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Abstract— Convolutional neural networks (CNNs) are widely
used in computer vision and natural language processing. Field-
programmable gate arrays (FPGAs) are popular accelerators for
CNNs. However, if used in critical applications, the reliability
of FPGA-based CNNs becomes a priority because FPGAs are
prone to suffer soft errors. Traditional protection schemes, such
as triple modular redundancy (TMR), introduce a large overhead,
which is not acceptable in resource-limited platforms. This article
proposes to use an ensemble of weak CNNs to build a robust
classifier with low cost. To have a group of base CNNs with
low complexity and balanced similarity and diversity, residual
neural networks (ResNets) with different layers (20/32/44/56)
are combined in the ensemble system to replace a single strong
ResNet 110. In addition, a robust combiner is designed based on
the reliability evaluation of a single ResNet. Single ResNets with
different layers and different ensemble schemes are implemented
on the FPGA accelerator based on Xilinx Zynq 7000 SoC. The
reliability of the ensemble systems is evaluated based on a large-
scale fault injection platform and compared with that of the
TMR-protected ResNet 110 and ResNet 20. Experiment results
show that the proposed ensembles could effectively improve the
system reliability when suffering soft errors with an overhead
much lower than TMR.

Index Terms— Convolutional neural networks (CNNs), ensem-
ble, fault injection, field-programmable gate array (FPGA)
accelerator, soft error tolerance.
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I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) are one of
the most successful deep neural networks (DNNs) or

artificial intelligence (AI) classifiers. CNNs are widely used in
the fields of image or speech recognition, and several imple-
mentations are widely adopted, for example, VGGNet [1],
GoogLeNet [2], and residual neural network (ResNet) [3].
CNNs usually involve massive computations and memory
accesses and, thus, make heavy demands on the performance
and energy efficiency of the computing platform. Due to
the limitations on the energy efficiency of general-purpose
platforms (i.e., CPUs and GPUs), field-programmable gate
array (FPGA)-based CNN accelerators are becoming more
and more popular and have been widely studied to offer high
performance with low power consumption [4], [5]. To improve
the system flexibility, the implementation of SRAM-based
FPGAs (SRAM-FPGAs) is preferred due to their reconfigu-
ration capability.

The use of CNNs in safety-critical applications, e.g., auto-
motive or onboard processing (OBP) in space, poses several
challenges as reliability becomes a key requirement [6], [7].
Therefore, understanding the impact of errors on CNNs is an
important issue [8]. In particular, when the CNN is imple-
mented on an SRAM-FPGA, radiation-induced soft errors
become an important concern as they can affect both the user
and configuration memories [9]. In addition to degrading the
CNN performance, faults in data access and control logic
would also cause system exceptions, such as system stall
and early termination [10]. Therefore, CNN systems need
to be hardened for reliable execution when used in critical
applications.

The most popular error protection method is triple modular
redundancy (TMR) [11], [12]. One of its advantages is that
the application of TMR is independent of the logic under
protection, so it can be used to protect almost any module.
However, the problem of TMR is that it more than triples the
logic and power overhead, which may not be affordable for
systems that are resource-limited in terms of computation and
power, such as the embedded automotive systems or the OBP
platforms [13]. Another approach is to try to use the algorith-
mic properties of the circuit to detect/correct errors, which is
referred to as algorithm-based fault tolerance (ABFT) [14].
This strategy can reduce the overhead required to protect
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a circuit. As reported in [15], neural networks are more
resilient to computing errors compared to general applications,
so many fault-tolerant designs have been proposed to make
use of the characteristics of the neural networks. All these
works focus on the protection of core components in CNN,
e.g., the convolution calculation or weights stored in the
RAM.

Instead of performing ad hoc mitigation techniques for each
component of the CNN, this article proposes system-level
protection for the CNN by replacing a single strong CNN
with an ensemble of multiple weak CNNs so that all the
components of the network are protected at a cost lower than
TMR. The basic idea is that, when one or more of the weak
CNNs fails, the ensemble of other CNNs can still operate
reliably with little performance degradation. This can provide
effective protection from all kinds of faults that may cause a
base CNN to fail at a low cost. The basic idea has been initially
explored in our previous work [16] based on simulations with
a simple fault model. This article performs a full evaluation
of both the implementation complexity (resource usage and
processing time) and the reliability to understand the benefits
of using ensembles. In particular, the main contributions of
this article include the following.

1) Different ensemble schemes of ResNets and TMR-based
baseline systems are implemented on an accelerator with
advanced architecture on a single FPGA.

2) A robust combiner is designed to identify the faulty
base classifier experiencing accuracy degradation or
system exceptions and implemented in the FPGA-based
ensemble system.

3) The reliability of different ensemble schemes and the
robust combiner is evaluated based on fault injection
experiments, and the improvements in reliability and
resource efficiency are demonstrated by comparing with
the TMR-protected ResNets.

The rest of this article is organized as follows. Section II
introduces some preliminaries, including the effect of errors on
CNN accelerators, fault tolerance for CNN accelerators, and a
brief introduction of modern structures of FPGA-based CNN
accelerators. Section III first introduces the basics of ensemble
learning and the measurement of diversity between base learn-
ers and then emphasizes the differences for reliability-oriented
ensemble design. Section IV discusses the implementation
of the ensemble of multiple ResNets on an FPGA-based
accelerator and the design of a robust combiner. Section V
introduces the hardware fault injection experimental platform
and compares the performance of different ensemble systems
with that of a TMR-protected system in terms of reliability and
resource usage. Finally, this article is concluded in Section VI.

II. PRELIMINARIES

A. Faults on FPGA-Based CNN Accelerators

SRAM-FPGAs are sensitive to soft errors caused by cosmic
radiation, and the single event upset (SEU) is typically the
most frequent one [7], [9]. SEUs can corrupt both the configu-
ration memory and the user memories (including registers and
block RAMs) of SRAM-FPGAs [17], [18]. While errors on

user memory only corrupt the data stored, errors on the config-
uration memory can change the circuit function and can only
be corrected by reconfiguration. For CNN accelerators, the
user memories are used to store the parameters (e.g., weights
and bias) and feature maps, and all the processing modules
(e.g., convolution, pooling, and control) are determined by the
configuration memory.

Many works have studied the effect of faults on the para-
meters and feature maps. In [19], the reliability of CNNs with
four layers was evaluated with faults on weights. The results
show that CNNs with larger kernels are more robust. In [20],
the reliability of LeNet-5 was evaluated with noise on the
weights, and it was found that the layers that are closer to the
output layer are more vulnerable. Reagen et al. [21] reveal that
faults on weights and bias with an error rate lower than 10−4

would not degrade the accuracy, which is consistent with the
results in [22] for AlexNet. Ozen and Orailoglu [23] performed
a similar study for VGG16 and ResNet50 and showed that
faults on weights with an error rate less than 10−7 will not
degrade the accuracy, and the memories for feature maps are
50 times more tolerant to faults. In [8], the reliability of VGG
16, ResNet50, and InceptionV3 was evaluated with SEUs on
weights and biases. The results show that VGG16 is less robust
to the errors than the other two. Hoang et al. [24] also studied
the reliability against faults on the weight memory and showed
that the normalization layers and nonlinear activation operation
are effective to reduce the impact of the faults.

Several recent works studied the reliability of FPGA-based
CNN systems to faults on configuration memories based on
fault injection experiments. Lopes et al. [25] implemented a
simple NN with three layers based on SRAM-FPGA with
separate resources for each layer, and the fault injection exper-
iment results showed that soft errors on the last layer have a
larger impact on the result. Similarly, Libano et al. [26] studied
the reliability of FPGA-based CNN accelerators based on
radiation experiments and found that most errors are tolerable,
but errors on some layers may cause severe performance
degradation. Israel et al. [27] implemented a CNN for traffic
sign recognition based on SRAM-FPGA, and the experimental
results showed that SEUs on about 20% of the configuration
memories will cause wrong classifications. Libano et al. [28]
evaluated the impact of quantization on the reliability of
MINST CNN to SEUs on the configuration memories and
found that a design with quantized convolutional layers is
less sensitive to radiation, whereas the portion of errors
that are critical is increased. Libano et al. [29] studied the
impact of reduced data precision and degree of parallelism
on the reliability of CNNs through neutron beam experi-
ments. They concluded that the 8-bit integer design is much
more reliable than a 32-bit floating-point implementation, and
although larger parallelism increases radiation sensitivity, the
performance gains outweigh it in terms of global failure rate.
Xu et al. [10] performed a systematic evaluation of the FPGA-
based CNN accelerators to faults on configuration memory
based on fault injection experiments. Results showed that
the system exceptions caused by faults on memory access
logic and control unit dominate the reliability of the system.
It should be noted that the experiments in [29] also report
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system exceptions, but they only account for 10%∼20% of
the total cross section. Such difference can be explained by
the different accelerator architectures that are introduced in
Section II-C.

Based on the above investigation, it can be concluded that
SEUs on user memory have less impact on the CNN perfor-
mance, and their effect has been better studied. On other hand,
SEUs on configuration memory may cause severe problems,
including performance degradation and system exceptions,
but its effects on complex CNNs (especially on advanced
FPGA accelerator architectures) are not well understood. Thus,
in this article, we focus on the reliability evaluation and
improvement against SEUs on the configuration memory of
CNN accelerators.

B. Fault Tolerance for CNN Accelerators

This section provides a survey of fault tolerance for CNN
accelerators, and the general mitigation techniques for soft
errors are not included. Most of the related work can be
grouped into two categories. The first is to make use of
the parallel computation structure of the neural networks
and introduce hardware or time redundancy for fault toler-
ance. In [30], the convolution between inputs and weights is
rearranged into the form of matrix–matrix multiplication, and
an error correction method based on checksums of columns
and rows is applied to harden the matrix multiplications.
Similarly, in [31], the convolution in CNN accelerators is
modeled as a weight matrix and data vector multiplication,
and redundant weight rows are generated based on coding
for error detection and correction. Furthermore, Ozen and
Orailoglu [22] proposed to combine the spatial checksum
(redundant convolution kernel) and temporal checksum (redun-
dant input feature maps) to protect against errors on inputs and
computation for convolution layers. Zhao et al. [32] analyzed
the protection ability of different checksum techniques for
various convolution implementations and designed a work-
flow integrating all the techniques to obtain high protection.
Marty et al. [33] discussed the simplified implementation
of the checksum techniques in practical accelerators. The
second is to consider the effect of faults during the model
generation process. For example, Xu et al. [34] proposed
an on-accelerator retraining scheme so that the computation
error patterns are reflected in the model. Ning et al. [35]
adopted the neural architecture search method to find reliable
networks first and then apply a novel fault-tolerant training
approach to obtain both reliable and high-precision models.
Similarly, Zhang et al. [36] proposed to bypass faulty PEs
by pruning and then recover the model performance with
retraining. There are also some other works outside those two
categories. Reagen et al. [21] proposed to detect errors on
weights by double-sampling and to limit the error effect by
setting the faulty bits to the sign of the word. Li et al. [8]
and Marques et al. [37] proposed selective protections of the
higher bits of the feature map data or data path to reduce the
impact of soft errors. Libano et al. [26] proposed to selectively
protect the layers that are more vulnerable to errors by TMR.
Finally, Li et al. [38] proposed to detect the faults on LUTs

based on the predefined inputs during the free cycle of the
processing element (PE) in the accelerator.

Based on the previous discussion, we found that most of the
works focus on the faults on the convolution processing, either
corrupting the function or the weights. However, as will be
introduced in Section II-C, the CNN accelerator also consists
of other components. SEUs on them may also cause a severe
problem, e.g., system exceptions, but current solutions are not
effective against these faults. This article aims at proposing a
complete protection scheme at the system level so that faults
on all components can be tolerated.

C. FPGA Accelerator for CNNs

FPGA-based CNN accelerators can be divided into two
types [39]: streaming architectures (SAs) and single compu-
tation engines (SCEs). SAs directly map layers to different
resources of an FPGA to perform computations directly and
efficiently. The reliability evaluations in [25], [26], [28],
and [29] are based on such kind of accelerator. However, with
the rapid development of CNN algorithms, SCEs become more
and more popular [4], [5]. Different from SAs, SCEs apply
instruction-set architectures (ISAs) to reuse the same logic
for the processing of different layers. The CNN operations
are transformed into instructions that can be deployed on the
hardware accelerator by the software compiler [39]. In this
way, SCEs can easily handle different neural network archi-
tectures and parameters without reconfiguring the FPGA. The
work of Xu et al. [10] is based on such an accelerator. This
article applies the optimized version of the ISAs-based CNN
accelerator “Angel Eye” proposed in [4] for the implementa-
tion of base networks and the ensemble system. “Angel Eye”
is the initial prototype of Xilinx DPU [40], so the results in
this article would be applicable for CNNs based on DPU.

As shown in Fig. 1, the basic structure of the “Angel Eye”
accelerator is composed of the instruction dispatch module,
data mover, compute module, and memory pool. In this article,
all these modules are implemented on the programmable
logic (PL) part of the Zynq 7000 SoC XC7Z045, and the
processing system (PS or ARM) is used to provide the
addresses of instructions, weights/bias, and input images in
the DDR when the system starts. The instruction dispatch
module is responsible for instruction parsing, scheduling, and
dispatching. The LOAD and SAVE modules inside the data
mover are responsible for data transfer between DDR and the
on-chip memory pool. The compute module includes a CONV
module for the convolution operation in the convolution and
full connection layers, and an ALU module for nonconvolution
operations, such as pooling and activation functions. Relative
to the SA-based accelerator, the SCE architecture uses more
resources for noncompute operations, including data moving
and control. This explains why the SCE-based accelerator is
more likely to crash due to soft errors than the SA-based one.

Among these modules, the CONV module is the key com-
ponent that performs most of the computations and consumes
most the of FPGA resources. The CONV module utilizes
a PE array to realize parallel convolution operation in 3-D.
As shown in Fig. 2, the memory pool feeds the PE array with

Authorized licensed use limited to: Tsinghua University. Downloaded on February 25,2022 at 09:10:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Structure of the ISA-based FPGA CNN accelerator.

Fig. 2. Structure of the CONV module.

the inputs and weights, and P PEs process P input feature
maps in parallel along the height dimension. Inside each PE,
there are NOC channels to process NOC output channels, each
with NIC multipliers and an adder tree to process NIC multiply-
and-accumulations (MACs) in each cycle. Then, the outputs
are written back to the memory pool.

In this work, the Xilinx Zynq-7000 SoC is used for the
implementation, where the DSP48E2 block is used for MACs
in the PE. Each of such DSP contains a 27 × 18 multiplier,
which can implement two multiplications of two 8-bit integers.
For the case that input image data and weights are 8-bit
integers, the total parallelism of the CNN accelerator is 2∗ P ∗
NIC ∗ NOC. By adjusting the three parameters, we can achieve
different tradeoffs between the CNN computation performance
and the hardware resource utilization.

III. ENSEMBLE LEARNING-BASED CNN ARCHITECTURE

In this section, we first introduce the concept of ensemble
learning and then summarize some of the works that apply
ensembles to improve the classification accuracy of CNNs in
different fields. Finally, the basic idea to construct reliable
CNNs using ensembles is discussed.

A. Concept of Ensemble Learning

Ensemble learning builds a set of independent learners
and merges their results to improve task performance [41].
As shown in Fig. 3, an ensemble is formed by several learners
called base learners, which are generated from training data
by a base learning algorithm, which can be a decision tree,
a neural network, or any other kind of learning algorithm.
Ensemble methods may use a single base learning algorithm
or use multiple learning algorithms to produce homogeneous
or heterogeneous ensembles. The method used to combine
the results could be as simple as voting or averaging the
category scores in classification problems. Another option is

Fig. 3. Common ensemble architecture [41].

to use an additional learner that is trained to combine the base
learners [41]. The generalization capability of an ensemble is
often stronger than its base learners. In fact, ensemble methods
are of interest mostly because they can combine weak learners
that are only slightly better than a random guess to build strong
learners that are able to make accurate predictions. For the
case study in this article, the base learners in Fig. 3 are the
ResNets, the input x is images from CIFAR-10, and the result
y is the classified label.

B. Ensembles to Improve Accuracy of CNNs

Ensembles are widely used to improve the target detection
or classification accuracy of CNNs in different applications.
To have diverse base learners, different training data or differ-
ent network structures can be applied. For example, different
datasets are used to train the same network in [42] and [43].
In [42], to improve the classification accuracy of cancerous
tissue, images with different pixel offsets are used to train
the same CNN structure, leading to heterogeneous classifiers.
Similarly, different cross sections of a lung nodule are obtained
from multiple view angles, which are used to generate multiple
CNNs by training a common CNN structure [43]. In [44]
and [45], the same dataset is used to train CNNs with different
structures. In [44], AlexNet, GoogLeNet, and ResNet are
trained based on the same dataset to improve the food clas-
sification accuracy. In [45], age estimation is made based on
the ensemble of AgeNet, RaceNet, and GenderNet, which are
trained by the same image set. Furthermore, Ding and Tao [46]
and Pons and Masip [47] apply different data and CNN
structures simultaneously to improve the accuracy of face
recognition and facial expression classification, respectively.
In general, heterogeneous CNN structures are more effective
to produce diversity than using different datasets to train the
same network.

There are two common characteristics in the previous works
to improve classification accuracy when using an ensemble:
1) base networks are usually strong, and the complexity is
usually not the core consideration and 2) base networks are
expected to complement each other so that the ensemble
is able to obtain the correct result. A common method to
evaluate the ensemble diversity is to measure the pairwise
dissimilarity between two learners and then average all the
pairwise measurements for the overall evaluation. Given a
dataset with m data, the classification results of two base
classifiers can be summarized with four numbers a, b, c, and
d , which denotes the number of data that could be classified
correctly by both classifiers (++), the number of data that
could be classified by one classifier but not by the other one
(+ − or − +), and the number of data that both classifiers
cannot identify correctly (− −), respectively, and we will have
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a + b + c + d = m. Then, the disagreement (dis) between the
two classifiers can be measured as [41]

dis = (b + c)/m. (1)

For classifiers with similar performance, higher dis usually
implies higher ensemble performance.

C. Ensembles to Improve Reliability of CNNs

As discussed in the introduction, the focus of this article
is to explore the use of ensembles to improve the reliability
of CNNs with low overhead. As introduced in Section II-A,
the reliability for single CNNs is measured by the probability
of system exceptions and loss of accuracy when the soft error
occurs, while, for ensemble system, the reliability is measured
by the accuracy of the system when soft errors occur on the
configuration memory, causing performance degradation or
system exceptions on one or a few base networks. This idea is
inspired by three facts. First, radiation-induced soft errors have
a local effect [9] so that the error would only affect one base
network in most cases. Therefore, in an ensemble-based CNN,
if the combination method is carefully designed so that the
failing base networks can be excluded from the ensemble, the
system performance would not degrade much due to the soft
errors. Second, the ensemble of weak classifiers can achieve
the same or higher performance than a strong classifier due to
the diversity. Third, traditional TMR can be seen as a special
case of the ensemble, in which the three classifiers are the
same. In this case, the classification accuracy of the ensemble
keeps the same, but the reliability is improved because the
failure of any single module will not change the result. Based
on these facts, if we want to improve the reliability of a strong
CNN, instead of using a TMR system, we can alternatively
build an ensemble system by replacing the three modules in
the TMR system with three different simpler networks. Then,
it is possible to achieve an equivalent accuracy and reliability
as that of the TMR system due to the diversity of the base
learners and, at the same time, to have an overhead much
lower than TMR due to the low complexity of base learners.

There are two main differences between an accuracy-
oriented ensemble and a reliability-oriented one. First, the
accuracy-oriented design tends to have base networks as
diverse as possible (less overlap on the images that can
be correctly classified by each base network). In this case,
if one of the base networks fails (system exceptions or severe
performance degradation), the accuracy of the ensemble will
decrease significantly, while, for reliability-oriented ensem-
bles, some similarity is intentionally maintained between base
networks so that, when one base network fails, the other ones
can still achieve good accuracy. Since heterogeneous structures
have been proved to be more effective to generate diver-
sity [44]–[47], we propose to derive the base learners from the
same basic module but with some key parameters different so
that both diversity and similarity are inherently built among
base classifiers. This is the reason that ResNets with different
layers are selected as base classifiers in this work. Second, the
ensemble for reliability improvement expects base learners to
be simple so that the overall overhead can be lower than the

TMR of a strong CNN with the same accuracy. In general,
if both accuracy requirements and resource constraints are
met, a reliability-oriented ensemble prefers to combine more
and simpler base networks so that the failure of a single base
network has negligible influence on the system performance.
This principle is different from that for the ensemble to
improve accuracy.

IV. DESIGN AND IMPLEMENTATION OF ENSEMBLE CNNS

In this section, we will first introduce the models for
the base networks and their implementation on the FPGA
accelerator in Sections IV-A and IV-B, respectively, which
is the basis for the reliability evaluation of base ResNets
in Section V-B. Then, the design and implementation for a
robust combiner are covered in Section IV-C. On this basis,
the implementation of different ensemble systems and the
TMR-protected CNNs is introduced in Section IV-D, and the
resource usage and accuracy for each scheme is analyzed,
which builds the basis for the reliability evaluation of ensemble
CNNs in Section V-C.

A. Base Networks of ResNet With Different Layers

ResNets was proposed in 2015 to ease the training of deep
networks [3]. Since ResNet 152 is about eight times deeper
than VGG 16 but with lower complexity, it has been widely
applied for target classification in many applications. Based
on the design principle for reliability-oriented ensembles in
Section III-C, in this work, we try to replace a deep ResNet
(110) with an ensemble of multiple shallow ResNets with
different layers (20/32/44/56) to improve the reliability with
an overhead lower than the TMR of ResNet 110. Since base
networks are constructed with the same basic residual learning
module, and we train them with the same dataset, some degree
of similarity is built among these shallow ResNets. On the
other hand, different depths must bring to each ResNet differ-
ent feature extraction capabilities, which creates the diversity
that is necessary for the ensemble to achieve high accuracy.

The CIFAR-10 dataset is used in this work for model
training and performance evaluation of the base ResNets and
the ensemble system. This dataset includes 60 000 pictures
from ten categories, among which 50 000 pictures are used
for training (training set), and the other 10 000 are used
for the test (test set). The output of each ResNet on CIFAR
10 is a sequence with ten scores, and a higher score means
a higher probability that the current input image belongs to
the corresponding category. For the ensemble of multiple base
learners in the fault-free case, the combiner can simply average
the scores from the base learners and choose the category with
the highest average score as the classification result, which is
represented as a label between 0 and 9. Since our tests show
that the accuracy by testing 4000 images is very close to that
using 10 000 images, we use 4000 images for accuracy testing
in the experiments to reduce the time needed.

For the training of different ResNets, the weight decay and
momentum are set to be 0.0001 and 0.9, respectively, as in [3],
and the learning rate starts from 0.1 and is divided by 10 at
32k and 48k iterations. The weight initialization and batch
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TABLE I

RESOURCE CONSUMPTION OF DIFFERENT RESNETS (CIFAR-10)

normalization are the same as in [3] and [36]. The simple data
augmentation proposed in [37] is applied, and the minibatch
size is set to be 128.

B. Implementation of Base ResNets

After the fixed-point operation of the model parameters,
the trained base ResNets could be easily implemented on the
ISA-based FPGA accelerator by generating the corresponding
instructions. Since the processing time and resource usage of
the implemented CNN are determined by the parallelism of the
accelerator, to make a fair comparison between the ensemble
CNNs and the TMR-protected ones, the base ResNets in
the ensemble system (20/32/44/56) are implemented with
512 parallelisms, and ResNet 110 is implemented with 2048
parallelism. As will be introduced later, this configuration can
guarantee a similar processing time for the ensemble CNN
and ResNet 110 so that we can focus on the comparison in
terms of resource usage and reliability. For the 512-parallelism
accelerator, four PEs run in parallel (P = 4), and 32 DSPs are
used in each PE to produce results for eight output channels
(NOC = 8) simultaneously based on eight input channels
(NIC = 8), while, for the 2048 parallelism, the number of PEs
is the same (P = 4), but 128 DSPs are used in each PE to pro-
duce results for 16 output channels (NOC = 16) simultaneously
based on 16 input channels (NIC = 16). All the base ResNets
and the hardened system are implemented using Verilog in
Vivado 2018.2 and mapped on the PL part of the Zynq SoC
XC7Z045 for performance and reliability evaluation. When
the system starts, 4000 images are first downloaded from the
SD card into DDR, and then, the data mover will read in the
images one by one for classification. Finally, the classification
results are stored in DDR for accuracy analysis.

The resource usage and processing time (for one image)
for each ResNet are listed in Table I, in which the total
available resources of the target circuit are also provided in
the first column. As we can see, the usages of LUTs, DSPs,
registers, and BRAMs of the 2048-parallelism accelerator are
about 1.7×, 4×, 1.8×, and 2.5× of that of 512-parallelism
accelerator. DSPs are the key computation resource that deter-
mines the parallelism and the speed of the accelerator, and
all of them are used in the CONV module. In addition,
the processing time of the 512-parallelism accelerator for
one 32 × 32 × 3 image in CIFAR-10 is almost linearly
proportional to the number of layers of ResNet, which implies
that the throughput of the PE array is the bottleneck of the
accelerator. On the other hand, for ResNet 110 (2× layers
relative to ResNet 56) on 2048-parallelism accelerator (4×
PE parallelism), the processing time for one image is about
1.06× of that of ResNet 56 on 512-parallelism accelerator,

TABLE II

ACCURACY OF DIFFERENT RESNETS (CIFAR-10)

which implies that the bottleneck of the accelerator shifts from
the PE array to the data mover.

The accuracy of the single ResNet is listed in Table II.
As we can see, the accuracy of ResNet 20 is 90.7%,
which increases for deeper ResNets, and achieves 92.67% for
ResNet 110. These results are consistent with those reported
in [3].

C. Design and Implementation of Robust Combiner

As investigated in [10], faults on the configuration memory
of each base ResNet can cause both accuracy loss and system
exceptions (mainly time out and early termination). The former
is mainly caused by faults on PEs and the network that
connects the array of PEs, and the latter is mainly caused
by faults on the control module, data mover, and instructions
logic. Thus, the combiner should be able to identify the
faulty base learner in both cases and remove it from the
final ensemble. In addition, as the reliability bottleneck of
the ensemble system, the combiner should be able to tolerate
errors.

The implementation structure for a combiner for three base
ResNets is shown in Fig. 4. In the dashed box, the scores for
ten categories from three base ResNets (S1, S2, and S3) are
input sequentially, and the scores for the same category are
summed. Then, the index for the maximum sum score is taken
as the final result. The parts outside of the dashed box are for
fault tolerance. For the system exceptions, a cycle counter-
based timer (T1, T2, or T3) is used to determine whether
the output enable signal of each base ResNet (EN1, EN2,
or EN3) is set in the normal time window. The processing time
variance for each base ResNet is measured by experiments
in advance. When one output enable signal is read outside
of the normal time window, a system exception is reported,
and the corresponding scores would be removed from the
score averaging. On the other hand, to identify the faulty base
ResNet producing wrong scores (faults on PE), the decision
of each base ResNet is compared with the ensemble result,
and a counter (C1, C2, or C3) would increase by 1 for
each consecutive mismatch. When a counter is larger than a
threshold CT , the score from the corresponding network is not
used for score averaging. In the current implementation, CT

is set to be 4 based on the analysis of consecutive mismatches
of faulty base ResNet presented in Section V-B.

The reliability of the combiner logic is tested using the
fault injection platform introduced in Section V-A. As will
be seen later in Section V-C (see Fig. 12), most of the faults
will not affect the operation of the combiner, and about 20%
of SEUs on the critical bits will dramatically degrade the
ensemble accuracy below 40% (severe bits). This is reasonable
because 80% of the logic (outside of the dashed box) in the
combiner is used to identify the single faulty classifier. A fault
on these parts may wrongly remove a score from the sum so
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Fig. 4. Functional structure of the basic combiner.

Fig. 5. Protected combiner with a DWC structure.

that the result is determined by the ensemble of the other
two classifiers, which will only introduce a small accuracy
degradation. Among the 20% severe bits, most of them are on
the control logic that generates the reset and start signals so
that both the output label and sum score are fixed to the initial
value (0). In addition, the failure of the max operation in the
dashed box may cause all the base classifiers to be detected as
faulty, which will also cause zero-sum score and label. Both
cases will cause an accuracy of around 10% (noting that label
0 represents the first category), which accounts for about 96%
of the 20% severe bits, as shown in Fig. 12. The other 4%
severe bits resulting in a classification accuracy of less than
40% come from the state machine of the sum operation in the
dashed box. This module selects the scores from the normal
classifiers to sum based on the detection results, so faults on
this module would cause random selective addition of the input
scores. A common characteristic for all the critical bits that
change the output label is that the sum score is smaller than the
expected value in the fault-free case. Based on this property,
a duplicate with comparison (DWC) structure is proposed to
improve the reliability of the combiner, as shown in Fig. 5.
Each combiner will output the classified label (L) and the
corresponding sum score (S). Then, the final block will first
compare the two labels. If the two labels are different, the one
with a higher score will be selected. Both the single combiner
and the DWC-protected one are implemented on the PL part
of Zynq 7000 SoC, and their resource usage is compared
in Table III. As we can see, the DWC-protected combiner
consumes a little bit more than twice the resources of the basic
combiner, and the additional nine LUTs and four registers are
from the final Compare & Select module. Compared with
the main body of the ensemble CNN (see Table IV), the
resource usage of the DWC-protected combiner is negligible.
The reliability of the protected combiner will be evaluated in
Section V-C.

TABLE III

RESOURCE CONSUMPTIONS OF THE COMBINER

Fig. 6. Structure of ensemble system with multiple CNNs and combiner.

It should be noted that, similar to other DWC schemes,
false detection may occur when faults occur on the “Compare
& Select” circuitry [48], [49]. However, this only results in
an unnecessary repair of one copy of the combiner and has
no influence on the ensemble accuracy (as will be shown in
Fig. 12). In addition, since only two comparators are used in
the final module, the probability of false detection would be
very low in practice.

D. Implementation of Ensemble ResNets

The ensemble of three or four base ResNets (including
the combiner) was implemented on the PL part of a single
Zynq 7000 SoC XC7Z045, and the structure is shown in Fig. 6.
The data mover for data/weights and instructions is connected
to the DDR memory through the AXI bus. The AXI bus
in XC7Z045 supports two general-purpose interfaces (GPIs)
and four high-performance interfaces (HPIs). Each accelerator
is assigned an HPI for access data and weights, and two
accelerators will share one GPI to read instructions from DDR.
To decrease the impact of interface sharing in the accelerator
throughput, ResNet 32 and ResNet 44 will share one GPI,
and ResNet 20 and ResNet 56 will share the other one for
the ensemble of four base learners. For the case that three
base ResNets are combined, the two with fewer layers will
share one AXI interface, and the one with most layers will
use the other one by itself. We generated the instructions for
different CNN tasks and assigned separate regions of DDR
memory for each accelerator for data, weights, and instruction
files. Then, each accelerator can access DDR for data/weights
and instructions without interfering with each other. In the
following experiments, the TMR-protected ResNet 20 is also
implemented based on this structure for comparison. For TMR
of ResNet 110, since the DSP usage exceeds the available
DSPs in Zynq XC70Z45, it is only partially implemented with
a single module and the voter, where the other two inputs
of the voter are fed with the outputs of ResNet 110 in the
fault-free case. Such implementation does not influence the
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TABLE IV

RESOURCE USAGE OF DIFFERENT ENSEMBLES

TABLE V

ACCURACY OF DIFFERENT ENSEMBLE SCHEMES (CIFAR-10)

TABLE VI

DIVERSITY COMPARISON FOR ENSEMBLES ① AND ②

reliability evaluation of the TMR of ResNet 110 because
the reliability of the three modules is the same.

The processing time (for one image) and the resource usage
of the ensemble system with three or four base ResNets are
listed in Table IV, in which those for single ResNet 110 and
the two reference systems (TMR-protected ResNets 110 and
20) are also provided for comparison. As we can see, the
processing times of ensemble systems and ResNet 110 are
similar. For the ensemble system with three base ResNets, the
usages of the LUTs and registers are about 1.7 times that of
ResNet 110, and the usage of DSPs and BRAMs are 0.75 and
1.19 times of that of ResNet 110, respectively. Even for the
case of four base ResNets combined, the overall resource
usage is still much less than the TMR-protected ResNet 110.
On the other hand, the accuracy of all the ensemble schemes
and the reference systems on CIFAR-10 are listed in Table V.
As we can see, all ensembles achieve an accuracy of around
94%, which is higher than that of ResNet 110 and the TMR-
protected systems. Although the overhead of TMR of ResNet
20 is a little bit lower than that of the ensemble system with
three ResNets due to a simpler combiner, the ensemble system
outperforms the TMR of ResNet 20 by more than 3%. These
results imply that the diversity within the ensemble system
effectively improves the resource efficiency, which is seen in
a lower resource usage relative to TMR of ResNet 110 or
much higher accuracy relative to TMR of ResNet 20. Thus,
it is promising to apply an ensemble of CNNs to achieve both
better accuracy and improved reliability simultaneously with
high resource efficiency.

As introduced in Section III-C, the performance of the
ensemble scheme is determined by both the accuracy of
base ResNets and the diversity among them. From Table V,
we can identify two counterintuitive phenomena. One is that
the ensemble scheme ① (20+32+44) outperforms scheme ②

(20+32+56) and scheme ③ (20+44+56). The other is that
the ensemble scheme ④ (32+44+56) outperforms scheme
⑤ (20+32+44+56). These phenomena can be explained

TABLE VII

DIVERSITY COMPARISON FOR ENSEMBLES ① AND ③

TABLE VIII

DIVERSITY COMPARISON FOR ENSEMBLES ④ AND ⑤

Fig. 7. Fault injection platform for CNN reliability evaluation.

Fig. 8. Fault injection platform with 20 XC7Z045 boards.

based on the diversity values listed in Tables VI–VIII,
respectively. For example, Table VI compares the diversity
between (20+32) and 44 and that between (20+32) and 56.
Although ResNet 56 is a little bit stronger than ResNet 44,
its complementarity to (20+32) is weaker than that from
ResNet 44. Similarly, from Table VII, we can see that the
complementarity of ResNet 32 to (20 + 44) is stronger than
that of ResNet 56. Finally, adding ResNet 20 degrades the
performance of ensemble (32+44+56) because the diversity
between (32+44) and (20+56) is smaller than that between
(32+44) and 56 based on Table VIII.

V. RELIABILITY EVALUATION OF ENSEMBLE CNNS

In this section, we first introduce the function and structure
of the fault injection platform in Section V-A. Then, the
reliability of single base ResNet is evaluated in Section V-B,
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which provides a reference for the reliability improvement
by the ensemble and the threshold setting in the combiner.
Finally, the reliability of the ensemble CNNs is evaluated in
Section V-C, and compared with the TMR-protected ResNet
110 and 20 to show the advantage of the proposed schemes.

A. Fault Injection Platform

To evaluate the reliability of the original ResNets and the
ensemble of base ResNets, SEUs have been injected using
an adapted version of the fault injection tool in [50] and
implemented on Xilinx Zynq 7000 SoC (XC7Z045). As shown
in Fig. 7, the injection platform consists of the PS and PL
parts. The PS consists of the ARM Cortex-A9 processor
and dedicated controllers for different peripherals, e.g., DDR
memory controller, SD controller, and UART controller. The
DDR is used to store the list of the configuration bits that are
related to the design under test (DUT) (essential bits) and the
feature maps of all layers for the fault-free accelerator on a
reference image. The former is generated during the compile
time in Vivado and is used by the injection algorithm for
the reliability evaluation of the DUT. The latter is used to
identify the essential bits that will affect the CNN functionality
(critical bits). In our case, the DUT can be a single ResNet
or the ensemble system. The SD controller is responsible for
reading configuration files and images from the SD card, and
the UART module is used to display the progress of the fault
injection experiments on the PC. The PL part consists of the
DUT and a synchronizer block. The latter is responsible for
controlling the clock to DUT. Furthermore, the DUT reads
images from the DDR and stores the processing results back
to the DDR, which are then moved to the SD card when the
experiments finish. Another important module housed by the
PL part is the internal configuration access port (ICAP), which
allows the ARM processor to access the configuration memory
related to the DUT and modify it in run time for error injection
or removal. The modules in the PL region are connected to
the PS region through AXI buses.

The ARM processor runs the software that controls the fault
injection process. The fault injection starts by freezing the
clock to the DUT in the PL part through the synchronizer
module. This is followed by reading back the target bit from a
frame of the configuration memory through the ICAP port. The
address of the configuration memory bits for fault injection
is extracted from the fault list stored in DDR memory. The
readback values are corrupted by inserting a bit flip for SEU
emulation and written back. This is followed by resuming the
design’s clock. Since a fault on some configuration bits may
not affect the neural network processing, the fault injection
experiments are divided into two phases. The first phase is to
locate all the essential bits that will affect the functionality of
the CNN system. After fault injection on each of the essential
bits, we compare the feature maps of all layers with those
from the fault-free accelerator for the reference image. Then,
the bit positions for which faults will introduce differences
to the feature maps are identified as critical bits. The second
phase is to test the accuracy loss caused by the SEU on each
critical bit. For fault injection on each critical bit, the DUT will

process 4000 images in the test set, and the classified labels
for all images are finally copied from the SD card to the PC.
The PC will then calculate the accuracy for that critical bit by
comparing the received labels with the expected ones.

As we will see later, the most time-consuming part is to
identify the critical bits from the millions of essential bits
and test the classification accuracy of the single ResNet or
the ensemble system with faults on each critical bit. This
process may take more than three years with a single board.
To speed up the experiments, we built a large-scale fault
injection platform with 20 Zynq XC7Z045 boards. All the
boards run in parallel, and each board is responsible for part of
the fault bits in the list. In addition, the accuracy is tested using
4000 images from the test set of CIFAR-10. With this system,
the total testing time was decreased to two months. The fault
injection platform is shown in Fig. 8, where all the boards are
connected to the PC through UART hubs for monitoring of
the progress.

B. Reliability Evaluation of Base ResNets

To demonstrate the reliability improvement of the ensemble-
based CNNs, we first evaluate the reliability of a single ResNet
with different layers. Since the fault model for system excep-
tions is clearly known as time out or early termination based
on [10], but there is no available fault model for accuracy
degradation caused by SEUs on the PE array, we focus on
the accuracy degradation by faults on configuration bits of PE
array in this part.

The numbers of essential bits for a PE in 512- and
2048-parallelism accelerators are 355 349 and 1 158 600,
respectively. Then, based on the method introduced in
Section V-A, we obtained the critical bits for each ResNet.
As we can see from Table IX, only SEUs on about 31% of
the essential bits would affect the operation of the accelerator,
and this portion is almost the same for ResNet with different
layers. This means over 2/3 of the SEUs on the essential
bits are tolerable to the accelerator. Then, the classification
accuracy for each of the critical bits was tested, and the
probability density function (pdf) curves are shown in Fig. 9.
As we can see, for ResNets 20, 32, 44, and 56 on the
512-parallelism accelerator, about 70% of the critical bits
will not degrade the classification accuracy much (accuracy
> 85%), and only less than 13% of the critical bits would
cause poor results (accuracy < 15%). However, for ResNet
110, on the 2048-parallelism accelerator, 80% of the critical
bits will not cause obvious accuracy loss, and ones that will
seriously degrade the classification performance decrease to
4.5%. This means that the accelerator with larger parallelism
is more reliable to SEUs on the configuration memory. This
can be explained by the fact that, in a less parallelized system,
a PE would be involved in the calculation for more outputs in
each layer. Therefore, a fault on it will have a larger impact.
It is interesting to notice that this conclusion is consistent with
the impact of parallelism for SA-based FPGA accelerator for
MINST CNN in [29].

Furthermore, to provide a reference for the design of the
combiner, the number of consecutive wrong results (Ncw) of
a single ResNet with SEU on PE is studied taking ResNet 20
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TABLE IX

CRITICAL BITS FOR ONE PE IN THE ACCELERATOR

Fig. 9. PDF of accuracy for ResNets with faults on critical bits.

Fig. 10. Consecutive wrong results for different accuracies (ResNet 20).

as the example. The blue histogram in Fig. 10 shows the
number of groups of more than three consecutive wrong results
(Ncw > 3) for different accuracy degradation, and the red curve
represents the average length of the consecutive wrong results.
As we can see, the average Ncw decreases for higher accuracy,
and the case of Ncw > 3 does not exist for an accuracy of 90%.
Based on these results, we set the Ncw threshold as 4 (CT = 4)
in the combiner to detect base ResNet with fault on PE.

Fig. 11. PDF of accuracy for ensemble systems with faults on PE.

C. Reliability Evaluation of Ensemble ResNets

In this section, we first evaluate the reliability of different
ensemble systems with faults on the PE array. Then, the
reliability with faults causing system exceptions is discussed.
Finally, the reliability of the DWC-protected combiner is
evaluated.

1) Reliability With SEUs on PEs in a Single ResNet: Based
on the system implementation introduced in Section IV-D, the
accuracy of different ensemble schemes and TMR-protected
systems with an SEU on the PE of one of the base ResNet
is evaluated. For each ensemble scheme, we inject SEUs on
the critical bits for each of the base ResNet and calculate
the accuracy for SEU on each critical bit by comparing the
output labels of the combiner with the expected ones. Then,
the pdf of the accuracy for each ensemble scheme is plotted in
Fig. 11. The SEUs on single PE do not degrade the accuracy
of TMR-protected ResNet 110, and the result is marked with
a red line at 92.67%. As we can see, the accuracy of the
ensemble system is always over 90% for SEUs on almost all
the critical bits. Compared with the last subfigure in Fig. 9,
the reliability of the ensemble system is much higher than
that of ResNet 110 for SEUs on PEs. This is expected because
the critical bits that cause serious performance degradation are
very likely to produce consecutive wrong outputs, so the faulty
base ResNet can be identified by the combiner and removed
from the ensemble. Further analysis of the pdf of the accuracy
for each ensemble scheme shows that the percentages of times
that the ensemble system outperforms the TMR of ResNet
110 are 97.2%, 96%, 97.7%, 96.6%, and 99.8% for schemes
①∼⑤, respectively. This implies that the reliability of the
ensemble-based ResNet is even higher than the TMR-protected
ResNet 110.

2) Reliability With System Exceptions of Single ResNet: The
system exceptions mainly include time out and early termina-
tion, which directly causes system failure for a single ResNet
without producing normal outputs [10]. The two effects can be
easily emulated by stopping the clock or enabling the output

Authorized licensed use limited to: Tsinghua University. Downloaded on February 25,2022 at 09:10:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GAO et al.: SOFT ERROR-TOLERANT CONVOLUTIONAL NEURAL NETWORKS ON FPGAs 11

TABLE X

ACCURACY OF ENSEMBLE SCHEMES WITH SINGLE RESNET FAILURE

Fig. 12. Histogram of accuracy for unprotected and protected combiners.

validation signal for one base ResNet, respectively. In the test,
time out and early termination are emulated for each base
ResNet in an ensemble system, and the accuracy is evaluated
by comparing the output labels with the expected ones. Then,
the accuracy for the failure of each base ResNet in an ensemble
system is averaged, as shown in Table X, in which the results
for two reference systems are also provided for comparison.
As we can see, the ensemble system achieves accuracy higher
than 93% with a single base ResNet failure, which obviously
outperforms the TMR-protected ResNets.

3) Faults on the Combiner: The reliability of the ensemble
system could be compromised by the final combiner. In this
part, the reliability of the basic combiner (see Fig. 4), and the
DWC-protected one is evaluated for the ensemble of ResNets
20, 32, and 44. In the test, the input of the combiner includes
the score vectors from three base ResNets for 4000 images.
For the SEU on each essential bit of the combiner, 4000 output
labels are recorded. If one of them is different from the output
of a fault-free combiner, the essential bit would be recognized
as critical. Based on the .ebd file generated by Vivado, the
number of essential bits for the basic combiner is 27 385. Fault
injection experiments show that 84.4% of the SEUs would
not affect the normal operation of the basic combiner, and
4255 essential bits are identified as critical. The histogram
bar chart of the accuracy for these critical bits is plotted in
the first subfigure in Fig. 12. As we can see, SEUs on 20%
of the critical bits will reduce the accuracy of the ensemble
system to less than 40%. However, with the proposed DWC
approach, the faulty copy can be identified 100% of the time,
and the accuracy of the final decisions is that of the ensemble
of ResNets 20, 32, and 44 in the fault-free case (94% as
shown in the second subfigure in Fig. 12). This proves that
the reliability of the combiner is effectively improved.

As a summary, the experimental results show that the use of
the proposed ensemble of CNNs architecture on SCE FPGA

accelerators can dramatically increase the reliability with an
overhead much lower than TMR. Therefore, the proposed
scheme is an attractive option to implement CNNs for safety-
critical applications.

VI. CONCLUSION AND FUTURE WORK

The reliability of FPGA-based CNN accelerators is an
important problem in critical environments. In this article,
we proposed to replace a strong CNN with an ensemble
of multiple weak CNNs to improve the reliability of the
system. In particular, we choose ResNets with different lay-
ers as base CNNs and design a combiner to merge their
results. In addition, a DWC structure is proposed to fur-
ther enhance the reliability of the combiner. ResNets with
different layers (20/32/44/56), different ensemble schemes,
and TMR-protected ResNets are implemented on a modern
ISA-based FPGA accelerator on Xilinx Zynq 7000 SoC.
A large-scale hardware fault injection platform was built to test
the reliability of base ResNet and the protected one with TMR
or ensemble schemes. For base ResNets, experimental results
show that most of the errors on the configuration memory
could be tolerated by the network itself, but there are still
errors on 12%∼13% of the critical bits that could dramati-
cally degrade the system performance (accuracy around 10%).
Instead, the experimental results for the proposed ensemble
CNN show that the effect of a faulty base ResNet could be
removed so that the system performance with a single faulty
ResNet is higher than that of the TMR-protected ResNet 110.
In addition, the resource usage of the ensemble system could
be less than twice that of ResNet 110, which is much lower
than the TMR-protected system. This proves the effectiveness
of applying ensembles to improve the reliability of CNN
accelerators with low cost and allows the designer to select
among the different schemes to meet the resource usage,
classification accuracy, and reliability requirements.

During the case study of the ensemble of ResNets, we found
that some ensemble cases can achieve higher accuracy with
lower resource usage. Therefore, an important question comes
out, that is, whether it is possible to construct an optimal
ensemble without training and testing all the possible cases.
Our future work will try to answer this question. First, many
deep learning solutions have been proposed to predict CNN
accuracy based on its topology. Now, we are trying to extend
the method to predict the diversity between different CNNs
based on their topologies. Then, we can predict the accuracy of
the ensemble system based on the prediction of the accuracy of
each base CNN and the diversity between them. On this basis,
we plan to apply the FT-NAS technique that we just proposed
in [35] to find the optimal topologies of the base networks and
build the optimal ensemble of CNNs under specific resource
constraints.
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