
How Do Errors Impact NN Accuracy on Non-Ideal Analog
PIM? Fast Evaluation via an Error-Injected Robustness Metric

Lidong Guo1*, Zhenhua Zhu1*†, Qiushi Lin1, Yuan Xie2, Huazhong Yang1, Wangyang Fu1†, Yu Wang1†

1Tsinghua University, Beijing, China 2HKUST, Hong Kong, China
*Both authors contributed equally to this research.

†Corresponding authors: {zhuzhenhua, fwy2018, yu-wang}@tsinghua.edu.cn

Abstract—The emerging analog Processing-in-Memory (PIM)
architectures have shown great potential to overcome the memory
wall problem and accelerate neural network (NN) inference.
However, different from digital architectures, the computation
accuracy of analog PIM architectures is directly impacted by
various errors, which are related to both software and hardware
parameters. Existing PIM simulators mainly adopt the bit-and-
crossbar slicing paradigm to evaluate the accuracy under various
errors. Each MVM operation is performed bit by bit and crossbar
by crossbar, which is extremely time-consuming, especially for
models with a larger number of parameters, such as large
language models (LLMs).

In this work, we propose an error-injected robustness metric,
unifying various errors into the weight dimension and facilitating
joint error analysis. Based on the error-injected robustness
metric, we propose a Non-Ideal PIM Accuracy (NIPA) evaluation
model for relative accuracy evaluation, considering the coupling
effect (i.e., various errors can be affected by the same factor)
among various errors using NN’s prior information. We further
propose a non-slicing absolute accuracy evaluation method,
eliminating the need for the time-consuming bit-and-crossbar
slicing process. Extensive experiments on CNNs and LLMs
validate that the proposed NIPA evaluation model achieves high
correlations of up to 0.91 with the absolute accuracy evaluated
by DNN+NeuroSim. At the same time, compared to existing bit-
and-crossbar slicing evaluation methods, the proposed non-slicing
absolute accuracy evaluation method achieves up to 105.8×
speedup with average evaluation errors as low as 0.29%.

Index Terms—non-volatile memory device, non-ideal factor,
processing-in-memory, accuracy evaluation

I. INTRODUCTION

Neural networks (NN) have shown remarkable performance
in various fields [1]–[3]. However, as the number of NN
parameters continues to grow, traditional von Neumann ar-
chitectures (e.g., CPU and GPU) encounter the memory wall
problem. During NN inference, massive data moves between
separate memory storage and computing processors, resulting
in high power consumption and long latency.

The emerging analog Processing-In-Memory (PIM) archi-
tectures based on non-volatile memory (NVM) devices have
shown the potential to eliminate data movements and improve
hardware performance. However, due to its in-situ matrix-
vector multiplication (MVM) in the analog domain, the com-
putation accuracy is directly impacted by various errors, in-
cluding weight quantization error, analog-to-digital conversion
error, and device error, which are tightly coupled and closely
related to both software and hardware parameters.

To evaluate the impact of various errors on the accuracy
of analog PIM architectures, existing PIM simulators includ-

Original Algorithmic Inference Bit-and-Crossbar Slicing InferenceOurs

NIPA NIPA NIPA NIPA

Rel. Accuracy Evaluation
Negligible Overhead

73.9x

208.6x
(theoretical) 202.9x

(theoretical)

105.8x

1: Crossbar slicing

𝐰𝟏𝟏𝐰𝟏𝟐𝐰𝟏𝟑

𝐰𝟐𝟏𝐰𝟐𝟐𝐰𝟐𝟑

𝐰𝟑𝟏𝐰𝟑𝟐𝐰𝟑𝟑

...

...

...

Pre-trained
weight matrix

1 -1 0

0 0 -1

1 0 0

Post-quantized
weight matrix

1st bit

0 1 -1

1 0 -1

-1 0 -1

0 0 -1

-1 -1 1

0 1 12th bit

-1 0 1

0 1 0

1 0 -13th bit

4th bit ...
2: Bit slicing

...

(a)

(b)

Fig. 1: Simulating NN inference through bit-and-crossbar
slicing incurs intolerable evaluation overhead.

ing DNN+NeuroSim [4], MNSIM 2.0 [5], DL-RSIM [6],
Swordfish [7], Geniex [8], etc., [9]–[16] mainly adopt the bit-
and-crossbar slicing paradigm to inject various errors during
NN inference process. Specifically, depending on the chosen
weight bit-width and crossbar size, a weight matrix needs to be
split into multiple matrices along the bit dimension and sliced
into smaller matrices to fit the crossbar size. Then, each MVM
operation in the neural network is then performed bit by bit and
crossbar by crossbar, with device conductance variation and
ADC conversion error injected. Based on the above simulation
paradigm, the absolute accuracy of the neural network on ana-
log PIM architectures can be accurately evaluated, facilitating
the analysis of various errors’ impacts on accuracy [17] and
further optimization of algorithmic performance on the analog
PIM architectures [9], [18]–[22].

Although such an accuracy evaluation scheme is consis-
tent with how the analog PIM architectures actually perform
the calculation, it requires more MVM operations than the
algorithmic inference process, incurring additional evaluation
overhead. As shown in Fig. 1, simulated through the bit-
and-crossbar-slicing scheme, the simulation latency increases
more than 100 times. As the number of model parameters or
dataset size grows, the accuracy evaluation overhead becomes
intolerable (e.g., >10,000 seconds for an end-to-end accuracy
evaluation process). Furthermore, compared to the separate
analysis for each type of error, it is more challenging to

TABLE I: Comparison of typical non-ideal PIM accuracy evaluation methods.
Abs. Acc Rel. Acc Coupling Effect Error-injected Dim. Models Non-ideal Factors

DNN+NeuroSim [4] Slow é Strong Device/Psum-level CNN Quant./ADC/Device∗
MNSIM2.0 [5] Slow é Strong Device/Psum-level CNN Quant./ADC/Device∗
DL-RSIM [6] Slow é Weak Psum-level CNN Quant./Device∗
Geniex [8] Slow é Strong Device/Psum-level CNN Quant./ADC/Xbar
PytorX [9] Slow é Weak Device-level CNN Crossbar/Device∗
MICSim [10] Slow é Weak Device/Psum-level CNN/LLM Quant./ADC
CoMN [11] Slow é Strong Device/Psum-level CNN Quant./ADC/Xbar/Device∗
Swordfish [7] Slow é Strong Device/Psum-level Basecaller Quant./ADC/Device∗
RxNN [23] Slow é Strong Device/Psum-level CNN Quant./ADC/Device∗
Yan, et al. [12] Fast é é Device-level CNN Device∗
Gibbon [13] é Predictor Weak Device/Psum-level CNN Quant./ADC
Unified-QCN [14] é Metric Weak Device/Psum-level CNN Quant./ADC/Device∗

This Work Fast Metric Strong Weight-level CNN/LLM Quant./ADC/Xbar/Device∗

Device∗: different types of device conductance deviation caused by inaccurate programming, Stuck-at-Fault(SAF), conductance retention, and so on.
Strong: comprehensive consideration of coupling effects is achieved by injecting all errors into the slicing computation or directly analyzing their interactions in derivation.
Weak: insufficient consideration of coupling effects due to the incomplete consideration of non-ideal factors or the indirect modeling by NN-based predictor.

DA
C

DA
C

DA
C

Bit Shifter×2! Bit Shifter×2"

ADCADC ADC

Bit Shifter×2#

DA
C

ADC

Bit Shifter×2$

Adder

Device ErrorWeight Quantization Error

ADC Conversion Error

Fig. 2: Analog PIM architecture with errors injected in differ-
ent dimensions.

evaluate the combined impacts of different errors due to the
intolerable overhead introduced by the enlarged parameter
space. To mitigate the accuracy evaluation overhead, existing
work evaluates the relative accuracy using either a pre-trained
NN-based accuracy predictor [13] or a mathematically derived
metric [14]. While these approaches reduce simulation time,
they do not support the absolute accuracy evaluation.

In this work, the key objective is to propose an effective
and efficient relative & absolute accuracy evaluation method
for non-ideal PIM architectures. However, challenges arise
when exploring the correlation between various errors and NN
inference accuracy on PIM. Firstly, the injected dimensions
of various errors are different. As shown in Fig. 2, device
error, weight quantization error, and ADC conversion error
are injected into single-device, multi-device, and partial sum
(psum) dimensions, respectively, making it difficult to jointly
analyze their impact on accuracy without bit-and-crossbar
slicing. Secondly, complex coupling effects exist among dif-
ferent errors. As Fig. 3 shows, various errors can be affected
by the same factor. For example, when the ADC resolution
decreases from 8 to 4, the larger conversion interval incurs
larger ADC quantization error. At the same time, the impact of
accumulated device error is attenuated by the larger conversion
interval. In this cases, an incomplete error analysis could
impact the effectiveness of the accuracy evaluation.

To address the above challenges, we unify different types of
errors into weight dimension and propose an error-injected ro-
bustness metric. Then, we propose a Non-Ideal PIM Accuracy

Weight
Bit-width

Bit-
lev

el

W
eig

ht S
par

Bit-level

Weight Var

Natural Weight
Variance

Device
Conductance

Variation

ADC Resolution
DAC Multiplex
Crossbar Size

ADC
Conversion

Interval

[Neural Network
Characteristic]

[Device Property] [Hardware Design]

Device Error

Weight Quant. Error

ADC Conversion Error

ADC Res.=4

Re
sN

et
18

 A
cc

ur
ac

y

ADC Res.=8

74.75%
74.52%

77.61%

77.26%

Device Variation factor=0

Device Variation factor=0.2

Larger
acc loss

E.g., tightly coupled device error
and ADC Conversion Error

Pre-trained model accuracy: 77.96%

Fig. 3: Complex coupling effect among various errors.

(NIPA) evaluation model to evaluate the relative NN accuracy
on analog PIM architectures, considering the coupling effects
using NN’s prior information. Additionally, we propose a non-
slicing absolute accuracy evaluation method, eliminating the
need for time-consuming bit-and-crossbar slicing processes.
As shown in Table I, compared to existing PIM accuracy
evaluation methods, this work achieves further improvements
in evaluation efficiency, comprehensiveness, supported model,
and error types. Our key contributions include:

• We propose an error-injected robustness metric, capturing
the correlation between original weight variance, post-
deployment weight error variance, and NN inference
accuracy. By unifying various errors injected in different
dimensions into the weight dimension, the proposed
robustness metric enables joint error analysis.

• We derive a Non-Ideal PIM Accuracy (NIPA) evaluation
model based on the error-injected robustness metric, con-
sidering the complex coupling effects using NN’s prior
information. The NIPA evaluation model enables accurate
relative accuracy evaluation and consistently exhibits high
correlations of up to 0.91 with the absolute accuracy eval-
uated by DNN+NeuroSim on both convolutional neural
networks (CNNs) and large language models (LLMs).

• We propose a non-slicing absolute accuracy evaluation
method. With different errors unified and injected in the
weight dimension, the absolute accuracy on the target
dataset can be evaluated during the original algorithmic
inference process, without the need for bit-and-crossbar
slicing. Compared to typical DNN+NeuroSim simulator,

the proposed method achieves up to 105.8× speedup with
average evaluation errors as low as 0.29%.

• The proposed evaluation methods facilitate the co-
optimization of algorithmic and hardware performance,
paving the way for efficient and scalable design of
analog PIM architectures. By leveraging the non-slicing
paradigm, the proposed methods significantly enhance the
exploration efficiency across a broader design space.

II. PRELIMINARY

A. Analog Processing-in Memory Architecture

In analog Processing-in-Memory (PIM) architectures, the
weight matrix and input vectors are represented by device
conductance G and voltage vector V respectively, with MVMs
performed using Kirchhoff’s and Ohm’s laws [24]. Despite
the superiority in its in-situ computing mode, they suffer from
various errors in the non-ideal analog domain: (1) Existing
NVM devices suffer from large conductance variation, due
to the limitations of device intrinsic properties and process
variation; (2) Weight quantization for neural networks incurs
significant accuracy loss; (3) The sliced MVM results need to
be digitized by Analog-Digital Converter (ADC). The limited
ADC resolution incurs signal precision loss. Orthogonal to
existing work that mitigates the impact of various non-ideal
factors, this work aims to enhance the efficiency of analog
PIM’s accuracy evaluation, thus assessing the combined effects
of various non-ideal factors efficiently and facilitating further
device/algorithm/architecture-level optimization.

B. Accuracy Evaluation for PIM Architecture

Two types of PIM accuracy evaluation methods have been
developed to evaluate the accuracy of NNs on non-ideal analog
PIM. The first type mainly includes DNN+NeuroSim [4],
MNSIM 2.0 [5], DL-RSIM [6], Geniex [8], PytorX [9], Sword-
fish [7], etc., [7], [10]–[12], [23], [25]–[27], which employ
the bit-and-crossbar slicing paradigm for the evaluation of the
analog PIM’s absolute accuracy across different models. While
these methods provide fine-grained absolute accuracy evalua-
tion under various errors, the evaluation overhead increases
as the number of NN parameters grows. The second type
evaluates relative accuracy through an NN-based predictor [13]
or a mathematically derived metric [14]. Although these
approaches reduce simulation time, they do not support the
absolute accuracy evaluation and do not adequately consider
the coupling effects between various errors. In contrast, this
work enables efficient evaluation for both absolute and rela-
tive accuracy of analog PIM architectures, taking the strong
coupling effect among various non-ideal factors into account.

III. METHOD OVERVIEW

Fig. 4 gives an overview of the proposed method. We
first propose an error-injected robustness metric to describe
the correlation between original weight variance σ2

w, post-
deployment weight error variance σ2

err, and NN relative in-
ference accuracy ACC. By unifying various errors injected in
different dimensions into the weight dimension, the proposed

Re
la

tiv
e

Ac
cu

ra
cy

Ev

al
ua

tio
n

Ab
so

lu
te

Ac
cu

ra
cy

Ev

al
ua

tio
n

Ab
ili

ty
 o

f J
oi

nt

An
al

ys
is

fo
r E

rr
or

s

PIM Arch.
HW Params

NN Prior Information
(e.g. sparsity)

NN Deployment
SW Params

Unified error variance

𝑨𝑪𝑪 -> relative accuracy

(a)

(b)

(c)

Fig. 4: The proposed non-ideal PIM evaluation method sup-
ports both relative/absolute accuracy evaluation, enabling joint
analysis for various errors.

robustness metric facilitates joint analysis for various errors.
Guided by the error-injected robustness metric, we propose
a Non-Ideal PIM Accuracy (NIPA) evaluation model for
relative accuracy evaluation, considering the coupling effect
among various errors using NN’s prior information. We further
propose a non-slicing evaluation paradigm based on the insight
of unified error variance calculation. As shown in Fig. 4(c),
the absolute accuracy can be evaluated through the original
algorithmic inference process of the neural network.

IV. ERROR-INJECTED ROBUSTNESS METRIC

In NVM-based analog PIM architectures, the computation
accuracy is directly impacted by various types of errors. As
introduced in Section I, the injected dimensions of various
errors are different, making it difficult to jointly analyze their
impact on accuracy without bit-and-crossbar slicing.

Here, our fundamental insight is that errors injected
in different dimensions can be mapped to the weight
dimension through distribution and weighted summation,
as Fig. 4(a) shows. Firstly, based on the current accumulation
characteristics and device equivalence assumption, the ADC
conversion error Eadc in the partial sum dimension can be
evenly distributed to each device along the column direction:

Eadc dev =
Eadc

S
, (1)

where Eadc dev are distributed ADC conversion errors on each
device and S is the crossbar size. Secondly, before being
deployed on analog PIM architecture, NN’s weights need to

𝜀! 𝜀! 𝜀! 𝜀!

Fig. 5: NN inference accuracy completely collapses once
injected error variance reaches original weight variance.

be quantized following w = s ∗ wint, where s is the scaling
factor. Assuming the single-level NVM devices, a bw-bit
weight value w is represented by bw NVM devices following
w = s ∗

∑bw−1
i=0 2iwi, where wi is the bit-level weight value

represented by the device conductance. Therefore, the device
error from multiple devices corresponding to the same weight
value will accumulate. The accumulated error in the weight
dimension Edev weight is calculated as:

Edev weight = s ∗
bw−1∑
i=0

2i · Edevi . (2)

Notably, the ADC conversion error distributed to each device
can also be accumulated similar to (2).

Based on the above insight, we can unify weight quan-
tization error Equa, ADC conversion error Eadc, and de-
vice error Edev into the weight dimension following E =
Equa +Eadc weight +Edev weight, enabling the joint analysis
of various errors without the need for bit-and-crossbar slicing.
We conduct an oracle experiment to explore the relationship
between weight error E and model accuracy. Given a pre-
trained neural network, we inject errors with specific variance
onto each weight value and evaluate the inference accuracy
on the target dataset. Based on the zero-mean Gaussian error
assumption, the error injection process is defined as:

W∗ = W +W · N (0, ε2), (3)
where W and W∗ are original and error-injected weights,
respectively. The latter term represents the unified error E in
the weight dimension. N (0, ε2) is Gaussian distribution with
variance equal to ε2. Given that the weights of the pre-trained
neural network follow a Gaussian distribution N (0, σ2

w), the
variance of unified error σ2

err equals ε2σ2
w.

As shown in Fig. 5, when ε2 reaches 1, that is, once the
variance of unified error σ2

err reaches the original weight vari-
ance σ2

w, the inference accuracy of neural network completely
collapses, which is consistently observed across different mod-
els and datasets. Here, we define an error-injected robustness
metric, unifying various errors into the weight dimension. The
robustness metric describes the correlation between relative
computation accuracy ACC, original weight variance σ2

w, and
the post-deployment weight error variance σ2

err as follows:
ACC = σ2

w/σ
2
err. (4)

σ2
w/σ

2
err is abstracted to represent the NN’s robustness, i.e.,

the model’s ability to maintain stable and reliable performance
facing error interference or parameter changes. Referring to

the results of mobilenetv2 in Fig. 5, when ACC drops to
2 (ε2 reaches 0.5), the absolute accuracy on CIFAR10 and
CIFAR100 datasets drops to about 20% and 2%, respectively.

V. NIPA: NON-IDEAL PIM ACCURACY EVALUATION
MODEL

The proposed error-injected robustness metric provides a
feasible way to unify various errors and evaluate their joint
impact on NN’s inference accuracy without bit-and-crossbar
slicing. As shown in Fig. 4(b), based on the robustness metric,
we propose a Non-Ideal PIM Accuracy (NIPA) evaluation
model to evaluate the relative computation accuracy of analog
PIM architectures with different configurations.

As illustrated in Section IV, multiple NVM devices form the
encoded binary number of one weight. Therefore, the original
weight variance can be calculated by the weighted summation
of each weight bit’s variance after being deployed on PIM:

σ2
w = s2 ·

bw−1∑
i=0

22iσ2
wi
. (5)

After obtaining the original weight variance, the next step
is to derive the unified error variance in the weight dimension.
In the following subsections, we will analyze various errors
and mathematically derive the NIPA evaluation model based
on the unified error variance.

A. Weight Quantization Error

During the quantization process, the weight values within
each quantization interval are rounded to the same value. The
quantization interval is set as the quantization range divided
by the number of quantization levels. Given that 99.74% of the
weights are within the [−3σw, 3σw] range theoretically, we
set the quantization range to 6σw. Therefore, the quantization
interval QINR is calculated as:

QINR = 6σw/2
bw , (6)

where bw is the adopted weight bit-width. The original weight
variance σ2

w is obtained in (5). Since the quantization interval
remains constant across different weight value ranges, the
overall quantization error variance can be approximated as
the error variance within the center quantization interval. The
corresponding error variance σ2

qua of Equa can be derived by:

σ2
qua =

∫ QINR
2

−QINR
2

1

QINR
· x2dx = 3σ2

w/2
2bw (7)

B. Weight Information-aware ADC Conversion Error

Similar to weight quantization, the analog-to-digital con-
version also involves rounding the values within an interval
to the same value. The difference is that such conversion is
performed on the partial sum of each crossbar (corresponding
to different bit operations), rather than on individual weights.
As a result, ADC conversion error is related to both hardware
parameters and NN weight information, including bit-level
weight sparsity and weight matrix size.

The ADC conversion interval is related to the crossbar size
S, ADC resolution ar, and bit-level weight sparsity sp along
the column direction, and is calculated as below:

CINRi = S · (1− spi)/2
ar . (8)

CINRi and spi are conversion interval and sparsity corre-
sponding to i-th weight bit, respectively. The sparsity informa-
tion is obtained from the bit-level statistics of different layers
in the neural network. Following the distribution step intro-
duced in Section IV, the ADC conversion error is distributed
to each device, and thus the distributed error variance σadc devi

on the device corresponding to i-th weight bit is derived as:

S · σ2
adc devi

=

∫ CINRi
2

−
CINRi

2

1

CINRi

· x2dx =
S2 · (1− spi)

2

12 · 22ar

⇒ σ2
adc devi

=
S · (1− spi)

2

12 · 22ar

(9)
After the ADC conversion error in the psum dimension is

uniformly distributed to each device, it is aligned to the weight
dimension by weighted summation:

σ2
adc weight=s2

bw−1∑
i=0

22iσ2
adc devi

. (10)

It is important to note that the weight matrix size not only
affects the ADC conversion interval but also influences the
overall MVM calculation error. When the weight matrix size
exceeds crossbar size S, the matrix needs to be sliced, and the
ADCs’ outputs of all crossbars need to be merged. In this case,
ADC conversion errors will be multiplied. Note that when the
number of rows that can be driven simultaneously is limited
to N , the effective crossbar size S should be adjusted to N .
Assume that the weight matrix is divided into k crossbars
along the column direction, (9) needs to be changed to:

σ2
adc devi

=
S · (1− spi)

2

12 · 22ar
· k (11)

C. Device Error Coupled with ADC Conversion

Due to the limitations of device intrinsic properties and
process variation, NVM devices suffer from conductance vari-
ation, which results in a deviation between the target and real
conductance. The non-ideal effects of NVM devices mainly
include conductance reading variation [21], programming er-
ror [18], Stuck-At-Fault (SAF) [28], and thermal noise [29].
Among these, SAF defect is classified as a deterministic error,
meaning the device is permanently stuck at either the low
or high conductance state, called Stuck-At-Zero (SA0) and
Stuck-At-One (SA1), respectively. In contrast, other device
defects are considered stochastic errors, with the conductance
variation represented by a Gaussian distribution [7], [23]:

g = gtarget + gtarget · N (0, γ2), (12)
where γ is a variation factor related to the device’s intrinsic
properties. The latter term is injected device error Edev with
variance σ2

dev = γ2 · σ2
w. Note that the device conductance

value gtarget is normalized. Then the variance of accumulated
device error Edev weight in the weight dimension can be

Va
ria

tio
n

Va
ria

tio
n

Device Conductance

State-independent Variation

Device Conductance

State-dependent Variation
𝑔 = 𝑔!"#$%! + 𝑔&"' $ 𝒩(0, 𝛾()*+)𝑔 = 𝑔!"#$%! + 𝑔!"#$%! $ 𝒩(0, 𝛾+)

Fig. 6: Two types of conductance variation in NVM devices.

calculated as follows:

σ2
dev weight = s2 ·

bw−1∑
i=0

22i · γ2 · σ2
wi

(13)

Note that even if the conductance deviation of the actual
device does not perfectly follow the above ideal Gaussian
distribution, the derivation of (13) can still be performed with
the calculated variance σ2

dev of non-Gaussian distribution.
Although SAF defects are not recoverable, they can be mod-

eled with a probability distribution in the device dimension.
Assume that the probabilities of SA0 and SA1 are α0 and
α1, respectively. The device conductance can be modeled as
a three-component mixed distribution:

g =


0 P = α0,

1 P = α1,

gtarget + gtarget · N (0, γ2) P = 1− α0 − α1.

(14)

Assuming the mean of the pretraining weight to be zero,
the variance of the above mixed distribution σ2

dev equals the
weighted sum of each distribution’s variance under the given
probability:
σ2
dev = α0 · α2

w + α1 · α2
w + (1− α0 − α1) · γ2 · σ2

w. (15)

Given that the effect of the off-state current caused by the
device’s finite on/off resistance ratio (R-ratio) can be perfectly
eliminated with the aid of a dummy column [4], the R-ratio
non-ideal factor is not included in (15). Besides, not all the
devices exhibit state-dependent variation property shown in
(12), in which the conductance variation is proportional to
the conductance state [17]. As Fig. 6 shows, the expected
variation in some devices does not depend on the specific
conductance state and the real conductance can be expressed
as: g = gtarget + gmax · N (0, γ2

ind), where γind is the
corresponding independent variation factor. In such a case,
the variance of the injected device error σ2

dev equals γ2
ind and

(15) needs to be modified to:
σ2
dev = α0 · α2

w + α1 · α2
w + (1− α0 − α1) · γ2

ind. (16)

Notably, the actual device error is tightly coupled to the
ADC conversion error, both influenced by the ADC conversion
interval. Specifically, the device errors will accumulate with
the current accumulation along the column direction and are
digitized through ADCs. As shown in Fig. 7, the accumulated
device error distribution N (0, S · σ2

devi
) is rounded to zero

within the range of [−CINRi/2, CINRi/2] and thus exhibits
no impact on NN’s inference accuracy. We propose an attenua-
tion factor A to consider the effect of ADC conversion interval

Accumulated Device Error −
𝐶!"#
2

𝐶!"#
2

No
Effect!

Fig. 7: Effect of ccumulated device error is attenuated by ADC
conversion.

on device error, which is defined as:

Ai = 1−

∫ CINRi
2

−
CINRi

2

P (X = x) · x2dx

S · σ2
devi

, (17)

where P (X = x) is the probability density function (PDF) of
N (0, S · σ2

devi
). The latter term represents the ratio of the

variance within the range of [−CINRi
/2, CINRi

/2] to the
total variance S · σ2

devi
. Finally, the calculation of (13) can

be updated according to (15) and (17) to further consider the
impact of SAF defect and ADC’s coupling effect:

σ2
dev weight = s2 ·

bw−1∑
i=0

22i · σ2
devi

·Ai. (18)

D. Unified Error

Given a specific set of software and hardware parameters,
we can unify all errors into the weight dimension and obtain
the variance of Equa, Eadc weight, Edev weight. With the cou-
pling effect considered in the derivation, various errors exhibit
independent impacts on accuracy. Then, the variance of unified
error E in the weight dimension is obtained by:

σ2
err = σ2

qua + σ2
adc weight + σ2

dev weight. (19)
Combining (4), (5), and (19), we obtain the non-ideal PIM ac-
curacy (NIPA) evaluation model considering various coupling
errors on analog PIM architectures:

NIPA=

∑bw−1
i=0 22iσ2

wi

3σ2
w

s222bw
+
∑bw−1

i=0 22i(k·S·(1−spi)2

12·22ar +σ2
devi

Ai)
(20)

Given a pre-trained neural network, we first collect NN’s
prior information. Then we calculate NIPA score based on
(20) to evaluate the relative accuracy. Based on the NIPA
evaluation model, the impact of various errors can be jointly
analyzed without any evaluation overhead. This allows for a
deeper exploration of different software and hardware param-
eters, facilitating further co-optimization of both algorithmic
and hardware performance. A more detailed discussion is
presented in Section VII.

VI. NON-SLICING ABSOLUTE ACCURACY EVALUATION

Based on the insight of unified error variance calculation,
we further propose a non-slicing absolute accuracy evaluation
method. As introduced in Section V, all the errors can be
unified and calculated in the weight dimension. Therefore,

Algorithm 1 Non-Slicing Absolute Accuracy Evaluation
Input: Target model F , pretrained weights W, validation dataset D,
bit width bw, ADC resolution ar , crossbar size S, device conductance
variation factor γ.
Output: Evaluated absolute accuracy A.

1: Partition W into N layers (W1→N)
2: for i = 1 → N do
3: # Prior information calculation
4: σ2

w = CalWeightVari(Wi, bw, S)
5: s = CalAvgScalingFactor(Wi, bw, S)
6: sp = CalAvgSparsity(Wi, bw, S)
7: k = CalXbarNum(Wi, S)
8: # Unified weight error injection
9: σ2

err = CalErrorVari(bw, ar , S, s, sp, k, γ)
10: W∗

i = Wi +Wi · N (0,
σ2
err
σ2
w

)

11: # Absolute accuracy evaluation
12: A = F(D|W∗)

we directly apply the unified weight error to the pre-trained
model’s weights, similar to (3):

W∗ = W +W · N (0,
σ2
err

σ2
w

), (21)

where W and W∗ are original and error-injected weights,
respectively. The second term is the injected error, with a
variance of σ2

err. Different from the NIPA evaluation model,
the calculation and injection of σ2

err in the absolute accuracy
evaluation part is performed layer by layer. The detailed
evaluation process is shown in Algorithm 1. For each layer
in a given model, we separately statistic its bit-level weight
variance, sparsity, and other required information (Algorithm 1
line 4∼7). Then the unified error variance is calculated and
the weight matrix of each layer is updated according to (21)
(Algorithm 1 line 9∼10).

With this method, the unified errors are directly introduced
in the weight dimension and the absolute accuracy on target
dataset can be evaluated during the original algorithmic infer-
ence process (Algorithm 1 line 12), eliminating the need for
a bit-and-crossbar slicing process.

VII. EXPERIMENTS

A. Experimental Setup

Benchmarks. We evaluate the proposed accuracy evaluation
methods on both CNNs and LLMs. ResNet-18 [1], MobileNet-
v2 [30], and EfficientNet-v2m [31] are evaluated on CIFAR10
and CIFAR100 datasets. LLMs including Mamba-130M [32],
RWKV-169M [33] and OPT-125M [34] are evaluated on
PIQA [35] and Arc-Easy [36] datasets. Due to the intolerable
overhead of slicing-based paradigm (i.e., several days per
parameter set), experiments are not conducted on larger LLMs.

Methodology. In this work, the proposed accuracy evalua-
tion methods are compared and verified with the absolute accu-
racy evaluated by DNN+NeuroSIM [4]. Adjustable parameters
include weight bit-width bw {4, 6, 8}, device conductance vari-
ation factor γ {0, 0.1, 0.2}, ADC resolution ar {4, 5, 6, 7, 8}
and crossbar size S {128, 256}. Specific parameter configura-
tion for complex device behavior is listed in Fig. 11. Due to the

Fig. 8: High Kendall rank correlations K between NIPA score and ground truth accuracy provided by bit-and-crossbar slicing
simulations. (Black line: the data points are automatically fitted using the nonlinear function)

TABLE II: Kendall rank correlation achieved by NIPA evalu-
ation model for the evaluation of different LLM layers.

Model Dataset layer 1 layer 2 layer 3

OPT-125M
PIQA 0.802 0.789 0.740

Arc Easy 0.913 0.734 0.774

randomness of device error, we conduct three experiments for
each parameter set and take the average accuracy as the ground
truth. We modify the MNSIM 2.0 simulator [5] based on the
hardware performance model proposed in [37] to evaluate the
PIM hardware performance. The proposed evaluation method
is open-sourced on https://github.com/gld17/NIPA.git.

Metrics. To demonstrate the effectiveness of the proposed
method, we report the Kendall ranking correlation and Mean
Absolute Error (MAE) results for relative and absolute accu-
racy evaluation, respectively.

B. Performance of NIPA Evaluation Model

Fig. 8 presents the detailed results of NIPA score and
ground truth accuracy for all possible software and hardware
parameters. As shown in Fig. 8, the proposed NIPA evaluation
model achieves high KD correlations consistently across both
CNNs and LLMs, reaching up to 0.91. The smaller the NIPA
score is, the more significantly NN accuracy is affected by
the error (larger accuracy variation in three results of a same
parameter set). We observe that ResNet18 and LLMs exhibit
lower average NIPA scores compared to MobileNetv2 and
Efficientnetv2m. This is because the weight matrix sizes of
these models generally exceed the crossbar size (128/256),
in which case, the ADC conversion errors will multiply
and dominate. Due to the extremely long evaluation latency
of LLMs, we only inject errors into their first block and
evaluate the inference accuracy in an end-to-end manner. As
the inference errors from the first block might be affected
in subsequent propagation, which is difficult to account for,
the Kendall rank correlations achieved by NIPA evaluation
model on LLMs are slightly lower than those on CNNs. We

Fig. 9: The effect of different parameter sets on the ResNet-18
model (device errors are not considered).

further conduct additional experiments, injecting the errors
into different layers separately. As shown in Table II, the
proposed NIPA evaluation model maintains high Kendall rank
correlations across different layers of OPT-125M.

Based on the NIPA evaluation model, we take ResNet-18 as
an example and analyze the influence of different parameters
on NN’s inference accuracy. As shown in Fig. 9, ADC reso-
lution exhibits a more significant effect on NN accuracy than
other parameters. In the case of large ADC resolution (i.e., 7 or
8), increasing the weight bit-width can also provide significant
performance benefits. However, when ADC resolution is set
to less than 7, the change of weight bit-width shows a
negligible effect on NN’s accuracy. In this scenario, the ADC
conversion error of each bit becomes relatively large. As a
result, increasing the weight bit width will also amplify the
ADC quantization error, which diminishes the performance
gains from reducing the weight quantization error.

C. Effectiveness of NIPA on Complex Device Behavior

To validate the effectiveness of the proposed NIPA eval-
uation model on the devices with complex behavior, we
further consider the devices with state-independent Gaussian-
based and state-dependent Laplace-based conductance varia-
tion. With other software & hardware parameters fixed, ad-
justable device-related parameters are listed in the upper table
of Fig. 11. The proposed NIPA evaluation model maintains a

Fig. 10: Mean average error (MAE) between ground truth accuracy and non-slicing absolute accuracy evaluation results.

Parameter Configuration for Complex Device Behavior
{0, 0.05, 0.1, 0.15}𝛾!"#{0, 0.1, 0.2, 0.3}𝛾
{1e-4, 1e-3, 1e-2}𝛼{0, 0.06, 0.12, 0.18}𝑙$

Fig. 11: NIPA evaluation model performs well for complex
device behaviors on ResNet-18.

high KD correlation of up to 0.913 on devices with complex
behaviors. The NIPA evaluation model is not limited to the
ideal Gaussian distribution of device conductance but depends
only on the actual variance.

D. Non-Slicing Absolute Accuracy Evaluation Performance

To validate the effectiveness of the proposed non-slicing
absolute accuracy evaluation method, we conduct three exper-
iments for each parameter set and take the average accuracy as
the evaluated accuracy. As Fig. 10 shows, low MAEs between
ground truth and simulated accuracy down to 0.297% are
achieved across different types of models and datasets with
up to 105.8x speedup compared to DNN+NeuroSim.

E. Co-exploration Embedded with NIPA Evaluation Model

We further validate the effectiveness of the NIPA evaluation
model within a PIM parameter search framework. Searching
for the parameters on PIM architecture towards both algorithm
and hardware performance requires PIM accuracy evaluations
in the loop, incurring heavy runtime overhead. In our search
framework, we incorporate the NIPA evaluation model to re-
place the bit-and-crossbar slicing-based evaluation. As shown
in Fig. 12, when not considering algorithm performance under
various errors, the NIPA scores of Pareto optimal parameters
between PIM area and Energy-Delay Product (EDP) are the
lowest, far below the accuracy saturation level (NIPA score of
the parameter set with an accuracy close to that of the pre-
trained model). Referring to Fig. 8, the inference accuracy of
Mobilenetv2 and RWKV models approaches saturation when
NIPA reaches 64 and 32, respectively. By setting the saturation
level of the NIPA score as the target, we can search for

Saturation Level

Saturation Level

Acc=43.4%
Area=3.8mm2

EDP=1.5x10-6ms*mJ

Acc=46.8%
Area=5.9mm2

EDP=2.3x10-6ms*mJ

Acc=46.6%
Area=7.6mm2

EDP=9.7x10-3ms*mJ

Acc=44.7%
Area=6.1mm2

EDP=3.9x10-3ms*mJ

NIPA NIPA

Fig. 12: NIPA evaluation model helps to achieve a better trade-
off between algorithm and hardware performance.

a new Pareto curve that meets the NN inference accuracy
requirements, achieving a better trade-off between algorithm
and hardware performance.

VIII. CONCLUSION

In this work, we propose a non-ideal PIM accuracy (NIPA)
evaluation model for relative accuracy evaluation and a non-
slicing absolute accuracy evaluation method. By unifying
various errors in the weight dimension and using NN’s prior
information, the proposed methods eliminate the need for the
time-consuming bit-and-crossbar slicing simulation process
while accounting for the coupling effects among various
errors. Extensive experiments on CNNs and LLMs validate
the effectiveness of the proposed methods. Furthermore, the
joint search results also demonstrate that the NIPA evaluation
model helps achieve a better trade-off between algorithm and
hardware performance on PIM architectures.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China (2023YFB4502200), the National Natural Sci-
ence Foundation of China (62325405, U24B601), Tsinghua
University Initiative Scientific Research Program, Tsinghua-
Meituan Joint Institute for Digital Life. Tsinghua-Efort Joint
Research Center for EAI Computation and Perception, Beijing
National Research Center for Information Science, Tech-
nology (BNR2024TD03001), Beijing Innovation Center for
Future Chips, and State Key laboratory of Space Network
and Communications. This research was partially supported
by ACCESS–AI Chip Center for Emerging Smart Systems,
sponsored by InnoHK funding, Hong Kong SAR (HKSAR)
and Research Grants Council of HKSAR (16213824).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “Dnn+ neurosim: An end-
to-end benchmarking framework for compute-in-memory accelerators
with versatile device technologies,” in 2019 IEEE international electron
devices meeting (IEDM). IEEE, 2019, pp. 32–5.

[5] Z. Zhu, H. Sun, T. Xie, Y. Zhu, G. Dai, L. Xia, D. Niu, X. Chen,
X. S. Hu, Y. Cao et al., “Mnsim 2.0: A behavior-level modeling tool for
processing-in-memory architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 42, no. 11, pp.
4112–4125, 2023.

[6] M.-Y. Lin, H.-Y. Cheng, W.-T. Lin, T.-H. Yang, I.-C. Tseng, C.-L.
Yang, H.-W. Hu, H.-S. Chang, H.-P. Li, and M.-F. Chang, “Dl-rsim:
A simulation framework to enable reliable reram-based accelerators
for deep learning,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[7] T. Shahroodi, G. Singh, M. Zahedi, H. Mao, J. Lindegger, C. Firtina,
S. Wong, O. Mutlu, and S. Hamdioui, “Swordfish: a framework for
evaluating deep neural network-based basecalling using computation-in-
memory with non-ideal memristors,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023, pp.
1437–1452.

[8] I. Chakraborty, M. F. Ali, D. E. Kim, A. Ankit, and K. Roy, “Geniex:
A generalized approach to emulating non-ideality in memristive xbars
using neural networks,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[9] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection
adaption: End-to-end reram crossbar non-ideal effect adaption for neural
network mapping,” in Proceedings of the 56th Annual Design Automa-
tion Conference 2019, 2019, pp. 1–6.

[10] C. Wang, Z. Chen, and S. Huang, “Micsim: A modular simulator for
mixed-signal compute-in-memory based ai accelerator,” arXiv preprint
arXiv:2409.14838, 2024.

[11] L. Han, R. Pan, Z. Zhou, H. Lu, Y. Chen, H. Yang, P. Huang, G. Sun,
X. Liu, and J. Kang, “Comn: Algorithm-hardware co-design platform for
non-volatile memory based convolutional neural network accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2024.

[12] Z. Yan, X. S. Hu, and Y. Shi, “Computing-in-memory neural network
accelerators for safety-critical systems: Can small device variations
be disastrous?” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, 2022, pp. 1–9.

[13] H. Sun, Z. Zhu, C. Wang, X. Ning, G. Dai, H. Yang, and Y. Wang,
“Gibbon: An efficient co-exploration framework of nn model and
processing-in-memory architecture,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 42, no. 11, pp.
4075–4089, 2023.

[14] X.-J. Chen, C. Kuan, and C.-L. Yang, “Unified agile accuracy assessment
in computing-in-memory neural accelerators by layerwise dynamical
isometry,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2023, pp. 1–6.

[15] W. Zhang, X. Peng, H. Wu, B. Gao, H. He, Y. Zhang, S. Yu, and H. Qian,
“Design guidelines of rram based neural-processing-unit: A joint device-
circuit-algorithm analysis,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[16] B. Wu, Y. Liu, J. Liu, H. Cheng, X. Wei, W. Tong, and D. Feng,
“Fadesim: Enable fast and accurate design exploration for memristive ac-
celerators considering non-idealities,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2024.

[17] T. P. Xiao, B. Feinberg, C. H. Bennett, V. Prabhakar, P. Saxena,
V. Agrawal, S. Agarwal, and M. J. Marinella, “On the accuracy of analog
neural network inference accelerators,” IEEE Circuits and Systems
Magazine, vol. 22, no. 4, pp. 26–48, 2022.

[18] G. L. Zhang, B. Li, X. Huang, C. Shen, S. Zhang, F. Burcea, H. Graeb,
T.-Y. Ho, H. Li, and U. Schlichtmann, “An efficient programming

framework for memristor-based neuromorphic computing,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1068–1073.

[19] W. He, J. Meng, S. K. Gonugondla, S. Yu, N. R. Shanbhag, and J.-s.
Seo, “Prive: efficient rram programming with chip verification for rram-
based in-memory computing acceleration,” in 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2023, pp.
1–6.

[20] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
“Accelerator-friendly neural-network training: Learning variations and
defects in rram crossbar,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 19–24.

[21] Z. Yan, Y. Qin, W. Wen, X. S. Hu, and Y. Shi, “Improving realistic worst-
case performance of nvcim dnn accelerators through training with right-
censored gaussian noise,” in 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[22] Y. Lim, D. Kim, and J. Kim, “Selcc: Enhancing mlc reliability and
endurance with single-cell error correction codes,” in 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2024, pp. 1–6.

[23] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rxnn: A framework
for evaluating deep neural networks on resistive crossbars,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 40, no. 2, pp. 326–338, 2020.

[24] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[25] A. Bhattacharjee, L. Bhatnagar, and P. Panda, “Examining and mitigating
the impact of crossbar non-idealities for accurate implementation of
sparse deep neural networks,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 1119–1122.

[26] A. Bhattacharjee, Y. Kim, A. Moitra, and P. Panda, “Examining the
robustness of spiking neural networks on non-ideal memristive cross-
bars,” in Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, 2022, pp. 1–6.

[27] T. Cao, C. Liu, W. Wang, T. Zhang, H. K. Lee, M. H. Li, W. Song,
Z. X. Chen, V. Y.-Q. Zhuo, N. Wang et al., “A non-idealities aware
software–hardware co-design framework for edge-ai deep neural net-
work implemented on memristive crossbar,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 12, no. 4, pp. 934–943,
2022.

[28] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang,
and H. Yang, “Stuck-at fault tolerance in rram computing systems,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
no. 1, pp. 102–115, 2017.

[29] L. Kish and C. Granqvist, “Noise in nanotechnology,” Microelectronics
Reliability, vol. 40, no. 11, pp. 1833–1837, 2000.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[31] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”
in International conference on machine learning. PMLR, 2021, pp.
10 096–10 106.

[32] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[33] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, S. Bider-
man, H. Cao, X. Cheng, M. Chung, M. Grella et al., “Rwkv: Reinventing
rnns for the transformer era,” arXiv preprint arXiv:2305.13048, 2023.

[34] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[35] Y. Bisk, R. Zellers, J. Gao, Y. Choi et al., “Piqa: Reasoning about
physical commonsense in natural language,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 7432–
7439.

[36] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick,
and O. Tafjord, “Think you have solved question answering? try arc,
the ai2 reasoning challenge,” arXiv preprint arXiv:1803.05457, 2018.

[37] J. Sun, P. Houshmand, and M. Verhelst, “Analog or digital in-memory
computing? benchmarking through quantitative modeling,” in 2023
IEEE/ACM International Conference on Computer Aided Design (IC-
CAD). IEEE, 2023, pp. 1–9.

