This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Exploring the Potential of Low-bit Training of
Convolutional Neural Networks

Kai Zhong, Xuefei Ning, Guohao Dai, Zhenhua Zhu, Tianchen Zhao, Shulin Zeng,
Yu Wang, Fellow, IEEE, and Huazhong Yang, Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) have been
widely used in many tasks, but training CNNs is time-consuming
and energy-hungry. Using the low-bit integer format has been
proved promising for speeding up and improving the energy
efficiency of CNN inference, while CNN training can hardly
benefit from such a technique because of the following challenges:
(1) The integer data format cannot meet the requirements of the
data dynamic range in training, resulting in the accuracy drop;
(2) The floating-point data format keeps sizeable dynamic range
with much more exponent bits, thus using it results in higher
accumulation power than using the integer data format; (3) There
are some specially designed data formats (e.g., with group-wise
scaling) that have the potential to deal with the former two problems
but common hardware platforms can not support them efficiently.

To tackle all these challenges and make the training phase
of CNNs benefit from the low-bit format, we propose a low-bit
training framework for convolutional neural networks to pursue
a better trade-off between accuracy and energy efficiency. (1)
We adopt element-wise scaling to increase the dynamic range of
data representation, which significantly reduces the quantization
error; (2) Group-wise scaling with hardware friendly factor format
is designed to reduce the element-wise exponent bits without
degrading the accuracy; (3) We design the customized hardware
unit that implements the low-bit tensor convolution arithmetic with
our multi-level scaling data format. Experiments show that our
framework achieves a superior trade-off between the accuracy
and the bit-width than previous low-bit training studies. For
training various models on CIFAR-10, using 1-bit mantissa and
2-bit exponent is adequate to keep the accuracy loss within
1%. On larger datasets like ImageNet, using 4-bit mantissa and
2-bit exponent is adequate. Through the energy consumption
simulation of the whole network, we can see that training a
variety of models with our framework could achieve 4.9 ~ 10.2x
higher energy efficiency than full precision arithmetic.

Index Terms—Low-bit Training, Quantization, Convolutiuonal
Neural Networks

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) have

achieved state-of-the-art performance in many computer
vision tasks [[1]-[3]]. However, deep CNNs are both computa-
tion and storage-intensive. The training process could consume
up to hundreds of ExaFLOPs of computations and tens of
GBytes of storage [4], thus posing a tremendous challenge
for training in resource-constrained environments. At present,
GPU is commonly used to train CNNs, and it is energy-
hungry. The power of a running GPU is about 250W, and
it usually takes more than 10 GPU-days to train one CNN

All authors were with the Department of Electronic and Computer En-
gineering, Tsinghua University, Beijing, China, and Beijing National Re-
search Center for Information Science and Technology (BNRist) (e-mail: yu-
wang @tsinghua.edu.cn).

TABLE I
THE NUMBER OF DIFFERENT OPERATIONS IN THE TRAINING ON
IMAGENET. ABBREVIATIONS: “CONV”: CONVOLUTION; “BN”: BATCH
NOMALIZATION; “FC”: FULLY CONNECTED LAYER; “EW-ADD”:
ELEMENT-WISE ADDITION; “F”: FORWARD; “B”: BACKWARD.

Op Name Op Type ResNetl8 GoogleNet

Conv (F) Mul&Add 1.88E+09 1.58E+09

Conv (B) Mul&Add 4.22E+09 3.05E+09

BN Mul&Add 3.06E+06 3.23E+06

FC Mul&Add 5.12E+05 1.02E+06
EW-Add (F) Add 7.53E+05 0
EW-Add (B) Add 9.28E+05 0

SGD Update (B) Mul&Add 1.15E+07 5.97E+06

model on large practical datasets like ImageNet [5]. Therefore,
reducing the energy consumption of the training process has
raised interest in recent years. Quantization of CNNs has
drawn significant attention since it can reduce both the storage
and computational complexity. It is pointed out that 32-bit
floating-point multiplication and addition units consume about
20 ~ 30x more power than 8-bit fixed-point ones [6]. Also,
using an 8-bit data format could save the energy consumption
of memory access by roughly four times.

Many studies [7]-[10] focus on amending the training
process to acquire a reduced-precision model with higher
inference efficiency. However, these methods rely on tuning
from a full precision pre-trained model, which is costly or
introduces more optimization operations into training for a
better inference performance. Therefore, they are not suitable
for efficient training. Besides the studies on improving infer-
ence efficiency, some studies focus on the training process.
WAGE and FullINT [11], [12] implement fully fixed-point
training with 8-bit and 16-bit integers to reduce the training
cost. However, they fail to achieve an acceptable accuracy
since the dynamic range of data in training is large, and the
SGD algorithm needs a small quantization error to ensure
convergence. This contradiction between the large dynamic
range requirement of the training algorithm and the small
representation range of high-efficiency integer data format
is the first challenge of low-bit training.

The floating-point format has a larger representation range
than the fixed-point format with the same bit-width. FPS,
HFPS, and S2FPS [13[]-[|15]] adopt 8-bit floating-point multipli-
cations in convolution, in which more element-wise exponent
bits are used to get a larger dynamic range. However, the
precision of the effective number is lost, and they have to use
a complex quantization format. On the other hand, the dynamic

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_ﬁlgublicationsﬁstandards/publications/righjfs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

- Floating Point Operation |:| Integer Operation

>
(o N
o
(0]
o)
=
(0]
(0]

(a) Previous methods
—
/AW Scale
D e MR-
Scale,y
AW

Scalel
L ACC Unit
Our method

1

93l] Jappy

(N,

z

Fig. 1. The adder tree convolution hardware architecture. (a) Previous
studies use low-bit floating-point multiplication (FP MUL) (e.g., 8-bit),
but single precision accumulations are still needed. (b) We not only makes
MUL less than 8-bit, but also simplify the local accumulator.

range of intermediate accumulation results is too large. It can
only be conducted in the floating-point format, which results
in higher energy consumption than integer accumulation. The
second challenge of low-bit training is to realize low-cost
multiplications and accumulations (MACs) for floating-
point data formats with large dynamic ranges.

In this work, we design a novel low-bit tensor format
with multi-level scaling (MLS format) to maintain a high
representation capability, which can be manipulated by our
customized hardware design with high energy efficiency. In
the MLS format: 1) Element-wise scaling is used to increase
the dynamic range of data representation, significantly re-
ducing the quantization error. 2) A specially designed group
scaling factor is used to reduce the element-wise exponent
bits with negligible overhead so that the accumulation can
be simplified to integer accumulation without hurting the
representational capability. Also, the group scaling could be
conducted efficiently by shifting and additions instead of
multiplications. Thus we can reduce the energy consumption
of most computing unitswhile keeping the overall quantization
error small to achieve accurate and efficient calculation.

Common hardware (e.g., GPU) is designed to support
general floating-point arithmetic and can not efficiently support
most of the existing low-bit tensor format. Furthermore, the
systolic array architecture widely used in neural network
accelerator treats convolution as general matrix multiplication
and can not support group-wise scaling. Hence, the third
challenge of low-bit training is that common hardware
does not support specially designed data formats with
group-wise scaling. To this end, we design 3) the hard-
ware of low-bit tensor convolution to support our training
framework efficiently. Our computing unit consists of low-bit
multiplication, integer intra-group accumulation, group-wise
scale unit, and inter-group addition tree, as shown in Fig. [I]
(b). Different from previous methods with similar architecture
(Fig. |I| (a)), our multiplications have smaller bit-width, and the

[IMuL [ADD —O— AAcc
baseline(0%) 0
-0.3%
6.3X\ °
T _09%
6 -1
c
k=2
7]
o 5
e 2 o
=] o8
O 4 5
2 z
8 5 R
] S
o 2.2x 39% 2
E 2 4
2 1.3x
1x
1
; i -5
0
Full FP8 Ours INT8

Fig. 2. The model accuracy drop (ResNet-18 on ImageNet) and energy con-
sumption of calculating 3 X3 convolutions with different arithmetic, nomalized

to our design. FP8: [14]; Int8: [12].

accumulations are conducted with integer arithmetic instead

of floating-point one. Therefore, as shown in Fig. 2} our

framework can significantly reduce the energy consumption

of convolution operations compared with other frameworks.
To summarize, the contributions of this paper are:

1) This paper proposes the MLS tensor format to strike a
superior balance between representation capability and
energy efficiency. The element-wise scaling improves
the dynamic range of data representation. Furthermore,
using the group-wise scaling results in a low bit-width
of element-wise exponents so that the intra-group ac-
cumulation can be conducted with integer accumulation
for higher energy efficiency. We elaborate on the cor-
responding low-bit training framework and analyze that
the MLS tensor format can be manipulated efficiently
with our low-bit tensor convolution arithmetic.

2) Experimental results demonstrate the representational
capability of the MLS format: For training ResNets,
VGG-16, and GoogleNet on CIFAR-10, using 1-bit man-
tissa and 2-bit exponent for each element can achieve
an accuracy loss within 1%. For training these models
on ImageNet, 4-bit mantissa and 2-bit exponent are
adequate to achieve an accuracy loss within 1%.

3) We conduct hardware design of low-bit tensor convo-
lution arithmetic with MLS format and shows that our
framework can indeed compute MACs in convolutions
efficiently, without degrading the model accuracy. We
implement Register Transfer Language (RTL) designs
of accelerators with different arithmetic. The energy
consumption simulation shows that training a variety of
models with our framework could achieve up to 10.2x
and 1.2x higher energy efficiency than training with 32-
bit and 8-bit floating-point arithmetic. Furthermore,
we can achieve much higher accuracy than previous
fixed-point training frameworks [11], [12]].

The correspondences of the challenges in low-bit training
and our contributions are summarized in Fig. 3] The rest of

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeogﬁlé)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Contributions

Challenges

element-wise
exponent (sec. 4.1)

dynamic range

group-wise scaling

(sec. 4.2) calculation efficiency

group-wise
Conv unit (sec.5)

hardware support

Fig. 3. Contributions of this paper and challenges of low-bit training.

this paper is organized as follows. Sec. |lI| discusses the related
work of low-bit training, and Sec. [[T]] gives basic knowledge
on the training framework of CNNs. Then, Sec. [[V] explains
why we proposed element-wise scaling and group-wise scaling
in CNN low-bit training and summarizes them in MLS tensor
format. The corresponding convolution arithmetic unit design
is proposed in Sec. [V} The dynamic quantization method and
its overhead are discussed in Sec. [V-A] and the experiment
results are shown in Sec. [V Finally, we conclude in Sec. [VIII}

II. RELATED WORK
A. Post-Training Quantization

Earlier quantization methods focus on the post-training
quantization (PTQ) setting and quantize the pre-trained full
precision model using the codebook generated by clustering
or other criteria (e.g., SQNR [17], entropy [[18])). POST [9]
and HAWQ select each channel’s bit-width and clipping
value through the analytical investigation. GEMMLOWP
proposes an integer convolution arithmetic for efficient infer-
ence. However, it is hard to be used in training because the
scale of the output tensor should be known before calculation.
MSFP proposes a data format developed for the cloud-
scale inference on custom hardware. These methods show that
low-bit CNN models still have adequate representation ability.
However, these methods aim to accelerate the inference of a
pre-trained model and can not accelerate the training process.

B. Quantization-Aware Training

Quantization-aware training (QAT) considers quantization
effects in the training process to further improve the accuracy
of the quantized model. It is used for training binary or
ternary networks. Although the follow-up studies [23],
[24] have proposed new techniques to improve the accuracy,
the extremely low bit-width still causes notable accuracy
degradation. Other methods seek to retain the accuracy with
relatively higher precision, e.g., 8-bit [7]. develops a
GPU-based training framework to get dynamic fixed-point
models or Minifloat models. [8] parameterizes and trains the
clipping value in the activation function to properly restrict the
range of activation. These methods obtain quantized models
that achieve better trade-off of accuracy and inference effi-
ciency, but the training process is still full precision.

Weight,
Buffer

1
1
: : Error;

1
"""""""""""""""" ! ® MLS Conv (Sec. V-B)
"""""""""""""""""" Dynamic Quant. (Sec. V-A)
,rGet Gradient i @ o
i {_]SGD 1| 3 Froating-point ops
H MLS Data
:) P [Jwsoaa
N e e o o o e 1 -Floatmg-PomtData

Fig. 4. Computation flow of our low-bit training framework.

C. Low-Bit Training

To accelerate the training process, [26] proposes to use
fixed-point arithmetic in both the forward and backward pro-
cesses. [L1], implement full-integer training frameworks
for integer-arithmetic machines. However, these methods cause
notable accuracy degradation. So instead, uses 8-bit and
16-bit integer arithmetic and achieves better accuracy.
Nevertheless, this arithmetic is designed for accelerating
inference and requires knowing the output scale before cal-
culation. Therefore, although quantizes the gradients in
the backward process, it is not practical for actual training
acceleration. To summarize, full-integer training frameworks
have high energy efficiency but still suffer from considerable
accuracy degradation when the bit-width is reduced to 8 bit.

Besides the studies on full-integer training frameworks,
some studies propose new low-bit formats. BFloat [28] uses
a 16-bit floating-point format that is more suitable for CNN
training. Flexpoint proposes the format that contains 16-
bit mantissa and 5-bit tensor-shared exponent (scale), which
is similar to the dynamic fixed-point format [30]. Recently,
8-bit floating-point formats [I3]-[15] are used with chunk-
based accumulation. However, to ensure a sufficient represen-
tation range, the exponent bit-width in their format is larger
than 5, making the operations (especially the accumulation)
using these formats inefficient. More recently, a radix-4 data
format is proposed along with two-stage quantization
to realize 4-bit training, but the accuracy is not satisfying
enough, and its computation is complex. In this work, the MLS
tensor format is designed to have a small exponent bit-width.
Thus, the accumulation can be conducted using fixed-point
arithmetic while retaining the overall model accuracy.

III. PRELIMINARY
A. Computation Flow for CNN Training

This paper denotes the filter parameters and feature map
of convolution as weight and activation, respectively. In the
back-propagation, the gradients of activation and weight are
denoted as error and gradient, respectively. As shown in Fig.[4}
generally, in a convolutional layer, convolution is followed by
batch normalization (BN), nonlinear activation (e.g., ReLU),
and other operations (e.g., pooling). As shown in Table[[| the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

MAC:s in convolutions are the majority of operations in CNN
training. Hence, conducting MACs in convolutions with low-
bit arithmetic is promising for improving energy efficiency.
And retaining other operations (e.g., BN, weight update) using
high bit-width helps stabilize training. Therefore, we conduct
quantization before all three types of Conv (Conv of weight
and activation, weight and error, activation and error). The
input tensors of Conv are all in low-bit format, and the
output tensor of Conv is floating-point since the convolution
calculation will increase the data precision. Other operations
such as BN are all performed on floating-point tensors.

B. Basic Formula of Convolution

Weight, activation, and error are all 4-dimension tensors
in the training process. For the activation and error, the four
dimensions are sample in batch (/V), channel (C'), feature map
height (F},), and feature map width (F,,). For weight, the four
dimensions are output channel (C,), input channel (C;), kernel
height (K}), kernel width (K,,). We take Conv(Weight, Acti-
vation) (Conv(W, A)) as the example to introduce the basic
convolution formula, and the other two types of convolution
can be implemented similarly. Denoting the input channel
number as C' and the kernel size as K = K, = K,, the
original formula of convolution is

P
=
0
S
L

Z[n,co,z,y] = Conv(W,A) =

ct

(D

03
W[CO, Ci7iaj] X A[’I’L, C?:,JC + Zay +.]]

Il
=
<.

Il
=

We can see that every element in the output 4-dimension
tensor is calculated by three loops of MACs. And three
dimensions of input tensors are included in this accumulation.
On common hardware platforms like TPU [32] and GPU,
these tensors are processed with the “image to column”
transformation. Then the convolution is calculated as a general
matrix multiplication, in which grouping techniques cannot be
used. However, in many customized CNN accelerators [33]],
[34]], parallel PE units and addition tree architecture are used.
The MACs can be grouped into intra-group ones and inter-
group ones, makeing it possible for us to apply group-wise
scaling. Next, we will show the advantages of group-wise
scaling through data format design and hardware design.

IV. MULIT-LEVEL SCALING LOW-BIT TENSOR FORMAT

Using low-bit arithmetic in the training process is beneficial
for energy efficiency. However, retaining a good accuracy in a
low-bit fixed-point training process is challenging since the
backpropagated gradients need high precision [26]. In this
work, we design an MLS low-bit tensor format to retain the
representational power of low-bit representations in CNNs.
It consists of three levels of scaling factors: 1) Tensor-wise
scaling factor; 2) Group-wise scaling factor; 3) Element-wise
exponent. By incorporating the multi-level scaling technique,
the element-wise bit-width can be largely reduced to boost the
energy efficiency while the overall dynamic range is preserved.

This section gives the design details of the MLS low-bit
tensor format, which is the core of our low-bit training frame-
work. And in the next section Sec. [V] we will elaborate on

Tensor Scale S,

S [Exp, | Man, |

r X N\

Group 0 Scale Sy, Group 1 Scale Sy, Group N Scale Syy
S _Expg M| [Expg [M| | Exp, [M]

s | Expx |Manyg s | Expy [Mang s | Expx |Mang

5,0 s | Expy |Many s |Expy |Many |..... s | Expy |Many

s | Expy |Many s | Expy [Many s | Expy |Many

Group 0 Group 1 Group N

Fig. 5. The multi-level scaling (MLS) low-bit tensor format.

the framework and hardware design centering around the MLS
format to demonstrate that the conversion and computation of
the MLS-formatted data are energy efficient.

A. Overall Mapping Formula of the MLS Format

In a commonly used scheme [19], the mapping function
from fixed-point representation and the floating-point values
is float = scale x (Fixz + Bias), in which scale and Bias
are shared in one tensor. In training, however, since data
distribution changes over time, one cannot simplify the Bias
calculation as they do. Thus, we adopt a quantization scheme
without bias and extend the scaling factor to three levels for
better representation ability. The resulting MLS tensor format
is illustrated in Fig. [5}] Denoting a 4-dimensional tensor that
is the operand of Conv (weight, activation, or error) as X, the
mapping formula of the MLS tensor format is

X[%]ak?l} = Ss[i7j7kvl] X St X Sg[laj] X X[Zv.]7kvl] (2)

where [-] denotes the indexing operation, Ss is a sign tensor
(“s” in Fig. EI), Sy is a tensor-wise scaling factor, and Sg are
group-wise scaling factors shared in each group. S, and X
use the same data format, which we refer to as (E, M), a
customized floating-point format with E-bit exponent and M-
bit mantissa (no sign bit). A value in the format (E, M) is

float = I2F (Man, Exp) = Frac x 2~

M 3
(1 + 2;”) x 27 Erp)

where Man and FExp are the M-bit mantissa and E-bit
exponent, and Frac € [1,2) is a fraction.

B. Group-wise Scaling

The dynamic ranges of weight, activation, and error are
large in training, but these values are not evenly distributed.
The values in different groups have distinct dynamic ranges,
as shown in Fig. [6] The blue line shows the max value in
each group when activation and error are grouped by channel
or sample. If we use the overall maximum value (green lines
in Fig. [6) as the overall scaling, many small elements will
be swamped. Furthermore, there are usually more than half
groups in which all elements are smaller than half of the

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5
le—4 le—4
B crrrrress g 3.5 rrrreeee s T
5 3.0 3.0
E Ey 329 323
I I S20 224
% I I g I ——
£ £, g gl
1.0 1.0
1 ---- max 1 ---- max ---- max
- half - half 03 - half 03
b 5 10 15 20 25 30 35 70 40 60 80 100 120 140 510 15 20 25 30 35 % 20 40 60 80 100 120 140

(a) group number (b) group number

Fig. 6.

overall maximum (red line). Thus, to fully exploit the bit-
width, it is natural to use group-wise scaling factors. Our work
considers three grouping dimensions: 1) the sample dimension
of activation and error tensors or the output channel dimension
of weight tensors, 2) the channel dimension of tensors, 3) the
sample and the channel dimension simultaneously.

Naive floating-point group-wise scaling in previous stud-
ies [21]] cannot bring actual hardware acceleration. Since when
the values of different groups are accumulated, the floating-
point scaling factors need to be multiplied with elements,
which involves floating-point multiplications. To facilitate a
hardware-friendly low-bit training framework, we propose a
special scaling format in which the floating-point group-wise
scaling is separate into tensor-wise and group-wise scaling
factors. The first level tensor-wise scaling factor S; is a
standard floating-point number ((E;, M;) = (8,23)). Consid-
ering the actual hardware implementation cost, we propose two
hardware-friendly schemes for the group-wise scaling factor
Sg, which can be denoted as (E,,0), and (E,, 1). The scaling
factor in (E,,0) format is a power of two, which can be im-
plemented as shifting. From Eq.|3| a S, = I2F (Mang, Exp,)
value in the (E,, 1) format can be written as

Sg = (1 +]\4(21719) x 9~ Ezpg

27Ea:pg + 27E:1:p971

Mang =1 “)

2~ Expg Mang =0

which is a sum of two shiftings and can be implemented with
low hardware overhead. We will show how the convolution
arithmetic of MLS tensors benefits from this special format of

group-wise scaling factors in Sec. (Eq. [§).

C. Element-wise Scaling

The third level scaling factor S, = I2F(0,Exp,) =
27 BePs is the element-wise exponent in X = S, (1+ 4%),
and we can see that the elements of X in Eq. [2| are in a
(E,, M,) format. The specific values of E, and M, determine
the cost of the MAC operation, which will be discussed in
Sec. Compared with integer data format (E, = 0), adding
element-wise exponent helps achieve a balance in the dynamic
range and precision of representation. Furthermore, by using
group-wise scaling, the bit-width of X can be largely reduced.

(c) group number (d) group number

Maximum value of each group of activation (a, b) and error (c, d). (a)(c): Grouped by channel; (b)(d): Grouped by sample.

Algorithm 1: The low-bit training framework

Input: L: number of layers; WL current float
weights; AO: inputs; T': label; lr: learning rate

Output: th_;_le updated float weights for step ¢ + 1

/* forward propagation */

1forlinl:Ldo

2 qW' = DynamicQuantization(W?)

3 qA'~' = DynamicQuantization(A1)

s | Z'= LowbitConv(qgW', qA~1)

5 Y! = BatchNorm(Z")

6 Al = Activation(Y'?)

7 end

8 % = Criterion(AL, T)

/* backward propagation */

for [in L:1do

dloss __ Oloss . . 1 l
9 Syt = Far x Activation’(Y*)
10 Jloss __ Oloss %)
9zl — oyt * ozt o
11 qE* = DynamicQuantization(%)

12 | G'= LowbitConv(¢gE', qA™1)
B | W,=W!'-IrxG!

+1 =
14 if [is not 1 then

15 aaf:ffl = LowbitConv(qE!, qgW')
16 s = STE(2%:5)

17 end

18 end

Return W15

V. LOW-BIT TRAINING FRAMEWORK

This section describes the low-bit training framework to
leverage the MLS tensor format. Alg. [I| summarizes a training
iteration in our low-bit training framework, and Fig. [] shows
the computation flow of one layer. Our framework is different
from a quantization-aware training framework in that the con-
volution operands are actually quantized to the low-bit MLS
format in our computation flow. In the algorithmic description
(Alg. [Tl Line 13), we use the formula of the vanilla stochastic
gradient descent (SGD) for clarity, whereas in practice, one
can use other optimizers. STE(-) in Line 16 stands for the
Straight Through Estimator widely used in QAT methods [21]],
[26]. Finally, the ¢ subscripts denoting the time step ¢ are omit-
ted for simplicity. We describe two core parts of the framework

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Algorithm 2: Dynamic Quantization

Input: X: float 4-d tensor; R: U[—1, 1] distributed
random tensor; (E,, M): bit-width of
group-wise scaling factors; (F,, M,): bit-width
of each element

Output: S,: sign tensor; S;: tensor-wise scaling

factor; Sg: group-wise scaling factors; X:
quantized elements

/* calculating scaling factors */

Ss = Sign(X), Sy = GroupMaxz(Abs(X))

Sy = Max(Sy), Sgr = Sr + S;

Expy, Fracg = Exponent(Sgyf), Fraction(Sgy)

Exp, = Clip(Exp,, 1 — 2F4,0)

Fracg = Ceil(Fracg x 2Ms) =+ 2Ms

S, = Fracy x 2FPg

/* calculating elements */

7 Xg = Abs(X) + Sg + S,

8 Exps, Frac, = Exponent(Xy), Fraction(Xy)

/l quantize F'rac, to M, bits with underflow
handling

9 Femin =1— 25e

10 Frac,s = Fracg, X 2

Frac, x 2Mz=FamintEq
11 Fracgint = Clip(SRound(Fracgs, R)),0,2M: —1)
12 Fracy = Fracgnt X 2~ M= if not underflow, else
Fracgint x 2~ MetEamin—Fz
13 Exp, = Clip(Empwv Eimin, _1)
14 X = Frac, x 2E»p=
Return Ss, S;, Sg, X

A T A W N -

Mz if not underflow, else

to demonstrate why the conversion and computation of our
proposed format are energy efficient: Sec. [V-A| describes the
dynamic quantization DynamicQuantization (FP-to-MLS
conversion), and Sec. describes the convolution arithmetic
LowbitConv (MLS-to-FP conversion).

A. Dynamic Quantization to MLS Tensor

The dynamic quantization (DQ) converts a floating-point
tensor to an MLS tensor. The two main steps are calculat-
ing the scaling factors Ss,S¢, Sy and getting the quantized
elements X, as shown in Alg. 2l In Alg. [2| the sign tensor,
overall maximum, and group-wise maximums are got in line
1~2. And group-wise scaling factors are quantized by group-
wise maximums in line 3~6. Exponent(-) and Fraction(-)
are to obtain the exponent (an integer) and fraction (an integer
representing numbers € [1,2)) of a floating-point number,
which is used in the quantization of group-wise scalings and
element-wise numbers in line 3 and line 8. The underflow
handling follows the IEEE 754 standard [35[], as shown in
line 9~13. And stochastic rounding SRound(z,r) is used
when calculating the quantized elements X in line 11. [36]
proposed this technique because stochastic rounding is an un-
biased rounding scheme, thus the overall direction of gradient
descent in training can be more accurate. It is implemented
with a uniformly distributed random tensor r ~ U[—0.5,0.5]
which can be generated offline as how it is done on GPU.

Note that Alg. [2] describes how we simulate the dynamic
quantization process on a floating-point platform. While on
the hardware, the exponent and mantissa could be obtained
directly, and Clip is conducted by simply truncating some
bits of a number.

B. Low-bit Tensor Convolution Arithmetic

In this section, we describe how to do convolution with
two low-bit MLS tensors. Using the MLS tensor format and
denoting the corresponding values (scaling factors S, expo-
nents Exp and fractions F'rac in the following equations) of
W and A by the superscript () and (%), one output element
Z[n,co,x,y] of Conv(W, A) is calculated as

C—-1K
Z[n7 CO7 J/’,y] = Z
ci=0

i

Cc—-1

= (St(w)st(“)> Z [(Ss(,w)[co, ci]S;a) [n, cz})
ci=0

K—1K—

>

1=

(&)

-

W co, ci, i, j|Aln, ci,x + i,y + j]|

M7

o

Q

=5

13

5P [n, co, ci] Pln, co, ci]
0

Q

Eq. [5| shows that there are intra-group MACs that calculate
P(n, co, ci] and inter-group MACs that calculate Z.

Intra-group MACs The intra-group calculation of P is
Pn,co,ci] = ZK71 (Frac(“’) [co, ci,i,j]Frac(“)[n, ci,i,j]) X 2(

1,7=0
(6)

where Frac, Exp are (M, + 1)-bit and E,-bit. The intra-
group calculation contains the multiplication of two (M, +1)-
bit values and 2 x (2= —2)-bit shifting. The resulting (20, +
2F<+1 _ 2).bit integer values need to be accumulated with
enough bit-width to get the partial sum P. In previous 8-bit
floating-point frameworks [13], a floating-point accumulator
is needed since they use £, = 5, and (2M,, + 2F=+1 —2) is
larger than 64. In contrast, we can use an integer accumulator
since we adopt F, = 2, M, = 4 in the MLS tensor format
on ImageNet so that the resulting integer to be accumulated
is 14-bit. See Sec. [V-C] for detailed analysis.

Inter-group MACs As for the inter-group calculation, each
element in S(® is a (F,2) number obtained by multiplying
two (FE, 1) numbers.

c-1
Z[co,x] = St(z) Z S®co, ci] Pz, ci]

ci=0

Cc-1 .
M an(® v)
=53 <1 | Man®’[co, ci] Cl]) x 9~ Bap®leorcil Py of]

4
)

ci=0

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

Emp(w) [co,ci,i,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Note that this can be calculated by shift (multiplying the
power of two) and addition as

Cc-1
=g Z
ci=0
Pz, ci]27EwP(p) [co,ci]
Pz, ci]2*EwP(p) [co,ei] 4 Pz, ci]Q*EmP(p) [co,ci]—1
P[a:’ci]Zl—Emp(P)[co,ci] + P[m,ci]Q—EmP(p)[Covci]—Q

®)

where the three cases correspond to Man(P)|co, ¢i]=00,
Man P co,ci]=10, and Man®[co,ci]=01, respectively.
The index n is omitted for simplicity, and = denotes the
original 2-dimension spatial indexes x,y.

Summary In the MLS format, the element-wise exponent is
2-bit instead of 5-bit. Thus the intra-group accumulation is
simplified to use 32-bit integers. On the other hand, due to
the special format of the group-wise scaling factor, S®) has
a simple format, and the inter-group accumulation to cal-
culate Z can be implemented efficiently on hardware without
floating-point multiplication. Finally, the multiplication with

the tensor-wise floating-point scaling factor St(z) in Eq.

can be omitted as long as there is no following element-
wise addition on Z with another tensor. St(z) only needs to be
multiplied with the tensor-wise floating-point scale in the fol-
lowing layer instead of the tensor Z, which can be expressed
as TensorScale(St(z) x 7Z) = St(z) x TensorScale(Z). Only
when an element-wise addition follows Conv (e.g., in ResNets)
does the multiplication with St(z) need to be executed.

C. Analysis of Accumulation Bit-Width

When different data formats are used, the results of multi-
plication in Conv have different dynamic ranges. As specified
by the IEEE 754 standard, the gradual underflow behavior of
a floating-point number with M-bit mantissa (Man) and E-
bit exponent (Exp) is as follows. If Ezp is not the minimum
value, the float value is not underflowed and is calculated as

float = Frac x 2~ 5%
M 9
_ (1 + 21@”) x 9~ Ezp, ©

If Exp is the minimum value, the float value is a gradual-
underflowed value and is calculated as

float = Frac x 2~ 5%
M
— (0+ 2;&”) X 2_E/“’”p7
where Frac is a (M + 1)-bit fraction, calculated by adding a
0 or 1 at the highest bit of mantissa.
The production of two numbers is calculated as
floaty x floaty = Fracy x 27 F*1 x Frac, x 27 Fep
= (Fracy x Fracy) X 2_Eg”p1_Eg”"27
an
where Frac; X Fracs is a (M + 1)-bit multiplication, and
the result is (2M + 2)-bit. Since the minimum value of the

(10)

exponent is used to represent underflow, following the IEEE
754 standard [35]], an E-bit Exp number has 2¥ — 1 levels.
That means “Fracx 2~ F*P” enables Frac to be shifted by up
to (2 — 2) bits. Therefore, “Frac x 2~ F*P1=F2p2 enables
Frac to be shifted by up to (2F+! — 4) bits, and the final
result of floating-point multiplication has a dynamic range of
2M +2+2E+1 —4 = (2M +2F —2)-bit. These resulting (2M +
2E+1 _ 2)-bit integers need to be accumulated with enough
bit-width to get the partial sum. In previous 8-bit floating-point
frameworks, a floating-point accumulator is needed since they
use I/ = 5. In contrast, we can use a 32-bit integer accumulator
since we adopt £ = 2, M = 4, (2M +25+! —2) = 14 in the
MLS tensor format on ImageNet.

VI. EXPERIMENTS

A. Experimental Setup

1) Training settings: We train ResNet [37], VGG [4], and
GoogleNet [38]] on CIFAR-10 [39] and ImageNet [5]. In all
the experiments, the first and the last layer are unquantized
following previous studies [14]], [26], [40]. On both CIFAR-
10 and ImageNet, SGD with momentum 0.9 and weight decay
Se-4 is used, and the initial learning rate is set to 0.1. We train
the models for 90 epochs on ImageNet and decay the learning
rate by 10 every 30 epochs. These training hyper-parameters
are proposed in the ResNet paper [37]. On CIFAR-10, we
train the models for 160 epochs and decay the learning rate
by 10 at epoch 80 and epoch 120.

2) Data format settings: The group-wise scaling is in
(8,1) format, and stochastic rounding is only used in error
quantization. We experiment using different (F,,, M,) config-
urations on CIFAR-10. We adopt (2,4) format on ImageNet
since we found that (2, 4) is sufficient for training commonly
used models, and our hardware evaluation is based on this
setting. For a new task, the average relative quantization error
(ARE) in the ablation study (Sec. can be used to
guide the selection of bit configurations. We adopt the same
quantization bit-width for weight, activation, and error for a
simple hardware design. The computation flow of the low-bit
training experiment is shown in Fig. 4 All weight, activation,
and error tensors are quantized (DQ in Sec. [V-A)) before Conv,
and the result tensors of low-bit convolution arithmetic are in
full precision (Sec. . Other operations, such as BN, are
calculated with full precision.

B. Results on CIFAR-10 and ImageNet

1) Comparison with previous studies: The training results
on CIFAR-10 and ImageNet are shown in Table [l The
floating-point accuracy of baselines are directly taken from
their papers. As there are slight differences in the floating-point
accuracy, we compare the accuracy drop of different methods.
We can see that our method can achieve a better balance
between higher accuracy and lower bit-width. A previous
study [26] finds that quantizing error to a low bit-width hurt
the accuracy, but our method can quantize error to M, = 1 on
CIFAR-10, with a small accuracy drop of 0.48%, 0.55%, and
0.42% for ResNet-20, GoogleNet, and VGG-16, respectively.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE II
COMPARISON OF LOW-BIT TRAINING METHODS ON CIFAR-10 AND IMAGENET. SINGLE NUMBER IN THE BIT-WIDTH STANDS FOR FIXED-POINT FORMAT
BIT-WIDTH, WHICH IS EQUIVALENT TO M, AND THE CORRESPONDING F IS 0. “F X” INDICATES THAT X-BIT FLOATING-POINT NUMBERS ARE USED.
“ACCUM?” IN THE “BIT-WIDTH” COLUMN STANDS FOR “ACCUMULATION”, WHILE “ACC.” STANDS FOR “ACCURACY”.

Dataset \ Method Model Bit-Width (W/A/E/ACCUM) Acc. FP baseline Acc. Drop
S2fFP8 [15] ResNet-20 (5,2) (5,2) (5,2) 32 91.1% 91.5% 0.4%
WAGE [11] VGG-like 28832 93.2% 94.1% 0.9%
RangeBN [27]] ResNet-20 112- 81.5% 90.36% 8.86%
CIFAR-10 ResNet-20 44416 92.32% 92.45% 0.13%
ResNet-20 22216 90.39% 92.45% 2.06%
Ours ResNet-20 (2,1) (2,1) (2,1) 16 91.97% 92.45% 0.48%
GoogleNet (2,1) (2,1) (2,1) 16 93.95% 94.50% 0.55%
VGG-16 (2,1) (2,1) (2,1) 16 93.34% 93.76% 0.42%
VGG-16 (1,1) (1,1) (1,1) 8 92.77% 93.76% 0.99%
FlexPoint [29] AlexNet 16 16 16 32 80.1% (TopS) 79.9% (Top5) -0.2%
DFP16 [30] VGG-16 16 16 16 32 68.2% 68.1% -0.1%
DFP16 [30] GoogleNet 16 16 16 32 69.3% 69.3% 0
RangeBN [27] ResNet-18 8 8 16 132 66.4% 67.0% 0.6%
DoReFa [26] AlexNet 88832 53.0% 55.9% 2.9%
FullINT [12] ResNet-18 88832 64.8% 68.7% 3.9%
FullINT [12] ResNet-34 88832 67.6% 72.0% 4.4%
ImageNet WAGE [11] AlexNet 28832 48.4% 56.0% 7.6%
HFPS [14] ResNet-18 (5,3) (5,3) (5,3) 32 69.0% 69.3% 0.3%
S2FP8 [15] ResNet-18 (5,2) (5,2) (5,2) 32 69.6% 70.3% 0.7%
Ultra-Low [31] ResNet-18 44 (3,1) f16 68.3% 69.4% 1.1%
ResNet-18 88832 68.5% 69.1% 0.6%
ResNet-18 44416 66.5% 69.1% 2.6%
ResNet-18 (2,4) (2,4) (2,4) 32 68.2% 69.1% 0.9%
Ours ResNet-34 (2,4) (2,4) (2,4) 32 75.3% 76.1% 0.8%
VGG-16 (2,4) (2,4) (2,4) 32 70.8% 70.9% 0.1%
GoogleNet (2,4) (2,4) (2,4) 32 69.6% 69.5% -0.1%
TABLE III TABLE IV
NUMBER OF OPERATIONS AND SENSITIVITY OF RESNETS, VGG-16, AND ACCURACY OF TRAINING 200 EPOCHS ON IMAGENET WITH COSINE
GOOGLENET. ANNEALING SCHEDULER.
Acc. Drop of Full Precision =~ Our Low-Bit Training
Model | Inference GOPS ¢ 4t Trgining Model ‘ Training ~ (Bit-Width is (2,4)) ¢ Drop
ResNet-18 1.88 0.9% ResNet-34 75.8% 75.6% 0.2%
ResNet-34 3.59 0.8% VGG-16 72.1% 72.1% 0%
VGG-16 15.25 0.1% GoogleNet 73.6% 73.4% 0.2%
GoogleNet 1.58 -0.1%

On ImageNet, the accuracy degradation of our method is
minor under 8-bit quantization (0.6% accuracy drop from
69.1% to 68.5%), which is comparable with other state-of-
the-art studies. In the cases with lower bit-width, our method
achieves a higher accuracy (66.5%) with only 4-bit than [27]]
who uses 8-bit (66.4%). With (2,4) data format, for all
the models, including ResNet-18, ResNet-34, VGG-16, and
GoogleNet, our method can achieve an accuracy loss less than
1%. In this case, the bit-width of the intermediate results is
2M, + 2F=+1 _ 2 = 14, which means that the accumulation
can be conducted using integers, instead of floating-point
numbers [[14], [T3], as we discussed in Sec. Although a
previous work [31]] quantizes W/A/E to 4-bit, the three types of
Convs between them are in different data formats, requireing
three different Conv unit implementations. In contrast, our
work unifies the W/A/E format and the Conv calculation, thus
requiring only one type of Conv unit.

2) Analysis of different CNN models: We note that the
performance of VGG and GoogleNet CNN models in low-

bit training is better than ResNets. We think this is because
there are fewer channels in ResNet than VGG and GoogleNet
when the network depth configuration is similar. And the
little redundancy of ResNets makes them more sensitive to
quantization errors. In fact, VGG-16 is 7 times as much as
ResNet-18 in terms of computation, as shown in Table
That means even if ResNet adopts a higher bit-width and
higher accuracy scheme for training, it still has higher energy
efficiency. In contrast, the model structure of GoogleNet shows
higher adaptability in low-bit training scenarios, which brings
inspiration to future neural network architecture design.

3) Results using longer training: We also experiment with
another training setting with 200 epochs on ImageNet. The
initial learning rate is set as 0.1 and decayed following a cosine
annealing schedule [41]. The training results in this setting are
shown in Table We can see that these results are better
or comparable to those of the default experimental setting in
Table[Ml] The low-bit accuracy is very close to the full precision
accuracy, which indicates that our method’s effectiveness does
not rely on using a specific training setting.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE V
ACCURACY (%) OF TRAINING RESNET-20 ON CIFAR-10. “DIV.” MEANS
THAT THE TRAINING FAILED TO CONVERGE. “NONE” MEANS THAT
GROUP-WISE SCALING IS NOT USED (#GROUP=1).

#group My, Ep | My=4 M,=3 M,=2 M,=1
1 None 0 90.02 85.68 Div. Div.
c 0 0 91.54 88.35 8229 Div.
n 0 0 91.78 89.62 80.71 Div.
nc 0 0 92.14 91.64 8897 76.98

nc 1 0 92.37 91.73 90.39 82.61
1 None 0 90.02 85.68 Div. Div.
1 None 1 91.67 90.11 84.72 70.4
1 None 2 92.32 92.34 91.58 90.32

nc 1 0 9237 91.73 90.39 82.61

nc 1 1 9252 9216 9148 89.97

nc 1 2 9237 92,65 9205 9197

TABLE VI

ACCURACY (%) OF TRAINING RESNET-20 ON CIFAR-10 WHEN S; IN
DIFFERENT FORMAT.

Mg EI Mz ‘ St in <8,23> St in <8,8> St in <87 4>
1 1 2 91.48 91.16 86.36
2 92.05 92.15 87.22

C. Ablation Studies

1) Tensor-wise Scaling: The default tensor-wise scaling is
in (8,23) format. In fact, we find that S; can be further
quantized. Table shows the results of training ResNet-20
on CIFAR-10 using different S; formats. It can be seen that
Sy in (8,8) format can still maintain a good training accuracy.
However, it is worth noting that quantizing S; to (8, 8) format
has little influence on the overall energy efficiency. We will
give a discussion in Sec.

2) Group-wise Scaling: Group-wise scaling is beneficial
as the data ranges vary across different groups. We compare
the average relative quantization errors (AREs) of using the
three grouping dimensions (Sec. with (8,1) group-wise
scaling format and (0,3) element format. The first row of
Fig. [7] shows that the AREs are smaller when each tensor
is split into N x C groups. Furthermore, we compare these
grouping dimensions in the training process. The first section
of Table [V] shows that the training accuracy is higher when
tensors are split into N x C groups. This indicates that the
reduction of AREs is essential for the accuracy of low-bit
training. Moreover, we can see that using M, = 1 is important
for retaining accuracy, especially with low M, (e.g., when
M,=1, 76.98% V.S. 82.61%). We also add an ablation study
on the “Error” format. Weight and Activation are quantized
with group-wise scaling factors solely consisting of exponent.
When Error is also quantized as this, the accuracy drops to
90.7%. After introducing our (8,1) group-wise scaling for
Error, the accuracy is 91.9%. This indicates that our MLS
format is better than the shared-exponent format [20] for
accurate low-bit training.

3) Element-wise Exponent: To study the influence of the
element-wise exponent, we compare the AREs of quantization

TABLE VII
ACCURACY (%) OF TRAINING RESNET-20 oN CIFAR-10, USING
STOCHASTIC ROUNDING WHEN QUANTIZING DIFFERENT TENSORS.

My E, M, ‘ Stochastic Rouding Accuracy
1 1 2 None 88.48
1 1 2 Weight 88.24
1 1 2 Activation 87.91
1 1 2 Error 91.48

with different F, without group-wise scaling, and the results
are shown in the second row of Fig. [/| Intuitively, using more
exponent bits results in larger dynamic ranges and smaller
AREs. Furthermore, with larger E,, the AREs of different
layers are closer. Besides the ARE evaluation, Table [Y] shows
that a larger E, achieves a better accuracy, especially when
M, is extremely small. As shown in Fig.[7]Row 3 and Table[V]
the ARE and accuracy are further improved when jointly using
the group-wise scaling and the element-wise exponent. We can
see that the group-wise scaling is essential for simplifying the
floating-point accumulator to a integer one. One can use a
smaller I, with group-wise scaling (#group=nc, M,=1, E,=0,
Acc.=92.37%) to get a comparable accuracy to a configuration
with larger F,=2 without group-wise scaling (Acc.=92.32%).
4) Stochastic Rounding: We also conduct experiments to
study the influence of stochastic rounding. We employ stochas-
tic rounding in the quantization of different tensors when
training ResNet-20 on CIFAR-10. The results in Table
show that it is necessary to use stochastic rounding to quantize
the Error tensors. Otherwise, the training accuracy would
drop sharply. In contrast, it is not necessary to use stochastic
rounding to quantize Weight and Activation tensors.

D. Comparison of Energy Consumption of Conv Units

Fig. (1| shows a typical convolution hardware architecture,
which consists of three main components: local multiplication
(MUL), local accumulation (LocalACC), and addition tree
(TreeAdd). Our framework mainly improves the local multipli-
cations and accumulations. Compared with the full precision
design, our design simplifies the floating-point multiplication
(FP MUL) to use a bit-width less than 8 and the local
floating-point (FP ACC) to use 16-bit or 32-bit integer.
To evaluate the energy consumption, we implement the RTL
design of four types of Conv units: Full Precision, FP8 [14],
Int8 [[12], and our MLS format. For a fair comparison, these
hardware implementations have the same overall architecture
and parallelism and only differ in the arithmetic and data path
bit-widths. Each Conv unit consists of 16 Conv PEs with the
structure shown in Fig. [I] The parallelism of the input channel
and the output channel of each PE are both set to 8. These
16 Conv PEs are equivalent, and during the execution of three
different types of convolutions, they can be allocated flexibly
either as sample parallelism or pixel parallelism. The total
MAC parallelism of a Conv unit is 1024, the amount of input
data is 16 x 8 + 8 x 8 = 128 4+ 64 = 192, and the amount of
results is 16 x 8 = 128.

Table [VIII] shows the hardware power results given by De-
sign Compiler synthesis with TSMC 65nm process and 1GHz

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

e v/‘\v/'\wv/'k*’\v o /’\
44 d ’

—e— 1 group
—¥— N groups

@ = Cgroups

n NxC groups

,c\ 1.04
//
// —

VA AW e

0.6

0.4+

0.2

0.6

0.41

0.2

0.0-

0.204

0.15

0.104

0.05

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Fig. 7. Average relative quantization errors (AREs) of weight, error, activation (left, middle, right) in each layer when training a ResNet-20 on CIFAR-10.
X axis: Layer index. Row 1: Different grouping dimensions ({0, 3) formatted X, (8,1) formatted Sg); Row 2: Different E, ((E,3) formatted X, no
group-wise scaling); Row 3: Different E, ((E,3) formatted X, (8, 1) formatted Sg, N x C groups).

clock frequency. We can see that the Conv unit supporting TABLE VIII

our MLS low-bit arithmetic has an area similar to those of THE POWER (W) AND AREA (mm?) RESULTS OF DIFFERENT MODULES IN
o . C CONV UNIT WITH DIFFERENT ARITHMETIC. DESIGN COMPILER IS USED

other low-bit arithmetic and has lower multiplication and accu- Loz RTL sYNTHESIS WITH TSMC 65nm PROCESS AND 1G2H 2 CLOCK.

mulation power. Because multiplication and accumulation are

executed many times in a convolution, our method has higher | Training Method ~MUL LocalAcc ~ AddTree Scale
overall energy efficiency. Given the numbers of multiplication Full Precision 8.067 4.284 2494 }
and addition in convolution, we can use the following formula 8-bit FP [14] 0.877 3.253 2.646 -
: - - POWEr 1 it INT 2] 1.000 1.371 1.286 -
to ca'lc.ulate our energy efficiency improvement ratio r over full Ours 0.800 0765 2689 1156
precision training in a 3 x 3 Conv.
Full Precision 15.974 9.026 8.816 -
r=(#MUL x 8.067 + #Local ACC x 4.284 + #TreeAdd x 2.494) area 8-bit FP [[14] 0.896 9.070 8.807 -
. 8-bit INT [12] 1.307 0.867 0.900 -
~(#MUL . Local A . TreeAdd .84
(#MUL x 0.800 + #Local ACC x 0.765 + #T'ree X 3.845) Ours 1,006 0542 3,820 0.938
~ 6.34
(12)
where the energy consumption of the scale unit is merged
into TreeAdd, and the number of executions of each module Hardware
(#H#MUL, #Local ACC, #TreeAdd) is calculated by the size ;‘:‘r'a‘flve”ﬁsrfn

of convolution. The energy comparison of a Conv unit is also sl Attt R N

shown in Fig. 2] Next, in Sec.[VI-E] we further take the energy
consumption of different types of operations into consideration (iR

and present the energy analysis details of the whole network.

Computing
Energy

memory trace
Cache On-chip cache Cache
Configuration checker simulator

[
1
]
1
1
1
1
1
1
1
1
1
1

E. Energy Consumption of the Whole Network

o

This section elaborates on the method to simulate the energy
consumption of the whole network training. The training of
ResNet-34 on ImageNet is taken as an example. The energy Fig. 8. The energy simulation methodology.
of different operations is given in Table [[X]

1) Simulation Methodology: The energy consumption is
given by a power simulator similar to a widely used DNN energy. Firstly, we synthesis RTL designs of the Conv unit and
power simulator [42]]. This simulator has been used for studies the element-wise unit to obtain the power of each computing
of network pruning, which has demonstrated its credibility. module. The parallelism of the Conv unit is introduced in
The methodology is illustrated in Fig. [§] The whole network Sec. and the parallelism of the element-wise unit is 256.
is divided into layers, and the energy consumption of each The element-wise unit is in full precision and can perform
layer is simulated as the sum of computing energy and data element-wise addition, max and sum reduction, and other

Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE IX
THE COMPARISON OF THE DETAILED ENERGY COMSUMPTION OF TRAINING RESNET-34 ON IMAGENET WITH USING FULL PRECISION TRAINING AND
OUR LOW-BIT TRAINING FRAMEWORK. (BATCHSIZE=16) “DQ” MEANS DYNAMIC QUANTIZATION, WHICH IS AN ADDITIONAL OPERATION IN OUR
FRAMEWORK. “C ENERGY” AND “D ENERGY” ARE SHORT FOR COMPUTING ENERGY AND DATA ENERGY.

| Full Precision Training

Our Low-Bit Training

Op Name
‘ Type Amount C Energy/m] D Energy/mJ Type Amount C Energy/m] D Energy/mJ
MUL 1.91E+11 1506.4 MUL 191E+11 149.4
Conv ADD 191E+11 850.5 135348 \pp 1.91E+11 220.7 2042.8
MUL 5.25E+08 33 MUL 5.25E+08 33
BN ADD 5.84E+08 1.9 303.6 ADD 5.84E+08 1.9 303.6
MUL 6.7E+07 0.4 MUL 6.7E+07 0.4
SGD Update | s\ppy 44407 0.1 397 ADD 4.4E+07 0.1 397
MUL 4.31E+8 + 8.9E+7 3.3
bQ - 0 0 0 ADD 2.16E+8 + 4.4E+7 038 129.3
MUL 0 0 MUL 4.7E+07 03
EW-Add 1 upp 47B+07 02 210 ADD 4.7E+07 02 211
Sum | 2362.7 13899.1 3803 2536.5

operations to support non-convolution parts in CNN training.
Then, the shape configuration of a layer is processed by a DNN
execution simulator. It conducts loop unrolling and gives the
number of executions of each module and memory access
trace according to the parallelism and the operation amount.
Thus, with the module power and number of executions,
computing energy can be obtained. As for data energy, the
original memory access trace is processed by an on-chip cache
checker. If the access interval of the same data is less than the
on-chip memory size, it will be marked as cache access, and its
latency and energy will be measured by SRAM simulator [43]].
The on-chip memory is set to 512KB for all accelerators, and
it will be used equally by the feature map and the filter during
convolution. Finally, the processed trace is passed to DRAM
simulator [44]] to get the DRAM energy consumption.

2) Analysis of Different Operations: Considering a convo-
lution with C; input channels, C, output channels, K x K
kernel size, and W x H feature map size, the operation
amounts of floating-point multiplications and additions are
C; xCyx K x K xW x H, and the operation amount in the
whole network is calculated by accumulating the operation
amounts of each layer in both the forward and backward
processes. In our low-bit training framework, floating-point
additions are only reserved in the adder tree, and the amount is
C; xCyxW x H. The other additions are integer accumulation.
The group-wise scaling factors introduce additional scaling
operations. Fortunately, when using the (Fy,0) or (E,,1)
format, we can efficiently implement group-wise scaling with
shifting (Eq.[d). In this way, the energy consumption of a scal-
ing operation is comparable to an integer addition operation.

For batch normalization, fully connected layer, and SGD
update, the operation amount and energy consumption are
the same for both the full precision and our low-bit
training framework. Specifically, nine multiplications and ten
additions are performed on each element of a C' x W x H
feature map in the forward and backward processes for batch

normalization. The forward process of batch normalization is

1 A 1 I
3 o= S
— Y mzy0°= T —
MiZl Mi:l
Ti — K
p = e 2; = YYi + B.
Vi Jezroo0005 Y

We can see that in the forward process of BN, for each
input element, one addition is required to calculate the batch
mean, and one multiplication and one addition are used to
calculate the batch variance, and two multiplications and two
additions are used for normalization and affine transformation.
The backward process of batch normalization is

M =
13)

OL oL, 0L ROL OL 0L
oy Loz Vop T 2oz oy 0n
M M
oL oL
t = — ity = (7y) (14)
;ayj jz:; 6yj 7

aL B M%*tl 7y1"t2
dr; M -2 +0.00005

There are six multiplications and six additions performed
on one element in the backward of BN (“1MI1A, 1A, 1M,
1A, IM1A, 3M2A” for each formula in Eq. . As shown in
Table [, the number of MACs in BN is orders of magnitude
smaller than that in Conv. Hence, the energy consumption of
BN is relatively smaller compared with convolution.

Our method introduces the overhead of dynamic quantiza-
tion. We consider that four multiplications and two additions
are needed for one element in dynamic quantization. One
addition is to calculate the max (Alg. [2| Line 2), and the other
is to calculate the sum of F'rac,s and R (Alg. E] Line 11),
and four multiplications are used in Alg. 2] Line 2 and Line 7.
Note that other multiplications and divisions in Alg. [2]describe
the simulation of the dynamic quantization process, and do not
correspond to actual computations on hardware. The number
of elements is C' x W x H for Activation and Error and
C; x C, x K x K for Weight, and their energy consumptions

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE X
THE LATENCY (ms) OF TRAINING WITH DIFFERENT DATA FORMATS.

Training Method ‘ ResNet-34 VGG-16 GoogleNet
Full Precision 1185.4 5051.2 619.6
FP8 [14] 988.0 3628.8 481.4
Ours 1034.0 3770.0 529.7

are shown in Table Stochastic rounding is used for the
quantization of Error, and we consider the overhead of reading
the random tensor R in generating memory access trace.

For element-wise addition of two MLS tensors 21, zo, we
need to multiply the ratio of their tensor-wise scales S;* /S;?
to Z5, and then the element-wise addition can be conducted.
Therefore, extra multiplications of the same amount are needed
in our low-bit training framework.

3) Summary of the energy simulation experiment: Since
convolution accounts for the main computational cost of CNN
training (Table[l), the overhead introduced by our framework is
low compared with the reduced cost. The last row of Table
shows the sum of the energy consumption of previous opera-
tions. The results show that our low-bit training framework
achieves (2362.7 + 13899.1) + (280.3 + 2536.5) = 5.6x
higher energy efficiency than full precision training. The
energy consumption of other networks and 8-bit floating-point
training can be conducted similarly to the above analysis and
is not described here. Considering all the overheads, our low-
bit training framework could achieve 4.9 ~ 10.2x higher
energy efficiency than the full precision framework, when
training different models on ImageNet. And compared with
previous low-bit floating-point training frameworks (FP8) [14]],
our computing efficiency is 2.2x higher due to the simplified
integer accumulator, and the overall energy efficiency could
be 1.2x higher considering data energy.

4) Latency Evaluation: The number of executions given
by the DNN simulator is the number of cycles. We uniformly
set the clock frequency to 1GHz, and obtain the computing
latency according to the number of computing cycles and
clock frequency. And the latency of data access is given by
the DRAM simulator. Finally, we obtain the overall latency of
the forward process as follows:

Latency = Latencycomputing + Latencyqata (15)

The latency evaluation results are shown in Table [X| we
can see that our training framework achieves at least 1.15x
speedup compared with full precision training.

VII. DISCUSSION
A. Potential of Inference with MLS Data Format

We disable the training overhead in the simulator (described
in Sec. to only consider the forward process. The BNs
are calculated in the evaluation mode, and the weights are
quantized into the MLS format and fixed. The batch size is
set to 16, and the results are shown in Table [XI| It is worth
noting that although these results demonstrate the potential of
the MLS format to be used by PTQ for low-bit inference, the
low-bit training framework proposed in this paper is decoupled

TABLE XI
THE ENERGY CONSUMPTION (m.J) AND LATENCY (ms) OF FORWARD
PROPAGATION WITH DIFFERENT DATA FORMATS.

Training Method ‘ Model Energy Latency
ResNet-34 3508.6 326.6

Full Precision VGG-16 26373.7 1446.9
GoogleNet 2007.9 150.6

ResNet-34 945.9 290.8

FP8 [14] VGG-16 3292.4 1078.6
GoogleNet 646.6 130.3

ResNet-34 745.1 295.3

Ours VGG-16 2539.6 1094.0
GoogleNet 573.8 136.4

from the PTQ methods introduced in Sec. |lI} This is because
although our method conducts computations in the MLS low-
bit format during the training process, the obtained weight is
still in full precision (as shown in Fig. f). Thus, any PTQ
algorithms with other low-bit data format can be used.

B. Quantization of S

Our method keeps S; in the floating-point format. Retaining
floating-point in the operations involving S; does not have a
significant impact on the overall energy efficiency, since MACs
in convolutions account for the majority of the operations in
a convolution layer, as shown in Table |I| Actually, quantizing
S; could introduce undesirable overheads. Firstly, quantizing
S will introduce more operations into the DQ procedure.
Furthermore, using a quantized S; might require a specially
designed element-wise computing unit to achieve energy-
efficient multiplication, since we need to multiply some full-
precision feature maps with S; (after Conv layers followed
by element-wise addition). And this unit cannot be reused by
other operations with different data formats, increasing the
area overhead. Therefore, it is better to keep S; in the floating-
point format, so that BN, DQ, and other operations can use
the same floating-point element-wise unit.

VIII. CONCLUSION

This paper proposes a CNN low-bit training framework
for higher energy efficiency while retaining accuracy. We
design a multi-level scaling tensor format containing tensor-
wise scaling, group-wise scaling, and element-wise scaling.
Furthermore we describe the dynamic quantization procedure
and low-bit convolution arithmetic and analyze why our data
format and hardware design improve energy efficiency. Instead
of using traditional systolic array hardware architecture, we
adopt an adder tree architecture hardware to support our MLS
data format. Experimental results and the energy consumption
simulation demonstrate the effectiveness of our framework.
Compared with previous low-bit integer training frameworks,
our framework can retain a higher accuracy for various models,
including ResNet, VGG, and GoogleNet. Our framework can
achieve much higher energy efficiency than previous low-bit
floating-point training frameworks.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13
ACKNOWLEDGMENT [21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘“Xnor-net:
. . . Img t classificati sing bing lutional al networks,” i
This .work was supported by National Natural Science Enédégf/nzoclgm cation using bifiaty convoiutional ieural RERWOTES, 1
Foundation of China (No. U19B2019, 61832007, 61621091); [22] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
Beijing National Research Center for Information Science and arXiv:1605.04711, 2016.) _
Technology (BNRist); Beijing Innovation Center for Future (23] Z.Liu, Z. Shen, M. Savvides, and K. Cheng, "Reactnet: Towards precise
. e . binary neural network with generalized activation functions,” ArXiv, vol.
Chips; Beijing Academy of Artificial Intelligence. And we abs/2003.03488, 2020.
thank Huawei Technologies for the support and discussion. [24] H. Qin, R. Gong, X. Liu, Z. Wei, F. Yu, and J. Song, “Ir-net: Forward
and backward information retention for highly accurate binary neural
REFERENCES networks,” ArXiv, vol. abs/1909.10788, 2019.
.) [25] P. Gysel, J. J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto:
[1] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification A framework for empirical study of resource-efficient inference in
with deep convolutional neural networks,” in Advances in Neural Infor- convolutional neural networks,” IEEE Transactions on Neural Networks
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and and Learning Systems, vol. 29, pp. 5784-5789, 2018.
K. Q. Weinbergerj Eds. Currz'm Associates, Inc., 201_2’ pp. 1097-1105. [26] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
[2] J. Red[r?o'?{ 3 Dlil\t/.ala, RB‘GltrS;utCk’t'anq’ A I}jarhadii,- Youfozlylg)gg Training low bitwidth convolutional neural networks with low bitwidth
once: nined, real-time objec etection, 1n r'roceedings of the gradients,” ArXiv, vol. abs/1606.06160, 2016.
;;gf erence on computer vision and pattern recognition, 2016, pp. 779~ [27] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
: 8-bit training of neural networks,” in NeurIPS, 2018.
(3] W.Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu,and A.C. 1581 M Apadi, s Agar::val, P];Narham, E. l;r’g;/do, Z. Chen, C. Citro, G. S.
?;;%;u‘;SE(tissig:lgle ;Eg;;‘;mz%olz dglt)ec;r,’;;n European conference on Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. J. Goodfel-
’ > > PEe AT low, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jézefowicz, L. Kaiser,
[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for D(/)[WKu dlur‘n}) Leverl:tl)lerii D N;:f) é R D;[don ga g Zi,l(::élrzz D Ml?rlsz?}l;
5 ia%:;al\?«lgiiz recognition, arXiy preprint ariv- 14091 5“51%1 azg(iln‘; _ C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
: > o P T e e i ’ P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
A large-scale hierarchical image database,” in 2009 IEEE conference on M l\lflaftrenb ergd HN? u%Viecke Yasl;uevzrrlld X léﬁzi e “T(lalr?s](z)lr;i ow: E{irglel-
(6] IL\me{Létre()r\)v ‘;iiw n laf‘igriglel:inngswe irél;é;"bmﬁzz 2(2?13’ gﬁatztf;;iii do scale machine learning on heterogeneous distributed systems,” ArXiv,
: v 1. abs/1603.04467, 2016.
about it),” 2014 IEEE International Solid-State Circuits Conference 29 ;}0 KE?. > T W bb’X W M. N A K. B LW.C bl
Digest of Technical Papers (ISSCC), pp. 10-14, 2014 (29] U. (?ster, - WebD, A. Wang, M. Nassar, A. . ansal, W. onsFa &
(7] B %acob S. Kligys, B. Chen, M Zhl; M. Tang A G Howard H. Adam O. Elibol, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss, R. J. Pai, and
and D. Kalenichenko, “Quantization and training of neural networks for oNf' ;2;0’ n'};l;z{) ?11;;0?133?’(1 ?I?tll\\]/;)gu?glr;:al format for efficient training
efficient integer-arithmetic-only inference,” 2018 IEEE/CVF Conference (30] D. D P N. Mell (’1 D. M ’d‘ : D. Kalamkar. S. A h
on Computer Vision and Pattern Recognition, pp. 2704-2713, 2018. - bas, N Metlempudi, L. Mudigere, L. Salamkar, 5. Avancha,
(8] J. Choi, Z. Wang, S. Venkataramani, P. L-J. Chuang, V. Srinivasan, K. Baper]ee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for A. Hemecke,_ P. Dub?‘y’ J Corbal,.N. ShusFrqv, R. Dubtsov, E Fomenko,
quantized neural networks.” ArXiv, vol. abs/1805.06085, 2018. and V. O. Pirogov, “"Mixed precision training of convolutional neural
[9]1 R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization 31 ;et\évorksNus\l’;lg 1ntége;ocpiratl(}nsl,\rA[:XZ, vol. ilb;/li(%jO%.Oé) 93/0’ 13018'
of convolutional networks for rapid-deployment,” in NeurIPS, 2018. (311 X. u I;& E'l Man% L -V \f;né AN g;al\ga(,} ’ la;;" h' en“[a}tlara-
[10] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer, “Hawq: {nam, L ai tr)goulz' L rlfm&/asan, an 1) Opak"}sAndan, tra-
Hessian aware quantization of neural networks with mixed-precision,” oW precision &- it tr“mmg, of deep neural networks, vances
ArXiv. vol. abs/1905.03696. 2019 Neural Information Processing Systems, vol. 33, 2020.
[11] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers [32] N Jouppi, C. Young, N Patil, D. A. Patterson, G. Agrawal, R. Ba-
in deep neural networks,” ArXiv, vol. abs/1802.04680, 2018. jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc
[12] Y. Yang, S. Wu, L. Deng, T. Yan, Y. Xie, and G. Li, “Training Cantin, C. Chao, C. Clark,. J. Corlel}, M Daley, M. Dau, J. Dean,
high-performance and large-scale deep neural networks with full 8-bit B. Gelb, T. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
integers,” Neural networks : the official journal of the International C. Ho, D.AHOgberg, J. Hu, R._ Hundt, D Hurt, J. Ibarz, A. Jaffey,
Neural Network Society, vol. 125, pp. 70-82, 2020. A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. .Koch, N. Kumar,
[13] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. A. Lucke,
“Training deep neural networks with 8-bit floating point numbers,” in A Lundm, G. MacKean, A Magg_lore, M_' Mahony, K Miller, R. Na—
NeurIPS, 2018. garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omerr}lclf,
[14] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. Srinivasan, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit floating point C. Severn, G. Sl‘ZlkOV, M_. Snelham, J. Souter, D. Stemvberg, A. Swing,
(hfp8) training and inference for deep neural networks,” in NeurlIPS, M. Tan, G. Thorson, B Tian, H. Toma, E. Tgttle, V. Vasudevani R. Wal-
2019. ter, W Wang, E. Wilcox, apd D. .Yoon, In-datacenter performance
[15] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Elibol, and analy51s.of a tensor 'processmg unit, 2017. ACM/IEEE 44th Annual
H. Tang, “Shifted and squeezed 8-bit floating point format for low- International Symposium on Computer Architecture (ISCA), pp. 1-12,
precision training of deep neural networks,” ArXiv, vol. abs/2001.05674, 2017' .
2020. [33] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
[16] S.Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep S. Song, Y. Wang, an.d H. Yang, “Going ({?eper Wlﬂ} embedded fpga
neural network with pruning, trained quantization and huffman coding,” platform for convolutional neural network,” Proceedings of the 2016
CoRR, vol. abs/1510.00149, 2015. ACM/SIGDA International Symposium on Field-Programmable Gate
[17] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quan- Arrays, 2016. _
tization of deep convolutional networks,” ArXiv, vol. abs/1511.06393, [34] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
2015. and H. Yang, “Angel-eye: A complete design flow for mapping cnn
[18] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for onto embedd;d fpga,” IEEE Transactions on Computer-Aided Design of
deep neural networks,” 2017 IEEE Conference on Computer Vision and Integrated Circuits and Systems, vol. 37, pp. 35-47, 2018.
Pattern Recognition (CVPR), pp. 7197-7205, 2017. [35] D. G. Hough, “The ieee standard 754: One for the history books,”
[19] P. W. Jacob et al., “gemmlowp: a small self-contained low-precision Computer, vol. 52, no. 12, pp. 109-112, 2019.
gemm library.(2017),” [OL], 2017, https://github.com/google/gemmlowp| ~ [36] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Accessed February 1, 2021. learning with limited numerical precision,” in ICML, 2015.
[20] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov, [37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner et al., “Pushing recognition,” in Proceedings of the IEEE conference on computer vision
the limits of narrow precision inferencing at cloud scale with microsoft and pattern recognition, 2016, pp. 770-778.
floating point,” Advances in Neural Information Processing Systems, [38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/é)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

vol. 33, 2020.

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”

6 UTC from IEEE Xplore. Restrictions apply.

https://github.com/google/gemmlowp

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3151820, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-9, 2015.

A. Krizhevsky, “Convolutional deep belief networks on cifar-10,” 2010.
N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed precision
training with 8-bit floating point,” ArXiv, vol. abs/1905.12334, 2019.

I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv: Learning, 2017.

T.-J. Yang, Y. hsin Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6071-6079, 2017.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” 2009.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45—
49, 2016.

[39]
[40]

[41]

[42]

[43]

[44]

Kai Zhong received his B.S. degree in electronic
engineering from Tsinghua University, Beijing, in
2019. He is currently pursuing his Ph.D. degree at
the Department of Electronic Engineering, Tsinghua
University, Beijing. His research mainly focuses
on deep learning acceleration and hardware-friendly
algorithm optimization.

Xuefei Ning received the B.S. and Ph.D. degrees in
electronic engineering from Tsinghua University, in
2016 and 2021. Xuefei’s research mainly focuses on
efficient deep learning algorithm design and neural
architecture search.

Guohao Dai (S’18) is currently a postdoctoral re-
searcher in the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China. He has
received his B.S. degree in 2014 and Ph.D. degree
(with honor) in 2019 from Tsinghua University,
Beijing. Guohao’s research mainly focuses on large-
scale sparse graph computing, heterogeneous hard-
ware computing, emerging hardware architecture,
and etc. He has received Best Paper Award in ASP-
DAC 2019, and Best Paper Nomination in DATE
2018. He is the winner of the NeurIPS Billion-Scale
Approximate Nearest Neighbor Search Challenge in 2021, the recipient of
the Outstanding Ph.D. Dissertation Award of Tsinghua University in 2019.
Currently, he serves as PI/Co-PI for several projects with a personal share of
over RMB 6 million.

Zhenhua Zhu received his B.S. degree in electronic
engineering department of Tsinghua University, Bei-
jing, China, in 2018. He is currently pursing his
Ph.D degree in electronic engineering department of
Tsinghua University. His research mainly focuses on
memristor, computer architecture, and Processing-
In-Memory.

—
—

N

ol bn

h

)

Tianchen Zhao received his B.S. degree in elec-
tronic engineering from Beihang University in 2020.
He is currently pursuing his Ms. degree at EE De-
partment, Beihang University. His research interest
mainly focuses on efficient deep learning algorithm
design.

Shulin Zeng received his B.S. degree in electronic
engineering department of Tsinghua University, Bei-
jing, China, in 2018. He is currently pursing his
Ph.D. degree in electronic engineering department of
Tsinghua University. His research mainly focuses on
software-hardware co-design for deep learning and
virtualization in the cloud.

Yu Wang (S°05-M’07-SM’14-F’22) received the
B.S. and Ph.D. (with honor) degrees from Tsinghua
University, Beijing, in 2002 and 2007. He is cur-
rently a tenured professor with the Department of
Electronic Engineering, Tsinghua University. His
research interests include brain inspired computing,
application specific hardware computing, parallel
circuit analysis, and power/reliability aware system
design methodology. He has authored and coau-
thored more than 200 papers in refereed journals
and conferences. He has received Best Paper Award
in ASPDAC 2019, FPGA 2017, NVMSA 2017, ISVLSI 2012, and Best
Poster Award in HEART 2012 with 9 Best Paper Nominations (DATEIS,
DAC17, ASPDAC16, ASPDAC14, ASPDACI12, 2 in ASPDAC10, ISLPED09,
CODESO09). He is a recipient of DAC under 40 innovator award (2018), IBM
X10 Faculty Award (2010). He served as TPC chair for ICFPT 2019 and
2011, ISVLSI2018, finance chair of ISLPED 2012-2016, track chair for DATE
2017-2019 and GLSVLSI 2018, and served as program committee member
for leading conferences in these areas, including top EDA conferences such as
DAC, DATE, ICCAD, ASP-DAC, and top FPGA conferences such as FPGA
and FPT. Currently, he serves as co-editor-in-chief of the ACM SIGDA E-
Newsletter, associate editor of the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,the IEEE Transactions on Circuits
and Systems for Video Technology, the Journal of Circuits, Systems, and
Computers,and Special Issue editor of the Microelectronics Journal. He is
now with ACM Distinguished Speaker Program.

Huazhong Yang (M’97-SM’00-F’20) received B.S.
degree in microelectronics in 1989, M.S. and Ph.D.
degree in electronic engineering in 1993 and 1998,
respectively, all from Tsinghua University, Beijing.
In 1993, he joined the Department of Electronic
Engineering, Tsinghua University, Beijing, where
he has been a Professor since 1998. Prof. Yang
was awarded the Distinguished Young Researcher by
NSFC in 2000, Cheung Kong Scholar by the Chinese
Ministry of Education (CME) in 2012, science and
technology award first prize by China Highway and
Transportation Society in 2016, and technological invention award first prize
by CME in 2019. He has been in charge of several projects, including
projects sponsored by the national science and technology major project, 863
program, NSFC, and several international research projects. Prof. Yang has
authored and co-authored over 500 technical papers, 7 books, and over 180
granted Chinese patents. His current research interests include wireless sensor
networks, data converters, energy-harvesting circuits, nonvolatile processors,
and brain inspired computing. He has also served as the chair of Northern
China ACM SIGDA Chapter science 2014, general co-chair of ASPDAC’20,
navigating committee member of AsianHOST’ 18, and TPC member for ASP-
DAC’05, APCCAS’06, ICCCAS’07, ASQED’09, and ICGCS’10.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/(gublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2022 at 02:57:

6 UTC from IEEE Xplore. Restrictions apply.

