢ for the first
partial vector of = using two asynchronous threads. Then, each
thread moves to the next partial vector for the corresponding
computation (i.e., e3P . 3 4 e % .y, and €73 7P + T4 P),
Two threads are synchronized when all partial vectors are
processed, and perform the division operation in Equation (@).
For y, the first partial vector is processed similarly. However,
we find that y3 — ¢ > b, then two threads are terminated and
the first thread recomputes all partial vectors according to the
synchronous partial softmax scheme in Fig. [3[b).

Sparse Attention Support. For the decode phase, FlashDe-
coding++Next supports the sparse attention pattern in
MoA [31]], which selectively sparsifies the KVcache for each
head. To adapt to the varying KVcache sizes across different
attention heads, FlashDecoding++Next achieves workload
balance by reordering the computation of attention heads. We
follow the longest-processing-time-first (LPT) rule for GPU
streaming multiprocessor (SM) scheduling. Specifically, we
permute the @, K, V, O projection weights offline to handle
attention head reordering, and prioritize the heads with longer
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Fig. 7. Normalized flat GEMM performance under different /N —dimension
sizes and N —dimension tiling sizes. We set M = 8 and execute GEMM on
the NVIDIA Tesla A100 GPU.

KVecache lengths. Such prioritization ensures minimal idle time
for the SMs, thereby minimizing the total execution time of
the attention operator.

IV. GEMM OPTIMIZATION: FLAT GEMM WITH DOUBLE
BUFFERING

Motivation. The process of the decode phase is mainly
composed of GEMV (batch size=1) or flat GEMM (batch
size>1) operations. Without loss of generality, GEMV/GEMM
operations can be represented using M, N, K, where the sizes
of two multiplied matrices are M x K and K x N. Previous
LLM inference engines utilize Tensor Core to accelerate
these operations using libraries like cuBLAS [24] and CUT-
LASS [25]. Although modern Tensor Core architectures [32]
process GEMM with M = 8, these libraries usually tile the
M —dimension to 64 to hide memory latency. However, for
GEMYV or flat GEMM operations in the decode phase, we may
have M < 64, and the M —dimension is padded to 64 with
zeros. The padding leads to under-utilized computation, and the
key problem is to process GEMYV or flat GEMM operations
with smaller tiles (i.e., padding to 8 corresponding to
modern Tensor Core architectures) in the )/ —dimension.

Challenge. Processing GEMV or flat GEMM operations
is non-trivial when the M —dimension is padded to 8. The
tiling technique in modern libraries like cuBLAS [24] and
CUTLASS [25] can only be applied to the N —dimension and
the K —dimension. Tiles on the K —dimension are processed
sequentially in a GPU block to avoid atomic operations during
reduction. Tiling on the N —dimension affects both parallelism
and computation/memory ratio, which are both important for
GEMYV and flat GEMM acceleration.

Analysis and Insights. Assume that tiling sizes of the
N —dimension and the K —dimension are By and B, respec-
tively. The computation of each GEMM tile is 2x M x By X Bg
with total B = % GEMM tiles. The total memory
access is (M x B + By x Bg) x B+ M x N. Thus, the
computation/memory ratio is:

2x M x By x Bg x B

(M x Bk +Bnx xBg) X B+ M x N
2x M x K

:K+—MBXNK + M

(&)

By C1=A;'Bi+Ay By+Az Bs+...
By |B, B’ Co=AyB'1+Ay Bp+Ay Bt
1 B4
B, B (T2 Buffer in shared memory for loading

D Buffer in shared memory for computing

@Bl =)
B
B (@) (556
AeE—C |

K N

5,

N/

M | A A A3

Timeline

GPU Block; GPU Block,

Fig. 8. Double buffering for flat GEMM when N —dimension is large. The
M — dimension is padded to 8 and not tiled.

On the other hand, the parallelism is %. Thus, the
computation/memory ratio shows a positive correlation with
By while the parallelism shows a negative correlation with
By, exposing a contradiction in improving the performance of
GEMV or flat GEMM. We depict the normalized performance
of the flat GEMM in Fig. [7] with different N and By . Our key
insight is, for the smaller N, the flat GEMM is parallelism-
bounded. There are 108 Streaming Multiprocessors (SMs) in
the NVIDIA Tesla A100. B],V—N tends to be a constant (e.g., 128
or 256), which is related to the hardware parallelism (number
of SMs). Another key insight is, for the larger N, the flat
GEMM becomes memory-bounded. The performance of
these cases can be improved by hiding memory access latency.

Approach: Tile Size and Double Buffering. We adopt small
tile sizes (e.g., 32 or 64) with small NV to generate more tiles for
parallel computing. Considering the memory access bottleneck
with large N, we utilize the double buffering technique to hide
memory access latency. Specifically, we allocate two separate
buffers in the shared memory. The tile in one buffer performs
the GEMM operation, while another buffer loads a new tile
for the next GEMM operation. Thus, the computation and the
memory access are overlapped. We apply such a technique
when NV is large in our practice.

Approach: Implementation Selection. Notably, the ap-
plication of Tensor Core is not necessary for Flat GEMM
implementation, which inevitably leads to memory access
and computation redundancy when M (i.e., the batch size) is
extremely small. Such workload can be optimized by utilizing
CUDA Core in previous designs like FastGEMV [33]. For a
Llama3-8B linear layer in the decode phase, the Tensor Core
implementation only achieves 82.15% of the performance of
CUDA Core implementation on an NVIDIA A100 GPU. Thus,
we form a selection algorithm to decide whether to use Tensor
Core for the linear workloads in LLM inference.

Although influential factors including input dynamics and
hardware capacities form a large search space, the homogeneity
of different layers in LLM significantly reduces the search
space for implementation selection. Fig. 2fa) shows four
linear operations in the prefill phase and the decode phase,
i.e., K,Q,V projection, O projection, and two feedforward
operations. Each GEMM operation can be abstracted as a
multiplication between an (M x K)-shaped matrix and a
(K x N)-shaped matrix, and there are only four [K, N]
shapes for a certain LLM. We profile the performance of the
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implementations mentioned above for a certain M, and increase
M to find an inflection point M where the performance of
using Tensor Core is better than using pure CUDA Core. For
the runtime LLM inference, FlashDecoding++Next adopts
the implementation using CUDA Core when M < M, and
the Tensor Core implementation when M > M. Note that
the decision flow is executed offline, it does not affect the
performance of runtime LLM inference.

Example. Fig. [§] shows the example of our flat GEMM opti-
mization with double buffering. For M < 8, the M —dimension
is first padded to 8 considering modern Tensor Core architec-
tures. Workloads in the K —dimension are processed within
one GPU block (e.g., A1, Az, As, ...), while workloads in the
N —dimension are processed in parallel using different GPU
blocks (e.g., C1,Ca,...). We take GPU Block; as an example,
the first tile for each matrix in the K —dimension (i.e., A;
and Bj) is loaded to the left buffer in the shared memory.
Then, the GEMM operation is performed between A; and Bj.
Consequently, A; and B; are loaded to the right buffer in the
shared memory. The following tiles are processed similarly
according to the double buffering scheme.

V. MEMORY OPTIMIZATION: BUFFER REUSING AND
UNIFIED MANAGEMENT

Motivation. As mentioned in Section [I} the storage in LLM
inference consists of the model weights, the KVcache, and
the activations. The memory space occupied by the model
weights remains constant throughout the inference process.
Thus, we discuss the KVcache and the activations for memory
optimization in LLM inference. Each transformer layer contains
multiple operators, such as attention, GEMMs, and element-
wise operators. The input and output tensors for those operators,
i.e., activations, require memory allocation that cannot be
immediately released after use. As depicted in Fig. P(a),
dynamic allocation ignores the lifecycle of those activations
at runtime, and allocates new memory space to store the
output of each operator, unnecessarily resulting in a 22%
higher peak memory usage. Since the memory allocated
for KVcache and activations cannot be reused between each
other, dynamic allocation of activation space also reduces
the available space for KVcache storage. As illustrated in
Fig. [[0(a), activation memory usage is more consumed during
the prefill phase, whereas KV cache memory usage peaks during
the decode phase. This discrepancy between the storage
demands between the prefill and decode phases results in
a 10% redundancy in previous approaches. Therefore, it is
essential to reuse the same memory space for different storage
to eliminate memory redundancy.

Challenge. In the original implementation, the code logic
is typically organized in the unit of a single transformer layer.
The input and output tensors of operators (i.e., activations)
within the same layer span the entire transformer layer,
thus necessitating different memory addresses for storage.
Considering data dependencies and tensor size variations, it is
challenging to further partition the layer-wise activation lifespan
into smaller ones. Furthermore, current systems typically pre-
allocate the memory space for KVcache while dynamically

[ —— Activation - - —> KVcache 1 input o] Output [7] Residual }
— — 5 —
| Norm, | | Norm, | | Norm, | | Norm, |
@ @ @

'
'

'

'

'

'

'

'

!

'

|
'

'

'

H Attention ®
'

1 ©)

'

H FFN,
'

'

'

'

'

'

'

'

'

'

'

[0) @

—'| Residual, |—®—O| Residual, |—®'

Activation memory usage

'
i
Activaton © @ @ @ ©® ©® 7 8 © | Activation © @ 3
Norm, 1| o 1 Norm; I |o
X Wq 1 o I Wq I o
Attention I | o | Attention 17
X Wo 1 o T XW, o 1
Residual; | & | 1| o ! Residualy |ro| 1
Norm, 1| o ! Norm;, I o
FFN, [ o 1 FFN; I o |
FFN, I o] 1 FFN, o [ |
\ Residual, | ro [ 7
I
'

Residual, [To ] R 7

Redundant allocation for most operators

Three buffers for all operators

(a) Dynamic allocation (b) Activation buffer reusing

Fig. 9. Memory allocation and usage of activations. (a) Dynamic allocation
allocates a new memory space to store activation whenever an operator finishes.
(b) Only three activation buffers are needed via buffer reusing.

allocating activations at runtime, making it challenging to reuse
the memory space between KVcache and activations.

Analysis and Insights. We observe that the architectures
of mainstream transformer-based LLMs are highly similar.
Differences include whether the model has biases in W, W,
W, (e.g., Qwen series does while Llama series does not) and
the use of Grouped Query Attention (GQA), which leads to a
smaller KVcache. Additionally, the dataflow among different
transformer layers within the same model remains entirely
consistent. Those observations indicate that the memory space
for activations can be pre-determined and pre-allocated
before runtime. Pre-determined activation storage facilitates
the precise allocation of memory between the KV cache
and activations, enabling unified memory management for
both the prefill and decode phases. Furthermore, the pre-
allocation manner eliminates the overhead associated with
multiple memory allocation operations.

Approach: Buffer Reusing. Based on the above insight,
we designed a memory-reusing scheme for all activations
within a single layer. Element-wise operations such as residual
connections and SiLU [28]] functions can utilize the same
memory address for the input and output activations. For other
operations such as normalizations and GEMMs, the input and
output activations must use different memory addresses to avoid
write-after-read (WAR) conflicts. Considering that the activation
used for residual is maintained throughout the processing of
the entire layer, at least three memory buffers are needed for
the activations within a layer, and the three memory buffers are
further reused among different layers. As shown in Fig. [9[b),
we reuse three memory buffers to store all the activations
within one layer. The three activation buffers have the shapes
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Fig. 10. Memory management of KVcache and activations. (a) Separate
management brings redundancy in both KVcache and activation storage. (b)
Unified management eliminates redundancy and saves memory space.

of [S,H x D],[S,H x D|,[S,F x H x D/T), respectively.
Note that S denotes the total input sequence length of all
the requests, H and D represent the head number and head
size in the attention operation. F' is the multiplier of the FFN
hidden size (e.g., 3.5 for Llama3 series), and 7 is the degree of
tensor parallelism. Specifically, we store the input, the output
of the attention operator, and the output of F'F'N; in buffer @
(shape: [S, F' x H x D/T)), as they are all affected by tensor
parallelism. Such a storage pattern ensures no wastage under
different tensor parallelism settings. Moreover, we store the
input of F'F'N; and the output of F'F' N, in buffer @ (shape:
[S, H x D). Buffer @ (shape: [S, H x D]) stores the other
activations, which have the same size as the hidden state, i.e.,
the input of the layer.

Approach: Unified Management. Based on the pre-
allocated activation buffers, we further apply a unified memory
space to manage the activations and KVcache together. As
shown in Fig.[T0[a), the application of a separate memory space
brings redundancy to the KVcache memory in the prefill phase
and to the activation memory in the decode phase. We propose
to switch a portion of the activation memory in the prefill phase
to store the KVcache in the decode phase, which is illustrated in
Fig. [I0(b). Such a reusing scheme necessitates the unification
of the data layout as well. Since the storage of activations
necessitates contiguous memory along the second dimension,
we take the value H x D/T as the minimal storage unit for
unified management. The shape of buffer ® is correspondingly
adjusted to [S, [F'] x H x D/T)]. Furthermore, we ensure the
last two dimensions for KVcache storage are H and D, so
the minimal storage unit still holds for managing KVcache.
Notably, to facilitate unified memory management, the KV
cache uses ascending address allocation, while activations use
descending address allocation. Such a bidirectional strategy
prevents memory conflicts between the two types of storage
before the memory space reaches full capacity.

Example. Fig. [9] shows the example of the proposed buffer
reusing scheme within one transformer layer. There are two
types of storage in the figure, where the dotted line represents
KVcache and the solid line denotes activations. We reuse three
buffers to store all the activations. Buffer @ is assigned for
all residual activations. Buffer @ stores the input activations
of the query projection (xW,) and F'F'N;, as well as the
output activations of the output projection (xW,) and F'F' Na.
Buffer ® is utilized to store the output activations of the query

TABLE I
MODEL CONFIGURATION

Hidden FFN . Tensor
Model Dimension ~ Dimension Altention Parallelism
Llama3-8B 4096 14336 GQA TP=1
Llama3-70B 8192 28672 GQA TP=4
Qwenl.5-7B 4096 11008 MHA TP=1
Qwenl.5-72B 8192 24576 MHA TP=4

projection and F'F' Ny, along with the input activations of the
output projection and F'F'N,. The output activation of the query
projection and the input activation of the output projection are
stored in the two segments of the buffer @ without data conflict.

VI. EVALUATION
A. Experiments Setup

We evaluate the performance of FlashDecoding++Next on
different GPUs with various Large Language Models. We
compare the performance with several state-of-the-art LLM
inference engines.

1) Hardware Platforms: We conduct experiments on a server
with 8 pairwise connected NVIDIA A100 80GB SXM4 GPUs
and Intel Xeon Platinum 8358P CPU @ 2.60GHz, and the
corresponding software environment includes CUDA 12.1 [34],
PyTorch 2.3.1 [35]]. We also use the NVIDIA RTX 3090 24GB
GPU, the AMD MI210 GPU, and the AMD RX7900XTX GPU
to test the adaptability.

2) LLM Engine Baselines: We implement our FlashDe-
coding++Next using the Pytorch-based front-end with the
C++ and CUDA backend for NVIDIA GPUs. We compare
the inference performance with the following LLM engine
baselines: HuggingFace (HF) v4.43.2 [1], vLLM v0.5.3 [2],
TensorRT-LLM v0.12.0 [3]].

o HuggingFace is a community that supports flexible devel-
opment for diverse LLMs. To achieve that, its inference
engine (transformers [1[]) follows a highly modular design
at the cost of relatively sub-optimal inference performance.

o« VLLM is one of the state-of-the-art inference engines
widely employed by researchers and service providers,
which is characterized by its efficient GPU kernel for
attention operation and memory management optimization
for KVcache.

e TensorRT-LLM, the official LLM inference engine by
NVIDIA, contains highly optimized kernels tailored for
NVIDIA GPUs, and hence delivers outstanding inference
performance.

3) Models: We evaluate the performance of FlashDecod-
ing++Next with other LLM inference engines on two typical
LLM series: Llama3 series [4]] and Qwen1.5 series [36]. Since
different types of attention affect both computation and memory,
we choose LLMs that utilize GQA (Llama3 series) and MHA
(Qwenl.5 series), respectively. Table 2 shows the detailed
configuration of these models. Note that there may be several
models for one LLM series (e.g., Llama3-8B, Llama3-70B for
Llama3 series) with different configurations (e.g., number of
heads and layers).
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4) Metrics: To evaluate the end-to-end performance, we
choose the highest achievable throughput as the main metric.
The highest achievable throughput reflects both the computation
efficiency and the memory utilization of the system, and can
directly transfer to the cost. Moreover, we compare the speedup
and the memory usage under the same batch size to compare the
computation efficiency and the memory utilization, respectively.

B. Comparison with State-of-the-art

We compare FlashDecoding++Next with state-of-the-art
LLM inference engines in Fig. [IT] The highest achievable
throughput of each inference engine is recorded. FlashDe-
coding++Next outperforms all the baselines across different
models and different input lengths. On average, the highest
achievable throughput of FlashDecoding++Next is 1.25x and
1.46x higher compared to vVLLM and TensorRT-LLM, respec-
tively. Notably, FlashDecoding++Next delivers up to 68.88x
higher throughput than HF, with Llama3-70B and 16k input
length. TensorRT-LLM delivers a comparable performance
as VLLM and FlashDecoding++Next with Llama3 series but
becomes sub-optimal with Qwenl.5 series. We observe that the
enhancement of FlashDecoding++Next becomes significant
with larger models, as the increased memory requirement
during the generation process amplifies the effectiveness of the
proposed memory optimizations.

To comprehensively understand the advantage of FlashDe-
coding++Next, we show the detailed throughput numbers under
different batch sizes. As illustrated in Fig. [12] FlashDecod-
ing++Next and TensorRT-LLM achieve similar throughput
under the same batch size, but TensorRT-LLM tends to run
out of memory (OOM) with large batch sizes, thereby falling
short in obtaining higher throughput. FlashDecoding++Next
delivers a better computational efficiency than vLLM, leading
to a higher throughput under the same batch size. And
FlashDecoding++Next also shows a superior memory utiliza-
tion than vLLM, as vLLM runs OOM earlier with the Qwen1.5
series (lower throughput caused by preemption with Qwenl.5-
7B and no space for activations with Qwenl.5-72B). The
speedup of FlashDecoding++Next under the same batch size
benefits from the proposed operator-level optimizations, which
become diminished on larger models due to the increased
communication overhead across GPUs.

We further compare the throughput of FlashDecoding++Next
with baselines on AMD GPUs to demonstrate its adaptability,
as depicted in Fig. [I3] and Fig. [T4] The benchmarking models
include Llama2-7B, Llama2-13B [37]], and OPT-6.7B [38]]. Note
that the evaluated version of vLLM does not support AMD
RX7900XTXA GPUs. FlashDecoding++Next achieves up to
2.41x and 4.35x higher throughput compared with Hugging
Face on a single RX7900XTX and MI210 GPU, respectively.
Notably, the average speedup of FlashDecoding++Next com-
pared to vLLM is 1.86Xx.

C. Ablation Studies

1) End-to-End Throughput Breakdown: As shown in
Fig. [VI-CI] we detail the throughputs of the implementation
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Fig. 13. Speedup of the decode phase on AMD RX7900XTX.

without the memory optimization (w/o Memory in the Table)
and the implementation without both the memory optimization
and the flat GEMM optimization (w/o Memory, Flat GEMM
in the table). Notably, the memory optimization enables
FlashDecoding++Next to execute under 2x larger batch sizes,
leading to 1.11x and 1.14x higher achievable throughputs on
Qwenl.5-7B and Llama3-70B, respectively. The flat GEMM
optimization mainly benefits the inference under small batch
sizes, and improves the throughputs by up to 1.11x. Given a
fixed batch size, the application of the memory optimization
brings different impacts on different models. Specifically, the
memory optimization necessitates customized kernels for FFN
computation, which leads to either performance degradation
(e.g., Llama3-70B) or enhancement (e.g., Qwenl.5-7B) for
certain shapes.
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Fig. 14. Speedup of the decode phase on AMD MI210. There are blank bars
for vLLM because it doesn’t support sequence length over 2k for OPT-6.7B.

TABLE II
THROUGHPUT BREAKDOWN

Qwenl.5-7B
Batch size 1 8 16 32 64 104
Full 100.2  609.3 1076.2 14464  1946.6  2158.0
w/o Memory 99.6 59247 9853 1388.0  1811.1 OOM
w/o Memory, Flat GEMM ~ 92.5 582.6 969.6 1389.7 18122 OOM
Llama3-70B
Batch size 1 16 32 64 128 256
Full 352 466.4 856.1 1409.0  2123.8  2693.0
w/o Memory 34.0 464.8 895.4 1557.6 23555 OOM
w/o Memory, Flat GEMM  30.2 4554 888.8 1558.1 23614 OOM

2)

Asynchronous Softmax Computation:

Benefits. The asynchronous softmax scheme can be
applied to both the prefill phase and the decode phase.
We test the proposed scheme against the state-of-the-
art attention implementations in Fig. [I3] and Fig. [I§]
on NVIDIA GPUs. For the prefill phase, FlashDecod-
ing++Next achieves 1.52x and 1.19x average speedup
compared with xformers [39]] and FlashAttetion2. For
the decode phase, FlashDecoding++ outperforms the
decoding-tailored implementation of xformers (denoted as
xformers-decoder in Fig. [I6) with short KVcache length,
and achieves up to 2.02x speedup over FlashDecoding
with long KVcache length. We also evaluate the sparse
implementation of FlashDecoding++Next for the decode
phase. We adopt the MoA [31] setting that features a
50% average reduction of the KVcache length in decode
attention computation. As shown in Fig. [I7} the sparse
implementation of FlashDecoding++Next achieves 1.98 x
speedup over FlashDecoding on average.

Correctness. The absolute difference between the pro-
posed attention method and PyTorch is average 99.7%
< le-2, and all < le-1 (FlashAttention leads to 99.8%
< le-2 v.s. PyTorch). As mentioned in Sec. [l we
introduce a recomputation mechanism into the asyn-
chronous softmax, which automatically selects FlashAt-
tention for computation when the intermediate results
overflow. The frequency of recomputation is statistically
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(b)Tesla A100
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Fig. 16. Benefits of asynchronous softmax (decode phase).

obtained to be 0.45% on average across datasets including
ARC [40], HellaSwag [41] and Winogrande [42]. We
also compare the end-to-end generation results to verify
the feasibility of the asynchronous softmax technique.
Specifically, we collect the output token indices generated
from HuggingFace, vLLM, and FlashDecoding++Next,
and then compare the indices to those generated by the
official Llama implementation [43] on the ShareGPT
dataset. Experiments show that for 91.36%, 92.31%, and
91.55% of the input prompts, HuggingFace, vLLM, and
FlashDecoding++Next generate exactly the same output
tokens as the official Llama implementation, respectively.
Besides, for the mismatched cases, FlashDecoding++Next
also exhibits a similar distribution with HuggingFace and
vLLM regarding the total different tokens.

Adaptability. We extend our approach to models including
CodeLlama-7B [44] and Vicuna-7B [45], which are
fine-tuned on Llama2-7B [37] to be applied in specific
domains. For both models, the inputs to the softmax
operation are obtained through multiple datasets. 99%
of the softmax input in CodeLlama-7B ranges from -
0.25 to 17.6, while that of Vicuna-7B ranges from -0.8
to 9.8. Thus, the asynchronous softmax method is also
applicable to those fine-tuned models. The distribution is
significantly correlated with the model structure. Conse-
quently, applying the technique to novel structured models
necessitates recollection and analysis of the softmax input
data distribution.
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3) Flat GEMM Optimization:

o Benefits. We test our flat GEMM kernel performance
with the state-of-the-art GEMM library, cuBLAS on two
NVIDIA GPUs. The version of cuBLAS is CUDA 11.8.
We vary M from 1 to 16 to demonstrate the flat GEMM op-
eration in LLM inference, and eight [K, N configurations
used in typical LLMs are depicted in Figure The flat
GEMM optimization in FlashDecoding++Next achieves
an average of 7% and 17% (up to 52%) speedup on Tesla
A100 and RTX 3090, respectively. Libraries including
cuBLAS are designed for general purposes, hence not
the best for the flat GEMM practice. The speedup is
9% and 23% for small M (i.e., 1 and 2), showing
that the proposed flat GEMM optimization explores the
computation capability with small batch sizes.

o Adaptability.The usage of double buffering with large
size in N- dimension is limited by the shared memory (L1
cache) size of GPUs. The results in Figure [18| demonstrate
that the strategy works with both NVIDIA Tesla A100
GPUs (192KB L1 cache per SM) and NVIDIA RTX 3090
GPUs (128KB L1 cache per SM) thanks to the large
L1 data cache. But for AMD GPUs, double buffering
fails to benefit the flat GEMM performance due to a
limited L1 data cache (16KB per CU for AMD MI210).
Without double buffering, the flat GEMM optimization
performs badly in many cases. Note that on AMD GPUs,
flat GEMM still benefits from the implementation selection
method. The average speedups are 57% and 37% on AMD
MI210 GPUs and AMD RX7900XTX GPUs, respectively.

4) Buffer Reusing and Unified Management:

o Benefits. We compare the memory usage before and
after applying the proposed buffer reusing and unified
management optimizations. The results in Fig. [19] demon-
strate the efficacy of the optimizations, with an average
of 9.75% memory saving. Specifically, for Llama3-8B,

® w/o memory optimization @ w/ memory optimization
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Fig. 19. The memory usage comparison on a single A100 80GB GPU. Left:
Llama3-8B. Right: Qwenl.5-7B.

the proposed techniques save 17.18% memory usage on
average. The reason is that the application of GQA brings
a larger portion of memory to activations. The proposed
memory optimization improves the longest achievable
context length from 320k to 502k (1.57x), and from
110k to 128k (1.16x) for Llama3-8B and Qwen1.5-7B,
respectively.

o Adaptability. The buffer reusing and unified management
technique can be adapted to most mainstream LLMs, but
for the mixture-of-experts (MoE) models, the reusing
scheme necessitates adjustments considering that each
expert holds a separate activation. Therefore, the number
and size of buffers, along with the data dependency
analysis, need to be redesigned based on the number
of experts.

VII. RELATED WORKS

Large language model inference acceleration has gained
significant attention in recent research, with several notable
approaches and techniques emerging in the field. DeepSpeed
[12]] is a comprehensive engine that optimizes both the
training and inference phases for LLMs. It achieves robust
inference performance through kernel fusion and efficient GPU
memory management, with a particular focus on optimizing
memory usage for KVcache. vLLM [2] improves GPU memory
utilization by efficient memory management techniques and the
PageAttention method, leading to increased maximum batch
sizes and elevating the upper limit of inference performance.
FlashAttention [15], [16] optimizes the self-attention com-
putation process during the prefill phase through improved
parallelism and workload distribution. FlashDecoding [17] is
an extension of FlashAttention and enhances the parallelism
through splitting K and V, supporting efficient self-attention
computation for long sequences during the decode phase.
FasterTransformer [46] implements large model inference
engines using C++ to reduce overhead resulting from kernels
scheduling, compared to Python implementations. Those works
also employ memory management techniques and kernel fusion
to achieve efficient LLM inference. TensorRT-LLM |[3] is built
upon the TensorRT [47] and the FasterTransformer [46] engine
(C++) and incorporates cutting-edge open-source technologies
such as FlashAttention [15[], [16]. Additionally, it enhances its
ease of use by providing the Python API.
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VIII. CONCLUSION

We propose FlashDecoding++Next, a high-throughput Large
Language Model inference engine in this paper. Center-

ing

around computational efficiency and memory utiliza-

tion, FlashDecoding++Next contains three novel designs:

the

asynchronous softmax with unified maximum, the flat

GEMM optimization with double buffering, and the memory
optimization based on buffer reusing and unified manage-
ment. FlashDecoding++Next achieves up to 68.88x higher
throughput compared to the HuggingFace implementations.
FlashDecoding++Next also delivers an average of 1.25x and
1.46 < throughput improvement compared to the state-of-the-art
LLM inference engines, on various LLMs.
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