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Ø 3D Perception: Key component of comprehending the 3D world
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Background: Advances in 3D Perception

Autonomous Driving Metaverse Embodied AI



Ø Autonomous Driving: Efficiency Challenges
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Background: Efficiency Challenge

Low Latency Requirement:
The reaction speed of self-driving car should
be faster than human driver (250ms)

Restricted Hardware Resources

High Accuracy Requirement:
Perception should be accurate to avoid
safety issues.

High Efficiency & Accuracy Requirement
Conflict with

Calls for Efficiency Improvement！

+ +

Budget Restrict:
Price of computing chips on self-driving
cars are restricted.

Power Restrict:
Energy-efficient embedded computing
platforms(~30W) instead of consumer-level
GPU (~300W) is adopted



Ø Voxel-based 3D Perception: Good Performance with Large Cost
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Background: Voxel-based 3D Perception

[1] Xu et. al., RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation, ICCV21
[2] Ling et al., PointAcc: Efficient Point Cloud Accelerator. MICRO21

(Figure from TPVNet[1] )

Point Cloud

Sparse Voxel

PointACC[2]: Sparse Convolution with
7x less MACs runs 1.3x slower on GPU

https://www.semanticscholar.org/paper/RPVNet%3A-A-Deep-and-Efficient-Range-Point-Voxel-for-Xu-Zhang/5bf7c535e6cc94c9834a7c31cc3d5ed9376757c3


Ø3D Sparse Convolution: Convolution with sparse mask C_in & C_out

2023/8/8 NICS-efc Lab Page 6

Preliminary: 3D Sparse Convolution

• Sparse Convolution: Enlarging the dense.
• Submanifold sparse convolution: 
• To maintain the sparsity through convolution networks
• Less computation with comparable performance
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[1] Yin et. al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, ICCV17

https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4


ØVoxel-based 3D Detection: Framework overview
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Preliminary: Voxel-based 3D Detection

[1] Yin et. al., Center-based 3D Object Detection and Tracking, CVPR20
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https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4
https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4


Ø Prior research of efficient 3d perception: Mainly focus on reducing the
model-level redundancy
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Prior Research: Efficient 3D Perception

[1] Tang et. al., Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution, ECCV20.
[2] Liu et al., Spatial Pruned Sparse Convolution for Efficient 3D Object Detection, NeurIPS22.
[3] Zhang et. al.,Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds, CVPR22

SPVNAS[1]
Use NAS (Neural Architecture
Search) to search for model
macro deisgn (depth/width)

SPSS-Conv[2]
Kernel-level pruning of the 3D

sparse convolution.

IA-SSD[3]
Design novel feature-based

downsampling module to replace
FPS (Furthest Point Sampling)

https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4
https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4
https://www.semanticscholar.org/paper/VoxelNet%3A-End-to-End-Learning-for-Point-Cloud-Based-Zhou-Tuzel/80f5ee8578ee76e2c17824f211762ffec7e029d4


Ø Exploiting Data-level Redundancy: Another approach of improving the
efficiency of 3D Detector.
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Key Motivation: Data Redundancy

Redundant
background points

(Only 5% nonzero pixels
projected from 3D voxels)

Redundant
background pixels

3D 2D

Redundant
overdense points



Ø Exploiting Data-level Redundancy: Qualitative Results.
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Key Motivation: Data Redundancy
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• When dropping inputs 70% points
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• When random dropping 30% points,
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Large Redundancy Exists！



Ø <Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for Efficient 3D 
Object Detection>: Adaptive Inference, discard redundant input during inference.
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Key Contribution: Exploit Spatial Redundancy

3D Backbone 2D Backbone

Ada3D

Reduce 40% redundant 3D voxels

Ada3D

Reduce 80% redundant 2D pixels

Projection

5x FLOPs and
memory saving

5.26x 4.93x

1.38x GPU latency saving
2.21x GPU peak memory

1.38x 2.21x
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Ø Overview of Ada3D: 3 Key Components
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Method: Overview

(1) Feature-based
Importance Predictor

(2) Density-guided
Spatial Filtering

(3) Sparsity Preserving BN



Ø BEV-space Importance Predictor: predict pixel-wise relative importance
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Method-1: Importance Predictor

Predictor Training Ground-truth:
Center-based Object Heatmap
(Gaussian Ball Rendered Object Center)

Lightweight Predictor:
- Shared BEV-space Predictor
- 5 Layer 2D Convolution Network
- Low Resolution
- Efficient Group Convolution
- <1% Computational Cost than Backbone
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Ø Density-guided Filtering: Leverage the property of Lidar point cloud
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Method-2: Density-based Spatial Filtering
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Ø “Normal BN”: Sacrifices sparsity
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Method-3: Spatial-Preserving BN

2D BEV Backbone: Lose sparsity after 1st BN Layer
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Ø Straight Forward Solution: “Nonzero-BN”, apply BN to nonzero elements
only, when finetuning, instable training and performance degradation.
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Method-3: Spatial-Preserving BN
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Ø Simple Fix: “SP-BN”, skip zero mean in BN.
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Method-3: Spatial-Preserving BN
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Input Distribution
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SP BN

Retaining Sparsity Retaining
Relative Relations
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Experiments: KITTI Overview

(-0.1)
(-2.2)

Without Sacrificing Loss, 5x Computation/Memory Optimization
With Moderate Perf. Loss, 10x Computation/Memory Optimization
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Experiments: nuScenes & ONCE Overview

2~3x
FLOPs/Memory Optimization
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Experiments: KITTI Detailed

Ada3D-A: Filter 80% 2D pixels, +0.3 mAP

Ada3D-B: Filter 40% 3D voxels, 80% 2D pixels, 5.26x FLOPs, 4.93x Memory Opt., -0.0 mAP

Ada3D-C: Filter 60% 3D voxels, 90% 2D pixels, 9.83x FLOPs, 8.49x Memory Opt., -0.7 mAP
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Experiments: Hardware Measurement

Implementation: RTX3090, CUDA-11.1, Gather-
Scatter GEMM SPConv v2.2.6

Ada3D-B: 5.26x FLOPs, 4.93x Memory Opt.
1.36x Latency, 2.22x Peak Memory

1.45x

1.33x

4.45x

1.5x

1 Both 3D and 2D part requires
optimization:

2 3D part’s latency & memory
optimization grows linearly
with FLOPs/Memroy while 2D
part DONOT. (WHY?)

Latency:
3D: 9.7ms -> 1.33x
2D: 26.2ms -> 1.45x
Peak Mem.
3D: 1003 MB -> 1.5x
2D: 1039 MB -> 4.45x

FLOPs:
3D: 1.51x
2D: 4.54x
Memory.
3D: 1.47x
2D: 5.8x
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Experiments: Hardware Measurement

Q
Why theoretical metrics(FLOPs/Memory)
have discrepancy with hardware
measurement (Latency, Peak Memory)?

Computational flow of Sparse Convolution.The
speedup does not linearly scale with data size
Less than 20% density (5x sparsity) incur 1.5x
latency speedup

[1] Exploiting Hardware Utilization and Adaptive Dataflow for Sparse Convolution in 3D Point Clouds, MLSYS22

Ada3D-B: 5.26x FLOPs, 4.93x Memory Opt.
1.36x Latency, 2.22x Peak Memory

Already at
high sparsity

Increase sparsity
from dense

Speedup

Sparse Rate

5x

1.5x
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Analysis: Other Compression Method

Could be combined with recent
“Fully Sparse Detectors”
to further reduce sparsity

Other Compression Method:
Only optimize the
3D backbone

Could be combined with
Model-level Compression Method

to further reduce sparsity
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Analysis: Ablation Studies

1.0 less mAP drop
With Density Guidance

SP-BN reduces 50% 2D pixels
without sacrificing performance



Analysis: Ablation Studies

Ø Effectiveness of BEV-space Importance Predictor
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Point cloud painted
with Predictor Heatmap

Low inbox rate: Avoid dropping
valuable points



Ø Effectiveness of Density-guided Filtering
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Analysis: Ablation Studies

Dropped Input Bounding Boxes

Density-Guidance:
(Keep remote sparse features)

Importance-Predictor:
(Filtered out boxes)

Predicted Heatmap



Ø Density-guided Filtering: Leverage the property of Lidar point cloud
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Analysis: Ablation Studies

Low inbox rate: Avoid dropping
valuable points
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Thanks for Listening!

For more information about Ada3D,
Please go to our Project Page:
https://a-suozhang.xyz/ada3d.github.io/
(🚧under construction🚧)
or contact me through
Email: suozhang1998@gmail.com
WeChat: ztc19980908

If you are interested in Efficient and
Intelligent Driving, See NOVAUTO
A startup focuses on autonomous driving.
https://www.novauto.com.cn/

If you are interested in Efficient Deep
Learning Research, Please go to our Group
Website (NICS-EFC) for more information.
https://nicsefc.ee.tsinghua.edu.cn/
Visiting Student Welcomed!
We also conduct research about
Efficient AIGC tasks (e.g., LLM & Diffusion)

Project Page WeChat

https://a-suozhang.xyz/ada3d.github.io/
https://www.novauto.com.cn/
https://nicsefc.ee.tsinghua.edu.cn/

