

Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for Efficient 3D Object Detection

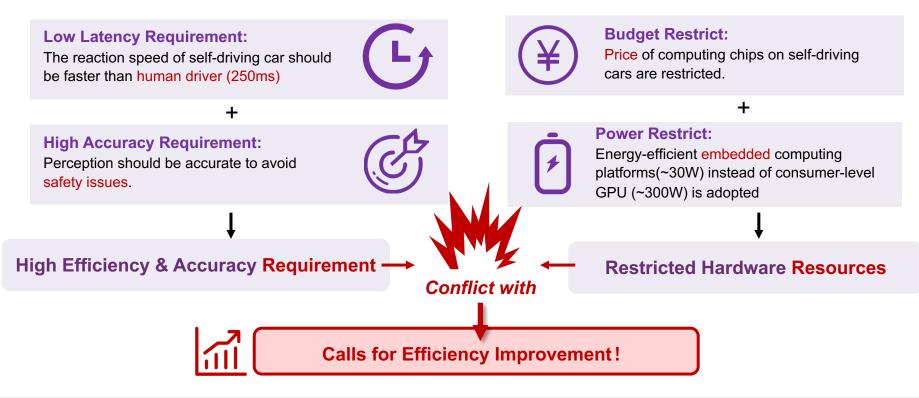


Department of Electronic Engineering, Tsinghua University

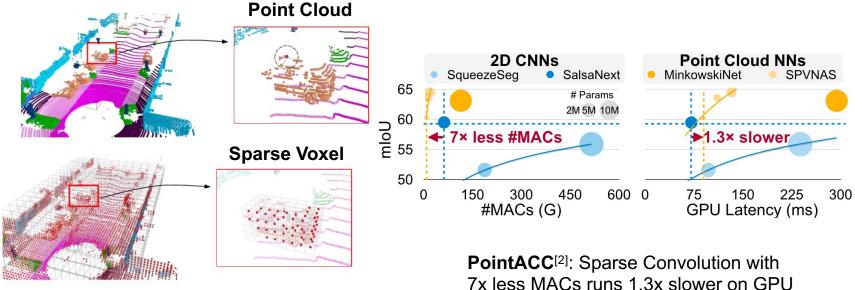
> **3D Perception:** Key component of comprehending the 3D world

Autonomous Driving

Metaverse



Embodied AI



> Autonomous Driving: Efficiency Challenges

Voxel-based 3D Perception: Good Performance with Large Cost

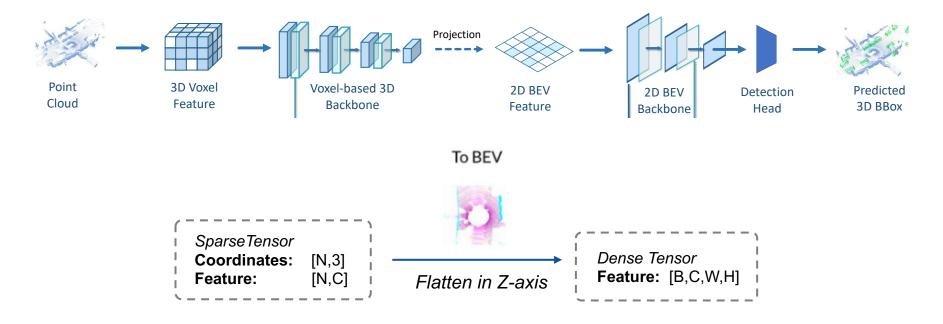
(Figure from TPVNet^[1])

[1] Xu et. al., RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation, ICCV21 [2] Ling et al., PointAcc: Efficient Point Cloud Accelerator. MICRO21


NICS-efc Lab

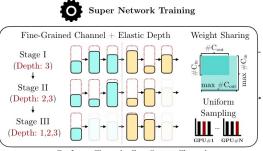
3D Sparse Convolution: Convolution with sparse mask C_in & C_out

- Sparse Convolution: Enlarging the dense.
- Submanifold sparse convolution: $\mathcal{C}^{out} = \mathcal{C}^{in}$
 - To maintain the sparsity through convolution networks
 - Less computation with comparable performance


$$\mathbf{x}_{\mathbf{u}}^{\text{out}} = \sum_{\mathbf{i} \in \mathcal{N}^{D}(\mathbf{u}, \mathcal{C}^{\text{in}})} W_{\mathbf{i}} \mathbf{x}_{\mathbf{u}+\mathbf{i}}^{\text{in}} \text{ for } \mathbf{u} \in \mathcal{C}^{\text{out}}$$
$$\mathcal{N}^{D}(\mathbf{u}, \mathcal{C}^{\text{in}}) = \{\mathbf{i} | \mathbf{u} + \mathbf{i} \in \mathcal{C}^{\text{in}}, \mathbf{i} \in \mathcal{N}^{D}\}$$

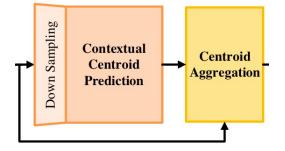
[1] Yin et. al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, ICCV17

Voxel-based 3D Detection: Framework overview



[1] Yin et. al., Center-based 3D Object Detection and Tracking, CVPR20

Cell Architecture



Prior research of efficient 3d perception: Mainly focus on reducing the model-level redundancy

 $C_{\text{in}}\text{:}$ Input Channels, $C_{\text{out}}\text{:}$ Output Channels.

Input Magnitude mask

SPVNAS^[1] Use NAS (Neural Architecture Search) to search for model macro deisgn (depth/width)

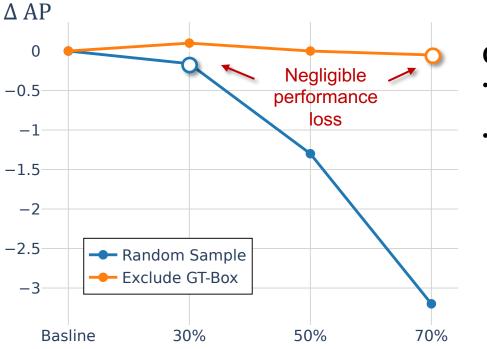
SPSS-Conv^[2] Kernel-level pruning of the 3D sparse convolution. **IA-SSD**^[3] Design novel feature-based downsampling module to replace FPS (Furthest Point Sampling)

[1] Tang et. al., Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution, ECCV20.
[2] Liu et al., Spatial Pruned Sparse Convolution for Efficient 3D Object Detection, NeurIPS22.
[3] Zhang et. al., Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds, CVPR22

Exploiting Data-level Redundancy: Another approach of improving the efficiency of 3D Detector.

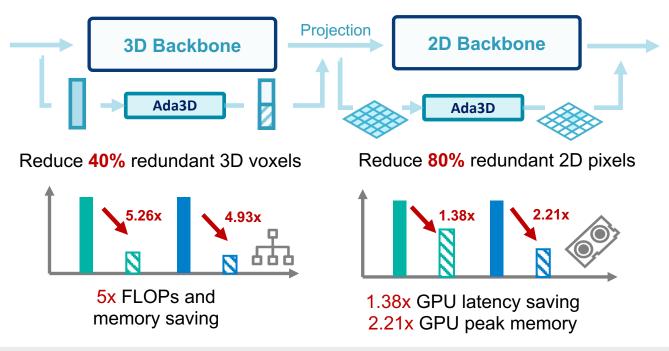
Redundant background points 3D 2D Redundant overdense points

Redundant background pixels

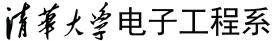


(Only <mark>5%</mark> nonzero pixels projected from 3D voxels)

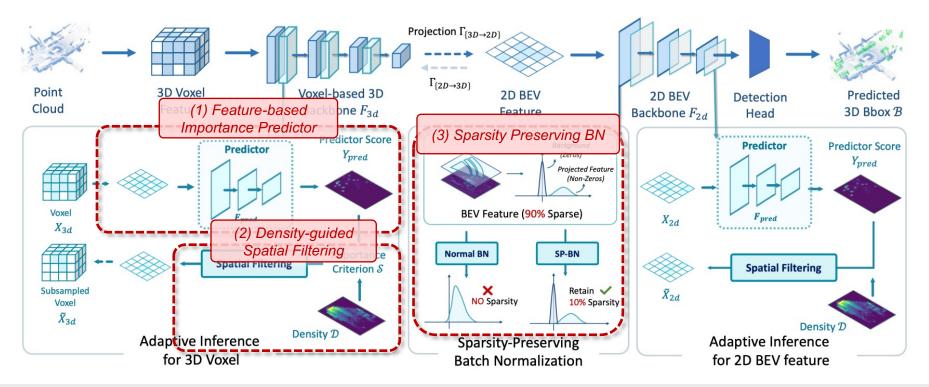
> Exploiting Data-level Redundancy: Qualitative Results.


Oracle Experiment:

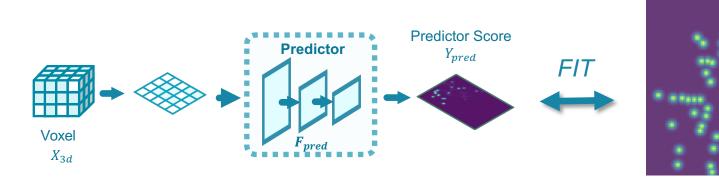
- When dropping inputs 70% points exclude gt-box, less than -0.1 AP.
- When random dropping 30% points, less than -0.5 AP


Large Redundancy Exists!

<Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for Efficient 3D Object Detection>: Adaptive Inference, discard redundant input during inference.


Department of Electronic Engineering, Tsinghua University

Overview of Ada3D: 3 Key Components

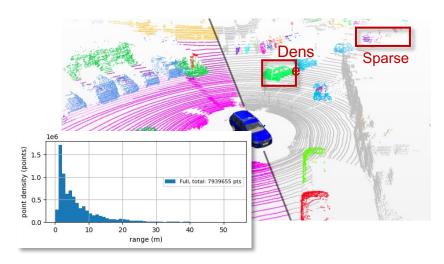

BEV-space Importance Predictor: predict pixel-wise relative importance

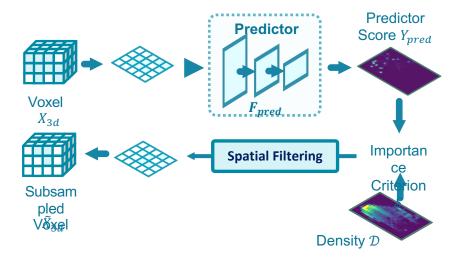
Lightweight Predictor:

- Shared BEV-space Predictor
- 5 Layer 2D Convolution Network
- Low Resolution
- Efficient Group Convolution
- <1% Computational Cost than Backbone

Predictor Training Ground-truth:

Center-based Object Heatmap (Gaussian Ball Rendered Object Center)

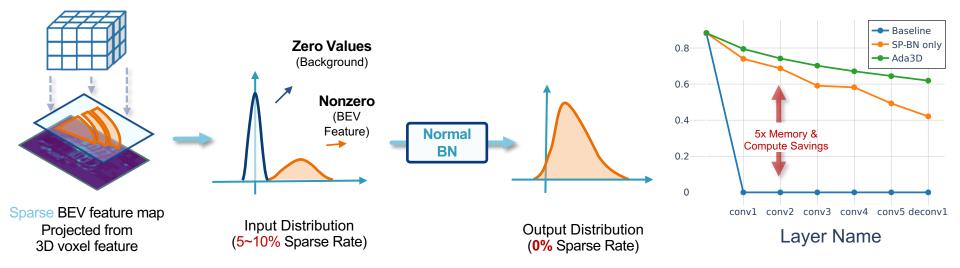




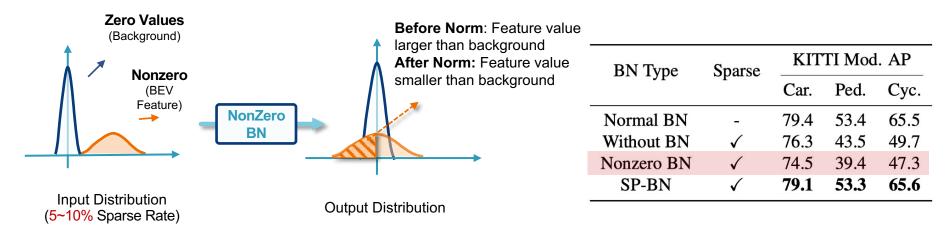
> **Density-guided Filtering:** Leverage the property of Lidar point cloud

Lidar Point Cloud: Local region are denser, Remote region are sparse Predictor tends to output larger value for local dense part

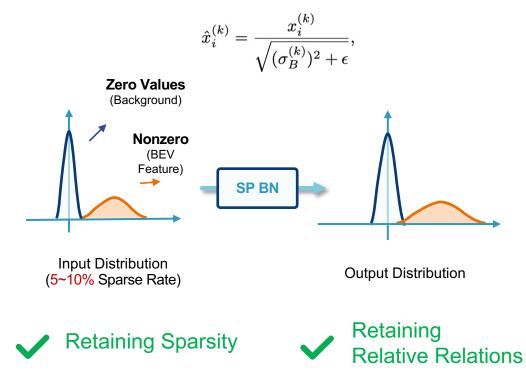
Compensation: Focus more on remote sparse region

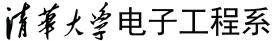


"Normal BN": Sacrifices sparsity


2D BEV Backbone: Lose sparsity after 1st BN Layer

Straight Forward Solution: "Nonzero-BN", apply BN to nonzero elements only, when finetuning, instable training and performance degradation.





Simple Fix: "SP-BN", skip zero mean in BN.

BN Type	Sparse	KITTI Mod. AP					
Divijpo	Spuise	Car.	Ped.	Cyc.			
Normal BN	-	79.4	53.4	65.5			
Without BN	\checkmark	76.3	43.5	49.7			
Nonzero BN	\checkmark	74.5	39.4	47.3			
SP-BN	\checkmark	79.1	53.3	65.6			

Department of Electronic Engineering, Tsinghua University

Experiments: KITTI Overview

Mehod	FLOPs	Mem	mAP	3D (Car (IoU=0.7)		3D P	ed. (IoU	=0.5)	3D C	yc. (IoU	=0.5)
	Opt.	Opt.	(Mod.)	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard
VoxelNet [36]	-	-	49.05	77.47	65.11	57.73	39.48	33.69	31.50	61.22	48.36	44.37
SECOND [28]	-	-	57.43	84.65	75.96	68.71	45.31	35.52	33.14	75.83	60.82	53.67
PointPillars [12]		-	58.29	82.58	74.31	68.99	51.45	41.92	38.89	77.10	58.65	51.92
SA-SSD [8]	-	-	-	88.75	79.79	74.16	-	-	-	-	-	-
TANet [16]		-	59.90	84.39	75.94	68.82	53.72	44.34	40.49	75.70	59.44	52.53
Part- A^2 [21]	-	-	61.78	87.81	78.49	73.51	53.10	43.35	40.06	79.17	63.52	56.93
SPVCNN [25]	-	-	61.16	87.80	78.40	74.80	49.20	41.40	38.40	80.10	63.70	56.20
PointRCNN [20]	-	-	57.95	86.96	75.64	70.70	47.98	39.37	36.01	74.96	58.82	52.53
3DSSD [30]	-	-	55.11	87.73	78.58	72.01	35.03	27.76	26.08	66.69	59.00	55.62
IA-SSD [34]	-	-	60.30	88.34	80.13	75.10	46.51	39.03	35.60	78.35	61.94	55.70
CenterPoint [31]	-	-	59.96	88.21	79.80	76.51	46.83	38.97	36.78	76.32	61.11	53.62
CenterPoint-Pillar [31]	-	-	57.39	84.76	77.09	72.47	44.07	37.80	35.23	75.17	57.29	50.87
CenterPoint (Ada3D-B)	5.26 ×	4.93 ×	59.85	(-0.1)6	79.41	75.63	46.91	39.11	36.43	76.09	61.04	53.73
CenterPoint (Ada3D-C)	9.83 ×	8.49 ×	57.72	(-2.2) 2	74.98	69.11	43.66	38.23	34.80	75.27	59.96	52.14

Without Sacrificing Loss, **5x** Computation/Memory Optimization

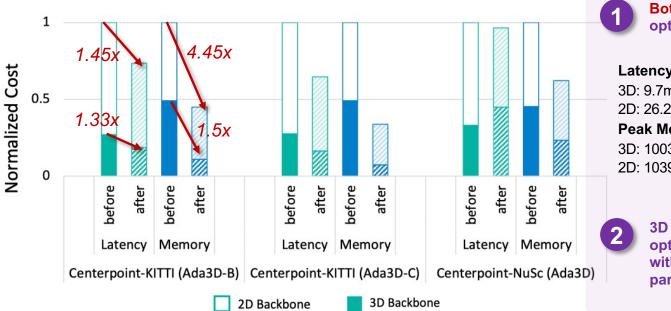
With Moderate Perf. Loss, **10x** Computation/Memory Optimization

Experiments: nuScenes & ONCE Overview

Method	FLOPs Opt.	Mem. Opt.	mAP	NDS		Method	FLOPs Opt.	Mem. Opt.	mAP	Veh.	Ped.	Сус
PointPillar [12]	-	-	44.63	58.23		PointRCNN [20]	-	-	28.74	52.09	4.28	29.84
SECOND 28	-	-	50.59	62.29		PointPillar [12]	-	-	44.34	68.57	17.63	46.81
CenterPoint-Pillar [31]	-	_	50.03	60.70		SECOND 28	-	-	51.89	71.16	26.44	58.04
						PVRCNN [19]	-	-	53.55	77.77	23.50	59.37
CenterPoint [31]	-	-	55.43	64.63		CenterPoint [31]	-	-	63.99	75.69	49.80	66.48
(voxel=0.1)					_	CenterPoint						
CenterPoint-Ada3D	$2.32 \times$	$2.61 \times$	54.80	63.53		(Ada3D)	$2.32 \times$	$2.61 \times$	62.68	73.43	49.09	65.53
(voxel=0.1)		210171	0.1100		-	(11443.2)						
CenterPoint [31]			50.00	((10								
(voxel=0.075)	-	-	59.22	66.48								
SPSS-Conv [15]	1 1 4	1 1 4	57 .00	(5.0)								
(voxel=0.075)	$1.14 \times$	$1.14 \times$	57.80	65.69								
CenterPoint-0.5W [31]	0.70	0.70	57 10	(1.00					•			
(voxel=0.075)	2.78 imes	$2.78 \times$	57.19	64.08				2~	3х			
CenterPoint-Ada3D	2.24	2.06	50.60	(5 (0				omor		timi-	rotion	`
(voxel=0.075)	3.34×	3.96×	58.62	65.68		FLU	Ps/M	enior	y Op	vui i IIZ	Lauor	I
VovalNaVT [1]			60.50	66.60								
VoxelNeXT [1]	-	-										
VoxelNeXT-Ada3D [1]	$1.19 \times$	$1.20 \times$	59.75	65.84								

Method		Technique		FL	FLOPs		em.	mAP	Car Mod.	Ped. Mod.	Cyc. Mod.
		DG	SP-BN	3D	2D	3D	2D	(Mod.)	(IoU=0.7)	(IoU=0.5)	(IoU=0.5)
CenterPoint	-	-	r - 0	1.00	1.00	1.00	1.00	66.1	79.4 (-)	53.4 (-)	65.5 (-)
CenterPoint (SP-BN)	-	-	\checkmark	1.00	0.49	1.00	0.45	66.0	79.1 (-0.3)	53.3 (-0.1)	65.6 (+0.1)
CenterPoint (Ada3D-A)	\checkmark	\checkmark	\checkmark	1.00	0.22	1.00	0.25	66.4	79.5 (+0.1)	53.6 (+0.2)	66.1 (+0.6)
CenterPoint (Ada3D-B)	\checkmark	\checkmark	\checkmark	0.66	0.18	0.68	0.17	66.1	79.1 (-0.3)	54.0 (+0.6)	65.3 (-0.3)
CenterPoint (Ada3D-B w.o. DG)	\checkmark	-	\checkmark	0.64	0.18	0.66	0.16	65.1	78.8 (-0.6)	51.6 (-1.8)	64.9 (-0.6)
CenterPoint (Ada3D-C)	\checkmark	\checkmark	\checkmark	0.39	0.08	0.43	0.07	65.4	77.6 (-1.8)	53.5 (+0.2)	65.1 (-0.4)

Ada3D-A: Filter 80% 2D pixels, +0.3 mAP


Ada3D-B: Filter 40% 3D voxels, 80% 2D pixels, 5.26x FLOPs, 4.93x Memory Opt., -0.0 mAP Ada3D-C: Filter 60% 3D voxels, 90% 2D pixels, 9.83x FLOPs, 8.49x Memory Opt., -0.7 mAP

Ada3D-B: 5.26x FLOPs, 4.93x Memory Opt.

1.36x Latency, 2.22x Peak Memory

Implementation: RTX3090, CUDA-11.1, Gather-Scatter GEMM SPConv v2.2.6

Both 3D and 2D part requires optimization:

Latency:	FLOPs:
3D: 9.7ms -> 1.33x	3D: 1.51x
2D: 26.2ms -> 1.45x	2D: 4.54x
Peak Mem.	Memory.
3D: 1003 MB -> 1.5x	3D: 1.47x

3D part's latency & memory optimization grows linearly with FLOPs/Memroy while 2D part DONOT. (WHY?)

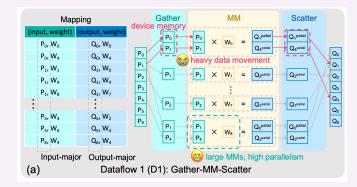

Ada3D-B: 5.26x FLOPs, 4.93x Memory Opt. 1.36x Latency, 2.22x Peak Memory

Table 10: The density and keep ratio for 3D layers of "Ada3D-B" on KITTI dataset. The "Compress" is the reciprocal of keep rate.

Layer	Der	isity	Keep Rate	Compress
Lujer	Pre	Post	neep nate	compress
3d_conv_1	0.0007	0.0005	71.43%	$1.4000 \times$
3d_conv_2	0.0098	0.0077	78.57%	$1.2727 \times$
3d_conv_3	0.0534	0.0305	57.12%	$1.7508 \times$
3d_conv_4	0.2198	0.1407	64.01%	$1.5621 \times$
3d_conv_5	0.2198	0.1407	64.01%	$1.5621 \times$
2d_conv_1	1.0000	0.0883	8.83%	11.3250×
2d_conv_2	1.0000	0.1336	13.36%	$7.4850 \times$
2d_conv_3	1.0000	0.1045	10.45%	$9.5694 \times$
2d_conv_4	1.0000	0.1416	14.16%	7.0621×
2d_conv_5	1.0000	0.1777	17.77%	$5.6275 \times$
$2d_deconv_1$	1.0000	0.2116	21.16%	$4.7256 \times$

Why theoretical metrics(FLOPs/Memory) have discrepancy with hardware measurement (Latency, Peak Memory)?

Computational flow of Sparse Convolution.The speedup does not linearly scale with data size Less than **20%** density (5x sparsity) incur **1.5x** latency speedup

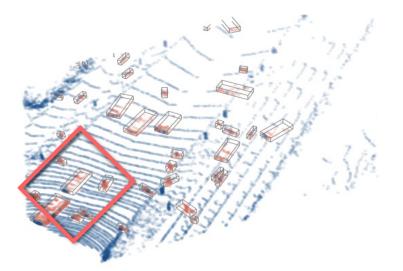
[1] Exploiting Hardware Utilization and Adaptive Dataflow for Sparse Convolution in 3D Point Clouds, MLSYS22

Speedup

Method	FLOPs	Mem.	mAP	K	ITTI M	od.	
	Opt.	Opt.		Car.	Ped.	Cyc.	
CenterPoint [28]	-	-	66.1	79.4	53.4	65.5	
CenterPoint (SPVNAS)	1.07×	1.07×	65.5	79.2	52.1	65.3	Could be combined with
CenterPoint (SPVNAS+Ada3D)	3.95×	4.35×	65.5	78.6	52.5	65.5	Model-level Compression Method to further reduce sparsity
CenterPoint (voxel=0.07	5)		-	59.	22 6	6.48	Other Compression Method:
SPSS-Conv [(voxel=0.07		1.14×	1.14×	57.	80 (5.69	• Only optimize the
CenterPoint-0.5 (voxel=0.07	_	$2.78 \times$	2.78×	57.	19 6	64.08	3D backbone
CenterPoint-A (voxel=0.07)		3.34×	3.96×	58.	62 6	5.68	Could be combined with recent
VoxelNeXT VoxelNeXT-Ada		- 1.19×	- 1.20×	60. 59.		6.60 5.84	"Fully Sparse Detectors" to further reduce sparsity

Table 4: Ablation studies and quantitve efficiency improvements of different Ada3D models on KITTI val. "IP" stands for "importance predictor", "DG" for "density-guided spatial filtering", "SP-BN" for "sparsity preserving batch normalization". The "FLOPs" and "Mem." calculates the normalized resource consumption of the optimized model.

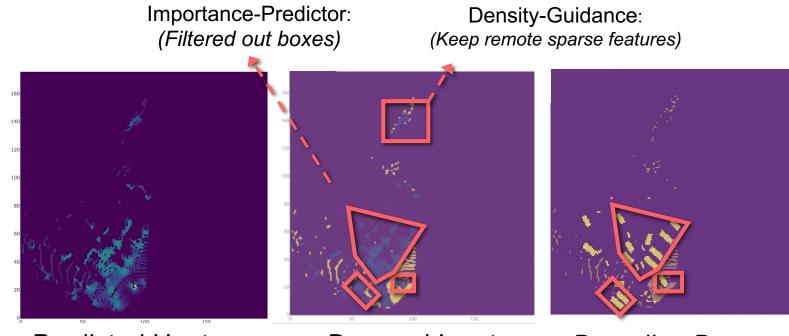
Method		Techn	ique	FL	FLOPs		em.	mAP	Car Mod.	Ped. Mod.	Cyc. Mod.
		DG	SP-BN	3D	2D	3D	2D	(Mod.)	(IoU=0.7)	(IoU=0.5)	(IoU=0.5)
CenterPoint	-	-	-	1.00	1.00	1.00	1.00	66.1	79.4 (-)	53.4 (-)	65.5 (-)
CenterPoint (SP-BN)	-	-	\checkmark	1.00	0.49	1.00	0.45	66.0	79.1 (-0.3)	53.3 (-0.1)	65.6 (+0.1)
CenterPoint (Ada3D-A)	\checkmark	\checkmark	\checkmark	1.00	0.22	1.00	0.25	66.4	79.5 (+0.1)	53.6 (+0.2)	66.1 (+0.6)
CenterPoint (Ada3D-B)	\checkmark	\checkmark	\checkmark	0.66	0.18	0.68	0.17	66.1	79.1 (-0.3)	54.0 (+0.6)	65.3 (-0.3)
CenterPoint (Ada3D-B w.o. DG)	\checkmark	-	\checkmark	0.64	0.18	0.66	0.16	65.1	78.8 (-0.6)	51.6 (-1.8)	64.9 (-0.6)
CenterPoint (Ada3D-C)	\checkmark	\checkmark	\checkmark	0.39	0.08	0.43	0.07	65.4	77.6 (-1.8)	53.5 (+0.2)	65.1 (-0.4)
								+			


SP-BN reduces 50% 2D pixels without sacrificing performance

1.0 less mAP drop With Density Guidance

Effectiveness of BEV-space Importance Predictor

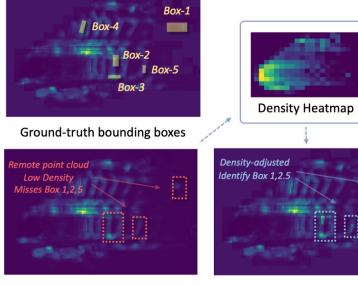
f_{s}	core	R_{drop}	R_{ir}	ıbox	KITTI Mod. AP				
IP	DG	- ourop	3D	2D	Car.	Ped.	Cyc.		
-	-	-	- 5	-	79.1	53.3	65.6		
-	\checkmark	25%	12.3%	9.4%	76.4	45.6	59.4		
\checkmark	-	25%	1.4%	1.1%	78.8	51.6	64.9		
\checkmark	\checkmark	25%	0.8%	0.0%	79.1	54.0	65.2		
-	\checkmark	50%	17.6%	20.3%	72.1	39.4	55.6		
\checkmark	-	50%	6.8%	8.8%	76.9	50.2	63.7		
\checkmark	\checkmark	50%	5.2%	7.5%	77.6	53.5	65.1		


Point cloud painted with Predictor Heatmap

Low inbox rate: Avoid dropping valuable points

Effectiveness of Density-guided Filtering

Predicted Heatmap


Dropped Input

Bounding Boxes

> **Density-guided Filtering:** Leverage the property of Lidar point cloud

Predictor importance score (without density-guidance)

$f_{\mathbf{s}}$	core	R_{drop}	Rin	ibox	KITTI Mod. AP					
IP	DG	- surop	3D 2D		Car.	Ped.	Cyc.			
-	-	-	- 1	-	79.1	53.3	65.6			
-	\checkmark	25%	12.3%	9.4%	76.4	45.6	59.4			
\checkmark	-	25%	1.4%	1.1%	78.8	51.6	64.9			
\checkmark	\checkmark	25%	0.8%	0.0%	79.1	54.0	65.2			
-	\checkmark	50%	17.6%	20.3%	72.1	39.4	55.6			
\checkmark	-	50%	6.8%	8.8%	76.9	50.2	63.7			
\checkmark	\checkmark	50%	5.2%	7.5%	77.6	53.5	65.1			

Low inbox rate: Avoid dropping valuable points

Thanks for Listening!

٢		
ſ		
I	•	— I
L		

For more information about Ada3D, Please go to our Project Page: <u>https://a-suozhang.xyz/ada3d.github.io/</u> (#under construction##) or contact me through Email: suozhang1998@gmail.com WeChat: ztc19980908

If you are interested in Efficient Deep Learning Research, Please go to our Group Website (NICS-EFC) for more information. <u>https://nicsefc.ee.tsinghua.edu.cn/</u> Visiting Student Welcomed!

We also conduct research about Efficient AIGC tasks (e.g., LLM & Diffusion)

If you are interested in **Efficient and Intelligent Driving**, See NOVAUTO A startup focuses on autonomous driving. <u>https://www.novauto.com.cn/</u>

NOVAULO 超星未来

