
Memory-Oriented Structural Pruning for Efficient Image Restoration

Xiangsheng Shi1,2*, Xuefei Ning1†*, Lidong Guo3*, Tianchen Zhao1,
Enshu Liu1, Yi Cai1, Yuhan Dong2, Huazhong Yang1, Yu Wang1†

1 Department of Electronic Engineering, Tsinghua University
2 Shenzhen International Graduate School, Tsinghua University

3 School of Materials Science and Engineering, Tsinghua University
shi-xs20@mails.tsinghua.edu.cn, foxdoraame@gmail.com, gld21@mails.tsinghua.edu.cn,
suozhang1998@gmail.com, les19@mails.tsinghua.edu.cn, cai-y13@mail.tsinghua.org.cn,

dongyuhan@sz.tsinghua.edu.cn, yanghz@tsinghua.edu.cn, yu-wang@tsinghua.edu.cn

Abstract

Deep learning (DL) based methods have significantly pushed
forward the state-of-the-art for image restoration (IR) task.
Nevertheless, DL-based IR models are highly computation-
and memory-intensive. The surging demands for processing
higher-resolution images and multi-task paralleling in practi-
cal mobile usage further add to their computation and mem-
ory burdens. In this paper, we reveal the overlooked mem-
ory redundancy of the IR models and propose a Memory-
Oriented Structural Pruning (MOSP) method. To properly
compress the long-range skip connections (a major source
of the memory burden), we introduce a compactor module
onto each skip connection to decouple the pruning of the
skip connections and the main branch. MOSP progressively
prunes the original model layers and the compactors to cut
down the peak memory while maintaining high IR quality.
Experiments on real image denoising, image super resolution
and low-light image enhancement show that MOSP can yield
models with higher memory efficiency while better preserv-
ing performance compared with baseline pruning methods.

Introduction
Owing to the adverse environmental conditions and the lim-
itations of image acquisition devices, image degradations
(e.g., noise, blur) are often introduced during the image ac-
quisition process. As a fundamental computer vision appli-
cation, image restoration (IR) aims to recover clean images
from such contaminated measurements. Thanks to the supe-
rior capacity for learning implicit and generalizable priors
in a data-driven fashion, deep learning (DL) based meth-
ods (Zamir et al. 2021b; Wang et al. 2021; Chen et al. 2022)
have emerged and dominated the field of image restoration,
providing satisfactory image reconstructions.

Nevertheless, due to the pixel-to-pixel reconstruction na-
ture of the IR task, these methods have excessive demands
for hardware resources in terms of memory and computa-
tion. Besides, considering that the computational units on
mobile devices need to process multi-tasks simultaneously,

*These authors contributed equally.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Peak Memory / MB

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

PS
N

R
 /

dB
Uniformly Scale
ASSL
Group Lasso (Uniform)
Group Lasso (Global L2)
Ours

Figure 1: Trade-off between IR performance (PSNR) and
peak memory consumption on the SIDD dataset. We com-
pare our pruning method MOSP with uniformly scale, group
lasso (Wen et al. 2016) and ASSL (Zhang et al. 2021a).

the actual resources allocated for IR tasks are further lim-
ited. Moreover, the surging demand for processing higher-
resolution images (Chen et al. 2018; Lamba and Mitra 2021)
adds to the burden of hardware resources. Therefore, deploy-
ing the DL-based IR models on resource-constrained mobile
devices for practical use is challenging and calls for effi-
ciency improvements.

While improving the computation efficiency of the IR
models has been investigated by recent researches, either
through compact module design (Chen et al. 2022) or
model compression (Zhang et al. 2021a,b), specific opti-
mization for memory consumption of the IR models re-
mains overlooked. In this paper, we point out that the fre-
quently adopted multi-scale feature aggregation strategy
in IR model design is memory-costly and calls for im-
provements. Specifically, the widely used U-Net architec-
tures (Chen et al. 2018; Zamir et al. 2021b; Chen et al. 2021)
contains multiple long-range skip connections from the en-
coder to the decoder. Thus the intermediate features need to

be stored in memory for a long time before being fused in
the decoder. Similarly, short-range skip connections intro-
duced by the residual module design also add to the peak
memory consumption. We show that such a feature aggre-
gation strategy is both memory-costly and -redundant. Tar-
geting the contradiction of the tight resource budget on edge
devices and the high memory overhead of the multi-scale ar-
chitectures, our work aims to improve the memory efficiency
of IR models.

In this paper, we present Memory-Oriented Structural
Pruning (MOSP) to reduce the structural redundancy of IR
models. MOSP follows an iterative pruning flow specially
designed for peak memory optimization. MOSP first groups
layers that co-exist in the memory to form a pruning unit.
In each iteration, MOSP selects the layer group that affects
the peak memory and cuts down the peak memory by prun-
ing the layers. Besides, the skip connection is a significant
resource of the memory burden and cannot be pruned in-
dependently. In this regard, MOSP introduces a compactor
block to decouple and prune the skip connection properly.
As shown in Fig. 1, models pruned by MOSP can achieve
better performance-memory efficiency trade-off. The main
contributions of this work could be summarized as follows:

• By analyzing the properties of the IR task and multi-scale
architectures (e.g., U-Net), we point out that optimizing
the peak memory of IR models is important for efficient
deployment. Accordingly, we design a Memory-Oriented
Structural Pruning (MOSP) framework to improve IR ef-
ficiency. MOSP is equipped with an effective grouping
strategy that gathers layers with the same temporal mem-
ory occupation into a pruning unit. Then, MOSP itera-
tively prunes the model to meet the memory budget.

• In order to properly compress the skip connections (a ma-
jor source of the memory burden), we introduce a com-
pactor module onto each skip connection. The compactor
decouples the pruning of the skip connection and the
main branch, hence the modified skip connections can
be pruned independently and incorporated into the corre-
sponding layer groups. Thanks to the enlarged optimiza-
tion space, better performance-efficiency balance could
be achieved.

• Extensive experiments show that the models produced
by MOSP could achieve significantly better trade-offs
between memory efficiency and performance than mod-
els produced by baseline pruning methods. For example,
models pruned by MOSP can save up to 50% memory
consumption without significant performance degrada-
tion and consistently beat those derived by state-of-the-
art IR pruning methods.

Related Works
Deep Image Restoration Models
IR task aims to recover clean images from degraded ones
(e.g., noise, haze). In recent years, deep learning based meth-
ods (Zamir et al. 2020, 2021b; Wang et al. 2021; Zamir
et al. 2021a) have achieved great success. They improve
the performance in two main directions: (1) enhancing the

capacity of basic building blocks and (2) exploring inter-
block connectivity for better information fusion. Chang et
al. (Chang et al. 2020) introduce deformable convolution for
mining spatial dependence between pixels. RIDNet (Anwar
and Barnes 2019) and MIRNet (Zamir et al. 2020) equip
basic blocks with attention mechanism. In addition to de-
signing the building block, researchers have also explored
the inter-block design space. These methods mainly adopt
the U-shaped (Ronneberger, Fischer, and Brox 2015) model
and make architectural improvements. MPRNet (Zamir et al.
2021b) and HiNet (Chen et al. 2021) stack U-Nets and in-
tegrate information across stages for coarse-to-fine process-
ing. These DL-based restoration methods achieve satisfac-
tory performance. However, their intense computation and
memory workload hinder efficient deployment on mobile
devices. Therefore, we propose to improve the efficiency of
the IR model and focus on reducing its peak memory.

Model Compression
Considerable efforts have been devoted to improving the
efficiency of deep neural networks. For instance, network
quantization methods (Qiu et al. 2016; Zhou et al. 2016;
Esser et al. 2019) seek to yield a highly compact network
by reducing its bit width. Network pruning (Han, Mao,
and Dally 2015; Wen et al. 2016; Ning et al. 2020a) aims
at compressing the model by dropping redundant weights
or channels. Various types of Neural Architecture Search
(NAS) methods (Zoph and Le 2016; Pham et al. 2018; Ning
et al. 2020b) could be applied to automatically design archi-
tectures under a certain resource budget (Tan et al. 2019;
Cai et al. 2019; Zhang et al. 2022). Although the above-
mentioned model compression methods have made signif-
icant progress, they are elaborately designed for high-level
computer vision tasks. How to adapt them concerning the
characteristics of IR tasks remains a question.

Efficient Image Restoration Models
Due to the pixel-to-pixel nature and multi-scale information
fusion strategy, IR models suffer from excessive computa-
tion and memory workload. In order to alleviate this issue,
some researches (Gu et al. 2019; Lamba and Mitra 2021)
design efficient architectures. SGN (Gu et al. 2019) adopts
a self-guidance strategy to incorporate multi-scale informa-
tion and extract local features effectively. Another line of re-
search adapts the model compression technique from high-
level vision tasks. Li et al. (Li et al. 2020a) quantize super-
resolution (SR) models and utilize knowledge distillation to
maintain performance. Zhang et al. (Zhang et al. 2021a,b)
conduct structured pruning on SR models. The methods
mentioned above focus on reducing the FLOPs of the model
without considering memory. Differently, we recognize the
importance of memory optimization in IR deployment and
propose a memory-oriented pruning flow to optimize it ac-
cordingly for practical efficiency improvement.

Proposed Method
Fig. 2 shows the two core designs of MOSP: (1) Skip Con-
nection Compactors. We point out that much redundancy

T! has peak memory

Compactor

Compactor design
for pruning shortcut

(Sec 3.2)

Conv1-1 Conv1-2 …

Shortcut

80% 80%

80%

40% 40%

Different sensitivity
Same prune ratio

Less shortcut memory

80%

Conv1-1 Conv1-2 …
80% 80% 40% 40%

80%

Shortcut activation
is kept in memory
for long term

Decouple
the prune ratio
of 2 branches

…

…

Memory-oriented
pruning flow
(Sec 3.3)

1 2 3 4 5 6

C2

C1

U-Shaped Architecture

a b

c

d

e

d

t

T!
T"

Memor
y

a b c d

d e

Activation Stored in Memory

Peak Memory
…

Reduce by Memory Stride
in each iteration

Prune 𝑇" related layers

15M
12M

3M

- 0.6M
- 1.0M

- 0.2M

- 1.2M
Relative
Sensitivity

base
on

Memory
Stride

3MLinear
Programming

LP-Based Allocation

T"

T!

…

20%

20%

Figure 2: Overall framework of the proposed Memory-Oriented Structured Pruning (MOSP). MOSP is comprised of two major
steps. (a) Model adaptation. We substitute the long-term skip connections in U-shaped models with the compactors to decouple
them with the corresponding main branch (i.e., consecutive convolution layers). (b) Memory-oriented iterative pruning. We
group layers with memory-consumption relevance into a pruning unit, enlarging the optimization space for memory. In each
pruning iteration, MOSP first takes an outer step to identify the group with the highest memory usage, and the selected group
will get trimmed down by a memory stride. Then MOSP employs an inner step to allocate the memory sparsity within the
selected group through linear programming.

resides in the skip-connected features. Therefore, as shown
in Fig. 2 (left), we propose to insert compactors onto the
skip connections to compress the skip-connected features.
The compactor design decouples the pruning of the skip-
connection branch and the main branch, thus bringing more
room for memory optimization. (2) Memory-Oriented It-
erative Pruning Flow. Fig. 2 (right) shows our memory-
oriented iterative pruning flow. This flow explicitly cuts
down the peak memory of the given model in each iteration
and outputs models satisfying different memory budgets.

Problem Definition for Memory Efficiency
In order to relieve the memory burden for practical deploy-
ment, we propose to acquire memory-efficient architectures
in the manner of pruning. Specifically, we prune a model to
satisfy a provided memory constraint Mc:

min
W

L(FIR(X | W; Θ), Y)

s.t. Memory(Θ) ≤ Mc

(1)

where FIR denotes the IR model to be pruned, W denotes
the weights of the given model, X,Y denote the input de-
graded image and the target clean image respectively. One
has to identify architecture parameters Θ (i.e., output chan-
nels of each layer) to meet the memory budget. After deter-
mining the appropriate architecture parameters, the pruned
model will be trained to minimize the loss function L.

Compactor Design for Pruning Skip Connections
Multi-scale information fusion has been a fundamental de-
sign choice for IR models. To integrate information of mul-
tiple scales, the U-shaped architectures need to store inter-
mediate computation results in memory for a long period,
bringing heavy memory consumption. Specifically, the orig-
inal U-Net utilizes four long-term skip connections for in-
formation propagation. As can be seen from Fig. 3(a), this
design induces large memory consumption.

Then, a natural yet untouched question arises, do we re-
ally need that many features for feature fusion? Actually,

conv1_1

conv1_2

conv2_1

conv2_2

conv3_1

conv3_2

conv4_1

conv4_2

conv5_1

conv5_2

up6

conv6_1

conv6_2

up7

conv7_1

conv7_2

up8

conv8_1

conv8_2

up9

conv9_1

conv9_2

conv10

Layer Name

0

5

10

15

20

25

M
em

 O
ve

rh
ea

d
/ M

B
Long Skip Connection 1
Long Skip Connection 2
Long Skip Connection 3
Long Skip Connection 4
Current Layer (main branch)

(a)

0% 20% 40% 60% 80% 100%
Skip Connection Keeping Ratio

39.02

39.04

39.06

39.08

39.10

39.12

PS
N

R
 /

dB

Long Skip Connection 1 (longest)
Long Skip Connection 2
Long Skip Connection 3
Long Skip Connection 4 (shortest)

(b)

Figure 3: (a) Illustration of memory consumption for each layer in U-Net. Memory consumption is marked with different colors,
and estimated by the method described in the “Layer Grouping” section with a single input patch of size 3 × 256 × 256. (b)
Performance of U-Nets with respect to different keeping ratios of skip connections. The long skip connection 1 to 4 refer to 4
long-range skip connections of the standard U-Net in descending order according to the length.

our experiments in Fig. 3(b) demonstrate that the answer is
no. Contrary to the mainstream belief that the skip connec-
tions should be faithfully preserved, Fig. 3(b) reveals that the
skip connections are highly redundant, implying a broader
space for memory optimization.

Intuitively, the features that pass through the main branch
might be different from those to be skip-connected: features
in the long-range skip connections are rich in low-level in-
formation, while those in the main branch are processed to
obtain large-scaled information. Hence different keeping ra-
tios of these features should be considered. Nevertheless,
the existing pruning methods fail to distinguish such two
branches and simply assign the same keeping ratio (usually
highly redundant) to the skip connections. For instance, as
shown in Fig. 2 (upper left), while the proper keeping ratio
of the skip connection may be lower, the skip-connected fea-
tures are still excessively stored, wasting notable memory.

Therefore, as shown in Fig. 2 (lower left), we propose to
decouple the pruning of the skip connection from that of
the main branch by introducing 1 × 1 convolutions onto
the skip connections, i.e., the compactors. The benefit of
introducing compactors are two-fold. First, features in these
two branches can be preserved at different keeping ratios
compatible with the contained information. For example, in
Fig. 2 (lower left), the keeping ratio of the skip connection
branch with the “Compactor” is only 20%, which is more
memory-efficient than that forced to share the same keeping
ratio with the main branch (Fig. 2 upper left). Second, by
introducing only ∼ 1% extra parameters and computations,
skip connections can learn to process and preserve features
of higher value and thus less affected by pruning.

Memory-Oriented Pruning Flow
To get a solution for the problem defined in Eqn. 1, we pro-
pose a memory-oriented pruning flow (see Appendix for de-
tailed algorithm). Specifically, before the pruning process,
we first analyze the memory dependency pattern of the orig-
inal architecture and build the “pruning groups” of layers.

Each pruning group contains the layers whose features need
to co-exist in the memory simultaneously. The overall prun-
ing process contains outer loops and inner loops. In each
outer iteration, we compress the pruning group with the cur-
rent highest memory cost, cutting down its memory cost by
mo (the outer memory stride). To decide the concrete keep-
ing ratio for each layer in this group, we conduct an inner
loop of linear programming optimizations. Each linear pro-
gramming problem in the inner loop aims to minimize the
performance degradation while satisfying the requirement of
reducing the memory by ms (the inner memory stride).

Layer Grouping. We devise a group-wise pruning gran-
ularity in terms of memory occupation relevance. Specifi-
cally, we group layers co-existing in the memory into a prun-
ing unit. For instance, in Fig. 2, during the computation of
M3 (time step Ta), the input features, the output features,
and two parallel skip-connected features (point a, b, c and
d in Fig. 2, respectively) are stored in the memory simul-
taneously. Accordingly, we can prune M2, M3, C1, C2 by
removing some of the output filters to reduce the memory
overhead at this time step. Or in another word, these four
layers are in the pruning group corresponding to time step
Ta. The memory consumption of the pruning group is then
estimated as the sum of the memory taken by the output fea-
tures of the corresponding layers, while the memory taken
by layer parameters is neglected. Note that pruning groups
corresponding to different time steps can have intersections,
i.e., one layer could be in multiple pruning groups. For ex-
ample, C1 is in both the Ta and Tb pruning groups in Fig. 2.

Outer Loop. In each outer iteration, we first evaluate the
current memory consumption of each group. The group
with the highest memory overhead is selected for pruning.
As many intersections exist between pruning groups, layer
pruning schemes obtained by directly pruning the selected
group to meet the final memory constraint Mc may be sub-
optimal for other groups. Instead, we take iterative steps
(i.e., the outer loops) to satisfy the final memory constraint

gradually. In each outer loop, we cut down the selected
group’s memory by mo (the outer memory stride, 3MB in
Fig. 2). In this way, we can better balance memory reduc-
tion between different groups and thus get elaborately deter-
mined pruning schemes. The outer loop is shown in Algo.
line 2 to 17. After determining the group to prune, we carry
out an inner loop to get a finer pruning scheme inside the se-
lected group. At the end of each outer iteration, we finetune
the model for a short period (e.g., one epoch) to help the
model adapt to the channel reduction. The outer loop ends
when all groups respect the memory constraint Mc.

Inner Loop. In each inner loop (Algo. line 5 to 11), we are
supposed to determine the amount of the filters to prune for
each layer in the group to satisfy the memory pruning stride
mo while maintaining the model performance. We modify
the optimization problem defined in Eqn.1 as follows:

min
θt
g

L(FIR(X | W;θt
g), Y)

− L(FIR(X | W;θt−1
g), Y) (2a)

≈min
θt
g

∂L
∂θg

(θt
g − θt−1

g) (2b)

≈min
θt
g

stg △θt
g (2c)

s.t. mg θt
g ≥ mo.

As shown in Eqn. 2a, at outer loop t, we need to iden-
tify the pruning ratios of layers in the selected group g, i.e.,
θt
g , that minimizes the performance degradation compared

with the model pruned in the last loop. We use a linear ap-
proximation of the objective and thereby simplify the orig-
inal problem into a linear programming (LP) problem with
a constraint (mg in the constraint is a vector denoting the
per-channel memory overhead of the layers in group g).

We use a simple numeric differentiation method to fit
stg = ∂L

∂θg
|θt−1

g
. Specifically, for each layer in the current

group, we prune the layer by one to a few filters and eval-
uate the consequent performance degradation (i.e., sensitiv-
ity analysis). Then we linear fit the performance degradation
with the pruned filters of the layer. The resulting sensitivity
vector, stg , represents the degree to which the overall per-
formance is affected by the layer. After obtaining the linear
sensitivity coefficients, we conduct LP to decide the concrete
pruning scheme of the grouped layers.

Since we adopt a local linear approximation fashion, it
is critical to guarantee sufficient local linearity for accurate
fitting. In practice, we further split the outer memory stride
mo into several smaller strides ms in inner loops and take
the above steps to decide a finer pruning scheme θk

g , that
can be accumulated into the final scheme for this outer loop:

θt
g =

K∑
k=1

θk
g , (3)

where k denotes the inner step k. This split helps guarantee
better local linearity, and thus more accurate fitting.

Experiments
Experimental Settings
We conduct experiments on image denoising, super resolu-
tion (SR) and low-light enhancement tasks to validate the
effectiveness of the proposed method. We provide the im-
plementation details and results of image denoising experi-
ments in this section. Please refer to Appendix for settings
and results of SR and low-light enhancement tasks.

Datasets and Evaluation. For real image denoising, we
use 320 high-resolution images in the SIDD dataset (Ab-
delhamed, Lin, and Brown 2018) as the training data. And
we report the results evaluated on 1,280 validation patches
in SIDD. We perform quantitative comparisons using the
PSNR and SSIM (Wang et al. 2004) metrics. When estimat-
ing the peak memory of a model, we fix the size of the image
as 2K (i.e., 2048 × 1080).

Backbone and Baseline methods. We compare MOSP
with various pruning methods, including uniformly scale,
global L2 pruning, group lasso (Wen et al. 2016) , S-Net (Yu
and Huang 2019b), US-Net (Yu and Huang 2019c), Au-
toSlim (Yu and Huang 2019a), Random Search (Li et al.
2022) and DHP (Li et al. 2020b). We also compare with
ASSL (Zhang et al. 2021a) that has considered the IR task
properties. We choose the standard U-Net (Chen et al. 2018)
and its variant Res-U-Net (Wang et al. 2021) as pruning
baselines for their representative multi-scale structures. The
latter contains both long and local skip connections.

Implementation Details. The models are trained on 256×
256 patches with a batch size of 32. Random horizontal and
vertical flips are applied to the training patches as data aug-
mentation. We use Adam optimizer (Kingma and Ba 2014)
with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. In the pretrain
stage, we train the baseline models for 80 epochs, with the
initial learning rate set as 1×10−4 and decreased to half ev-
ery 20 epochs. For MOSP, we additionally insert compactors
onto the skip connections in the pretrained models and fine-
tune for extra 10 epochs. We finetune the pruned models for
20 epochs to help the models adapt to the channel reduc-
tion. During the finetune stage, the learning rate is set to
1× 10−4 and decreased to 5× 10−5 after 10 epochs. As for
MOSP hyper-parameters, the outer memory stride is by de-
fault 2MB and the inner memory step is set to be the highest
per-channel memory in the current selected group.

Comparisons on Real Image Denoising
We report IR performance as well as the resource over-
heads of the models obtained by different pruning meth-
ods in Tab.1. Compared with the methods that individually
prune each layer and neglect the significance of skip con-
nection pruning, the models pruned by our method consis-
tently achieve the best performance in PSNR and SSIM un-
der different memory constraints. Especially, while saving
4× memory, the model pruned by MOSP only compromises
less than 1% PSNR. As shown in Fig. 1, MOSP achieves the
best IR performance - memory efficiency trade-off among

Method Peak Memory Params Performance
PSNR SSIM

0.25 × scale 192M 0.48M 38.71 0.911
Global L2 192M 2.40K 29.00 0.851

Group Lasso 192M 0.48M 29.16 0.853
S-U-Net 192M 7.75M 37.92 0.909

US-U-Net 192M 7.75M 37.94 0.909
AutoSlim 192M 0.99K 29.10 0.840

DHP 188M 1.04M 38.58 0.915
Random Search 184M 0.38M 38.39 0.911

ASSL 192M 0.48M 38.81 0.916
MOSP (Ours) 192M 7.27M 38.92 0.916

0.5 × scale 384M 1.94M 39.11 0.917
Global L2 384M 0.02M 35.03 0.868

Group Lasso 384M 1.94M 34.81 0.86
S-U-Net 384M 7.75M 38.81 0.916

US-U-Net 384M 7.75M 38.24 0.910
AutoSlim 384M 7.80K 34.81 0.862

DHP 368M 2.18M 38.89 0.917
Random Search 352M 1.76M 38.98 0.867

ASSL 384M 1.94M 39.14 0.919
MOSP (Ours) 384M 7.76M 39.37 0.922
0.75 × scale 576M 4.36M 39.29 0.919
Global L2 576M 0.07M 36.08 0.886

Group Lasso 576M 4.36M 36.10 0.887
S-U-Net 576M 7.75M 39.15 0.918

US-U-Net 576M 7.75M 38.85 0.915
AutoSlim 576M 0.02M 35.22 0.867

DHP 600M 4.64M 39.17 0.920
Random Search 576M 4.20M 39.12 0.917

ASSL 576M 4.36M 39.24 0.919
MOSP (Ours) 576M 7.83M 39.45 0.922

Unpruned 768M 7.75M 39.47 0.921

Table 1: U-Net pruning results on the SIDD dataset. The pruning results of Res-U-Nets are provided in the Appendix.

the compared methods. The above results indicate that ben-
efit from the enlarged memory optimization room and ded-
icated iterative memory pruning flow, MOSP has a better
capacity of balancing memory budget across the layers. The
pruning results of Res-U-Nets are provided in Appendix.

The visual results of pruned U-Nets with 50% original
memory overheads are illustrated in Fig. 4. It can be seen
that models produced by MOSP is capable of better restor-
ing structural content, while those by compared methods fail
to completely remove noise, or overly smooth the contents.
The overall results demonstrate that under the same memory
budgets, models pruned by MOSP can achieve both quanti-
tatively and qualitatively better results.

Pruning Pattern
We then analyze the pruning patterns produced by the com-
pared methods and MOSP. Visualization results can be
found at Appendix. The findings are two-fold:

• Skip connections have larger pruning ratios than main
branches, which demonstrates the high memory redun-

dancy induced by skip connections and thus the impor-
tance of introducing compactors. By contrast, the skip
connections and the main branch of models pruned by the
compared methods share the same keeping ratios, leaving
the memory redundancy unexplored.

• ASSL prunes layers to the same ratio, hence fail to
distinguish layers with different memory efficiency-
performance trade-offs, leading to suboptimal results.
Global L2 and AutoSlim tend to prune out the layers in
the middle of the model before turning to slim down the
layers aside, which destroys the structural integrity of the
IR models. MOSP considers both the memory resource
and layers’ sensitivity and therefore can obtain higher
memory efficiency and more balanced pruning patterns.

Ablation Study
In this section, we present the ablation studies of the pro-
posed MOSP framework and analyze the effect of each de-
sign choice. We adopt U-Net as baseline model in each abla-
tion experiment. We also provide the practical peak memory

Real Image Denoising

31.40dB / 0.824 31.14dB / 0.814 35.91dB / 0.910 36.03dB / 0.913 36.58dB / 0.920 36.54dB / 0.920

27.73dB / 0.645
Global L2

27.62dB / 0.648
Group Lasso

29.10dB / 0.719
Uniformly Scaled

29.41dB / 0.741
ASSL

29.87dB / 0.764
MOSP (proposed)

29.84dB / 0.763
Unpruned

Figure 4: Qualitative comparisons between the existing pruning methods and the proposed method. Memory consumption of
the models are pruned to the half. Patches are from SIDD validation set. PSNR and SSIM scores are attached below.

mo/MB 1 2 4 8 12

PSNR 39.371 39.370 39.360 39.339 39.283

Table 2: Comparison on the memory strides of outer loops.

ms/MB 0.5 1 1.5 2.0

PSNR 39.386 39.384 39.383 39.383

Table 3: Comparison on the memory steps of inner loops.

measurements across different platforms in Appendix.

The effect of the compactor. Fig. 5 shows the perfor-
mance of the pruned models with and without compactors.
With the help of skip-connection compactors, the memory
redundancy can be explored and the performance is signif-
icantly improved under different peak memory constraint,
ranging from 21.6MB to 4.8MB (90% to 20% of original
memory overheads). Especially, when the peak memory of
the model is compressed to 20%, the pruned model with
compactors outperforms that without compactors by nearly
1dB, which proves the effectiveness of the compactors.

The effect of outer stride mo and inner steps ms. Di-
rectly pruning the selected layer group to satisfy the memory
constraint in each outer loop can notably shorten the whole
pruning progress. However, pruning with such a huge mem-
ory stride overlooks to balance memory reduction between
the pruning groups and only leads to suboptimal results,
as there exist many intersections between different pruning
groups. Tab. 2 shows the pruning results of different mem-
ory stride mo. The smaller the memory stride, the higher
the accuracy. Nevertheless, smaller memory strides result in

24 21.6 19.2 16.8 14.4 12 9.6 7.2 4.8
Peak Memory/MB

38.0

38.2

38.4

38.6

38.8

39.0

39.2

39.4
PS

N
R

with compactor
without compactor

Figure 5: Comparison results between the settings with and
without compactor. Tested on the SIDD validation patches.

longer process time because it takes more outer loops to fin-
ish the whole pruning procedure. We further study the effect
of the inner memory step. As shown in Tab. 3, though the
result difference is small in this experiment, we preserve the
inner loop, which aims at keeping the local linearity, to pro-
vide a more general method formulation.

Conclusion
In this paper, we propose an iterative pruning flow, MOSP,
specially designed for peak memory optimization. MOSP
introduces skip connection compactors and reduces the
memory redundancy induced by the multi-scale structure
appropriately. Compared with the previous pruning meth-
ods, the proposed method derives models with better image
restoration performance under similar memory budget.

Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (No. U19B2019, 62104128, U21B2031,
61832007), National Key Research and Development Pro-
gram of China (No. 2019YFF0301500), Tsinghua EE Xil-
inx AI Research Fund, and Beijing National Research Cen-
ter for Information Science and Technology (BNRist). We
thank Prof. Yunxin Liu and Dr. Yuzhi Wang for their valu-
able discussions.

References
Abdelhamed, A.; Lin, S.; and Brown, M. S. 2018. A high-
quality denoising dataset for smartphone cameras. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 1692–1700.
Anwar, S.; and Barnes, N. 2019. Real image denoising with
feature attention. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 3155–3164.
Bevilacqua, M.; Roumy, A.; Guillemot, C.; and Alberi-
Morel, M. L. 2012. Low-complexity single-image super-
resolution based on nonnegative neighbor embedding. In
BMVC.
Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; and Han, S. 2019.
Once-for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791.
Chang, M.; Li, Q.; Feng, H.; and Xu, Z. 2020. Spatial-
adaptive network for single image denoising. In Proceedings
of the European Conference on Computer Vision (ECCV),
171–187. Springer.
Chen, C.; Chen, Q.; Xu, J.; and Koltun, V. 2018. Learning
to see in the dark. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
3291–3300.
Chen, L.; Chu, X.; Zhang, X.; and Sun, J. 2022. Sim-
ple Baselines for Image Restoration. arXiv preprint
arXiv:2204.04676.
Chen, L.; Lu, X.; Zhang, J.; Chu, X.; and Chen, C. 2021.
HINet: Half instance normalization network for image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 182–
192.
Esser, S. K.; McKinstry, J. L.; Bablani, D.; Appuswamy, R.;
and Modha, D. S. 2019. Learned step size quantization.
arXiv preprint arXiv:1902.08153.
Gu, S.; Li, Y.; Gool, L. V.; and Timofte, R. 2019. Self-
guided network for fast image denoising. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 2511–2520.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Huang, J.-B.; Singh, A.; and Ahuja, N. 2015. Single image
super-resolution from transformed self-exemplars. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 5197–5206.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lamba, M.; and Mitra, K. 2021. Restoring Extremely Dark
Images in Real Time. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 3487–3497.
Li, H.; Yan, C.; Lin, S.; Zheng, X.; Zhang, B.; Yang, F.; and
Ji, R. 2020a. Pams: Quantized super-resolution via parame-
terized max scale. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 564–580. Springer.
Li, Y.; Adamczewski, K.; Li, W.; Gu, S.; Timofte, R.; and
Van Gool, L. 2022. Revisiting Random Channel Prun-
ing for Neural Network Compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 191–201.
Li, Y.; Gu, S.; Zhang, K.; Gool, L. V.; and Timofte, R. 2020b.
Dhp: Differentiable meta pruning via hypernetworks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 608–624. Springer.
Lim, B.; Son, S.; Kim, H.; Nah, S.; and Mu Lee, K. 2017.
Enhanced deep residual networks for single image super-
resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition workshops
(CVPRW), 136–144.
Martin, D.; Fowlkes, C.; Tal, D.; and Malik, J. 2001. A
database of human segmented natural images and its appli-
cation to evaluating segmentation algorithms and measuring
ecological statistics. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), volume 2,
416–423. IEEE.
Ning, X.; Zhao, T.; Li, W.; Lei, P.; Wang, Y.; and Yang, H.
2020a. DSA: More Efficient Budgeted Pruning via Differen-
tiable Sparsity Allocation. In Proceedings of the European
Conference on Computer Vision (ECCV).
Ning, X.; Zheng, Y.; Zhao, T.; Wang, Y.; and Yang, H.
2020b. A Generic Graph-based Neural Architecture Encod-
ing Scheme for Predictor-based NAS. In Proceedings of the
European Conference on Computer Vision (ECCV).
Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean,
J. 2018. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268.
Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.;
Tang, T.; Xu, N.; Song, S.; Wang, Y.; and Yang, H. 2016.
Going Deeper with Embedded FPGA Platform for Convolu-
tional Neural Network. In FPGA ’16.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmenta-
tion. In International Conference on Medical image com-
puting and computer-assisted intervention (MICCAI), 234–
241. Springer.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2820–2828.

Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.-H.; and
Zhang, L. 2017. Ntire 2017 challenge on single image
super-resolution: Methods and results. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition workshops (CVPRW), 114–125.
Wang, Z.; Bovik, A.; Sheikh, H.; and Simoncelli, E. 2004.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600–612.
Wang, Z.; Cun, X.; Bao, J.; and Liu, J. 2021. Uformer: A
general u-shaped transformer for image restoration. arXiv
preprint arXiv:2106.03106.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. Ad-
vances in Neural Information Processing Systems (NIPS),
29.
Yu, J.; and Huang, T. 2019a. Autoslim: Towards one-shot
architecture search for channel numbers. arXiv preprint
arXiv:1903.11728.
Yu, J.; and Huang, T. S. 2019b. Universally slimmable net-
works and improved training techniques. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1803–1811.
Yu, J.; and Huang, T. S. 2019c. Universally slimmable net-
works and improved training techniques. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1803–1811.
Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F. S.;
and Yang, M.-H. 2021a. Restormer: Efficient Transformer
for High-Resolution Image Restoration. arXiv preprint
arXiv:2111.09881.
Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F. S.;
Yang, M.-H.; and Shao, L. 2020. Learning enriched features
for real image restoration and enhancement. In Proceedings
of the European Conference on Computer Vision (ECCV),
492–511. Springer.
Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F. S.;
Yang, M.-H.; and Shao, L. 2021b. Multi-stage progressive
image restoration. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
14821–14831.
Zeyde, R.; Elad, M.; and Protter, M. 2010. On single im-
age scale-up using sparse-representations. In International
conference on curves and surfaces, 711–730. Springer.
Zhang, L. L.; Han, S.; Wei, J.; Zheng, N.; Cao, T.; and Liu,
Y. 2022. Nn-METER: Towards Accurate Latency Prediction
of DNN Inference on Diverse Edge Devices. GetMobile:
Mobile Comp. and Comm., 25(4): 19–23.
Zhang, Y.; Wang, H.; Qin, C.; and Fu, Y. 2021a. Aligned
Structured Sparsity Learning for Efficient Image Super-
Resolution. Advances in Neural Information Processing
Systems (NIPS), 34.
Zhang, Y.; Wang, H.; Qin, C.; and Fu, Y. 2021b. Learning
Efficient Image Super-Resolution Networks via Structure-
Regularized Pruning. In International Conference on Learn-
ing Representations (ICLR).

Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; and Zou, Y.
2016. Dorefa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.
Zoph, B.; and Le, Q. V. 2016. Neural architec-
ture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Comparisons on Low Light Image
Enhancement

Experimental Settings. For low-light image enhance-
ment task, we use a publicly available dataset SID-
Sony (Chen et al. 2018) to train and evaluate the pruned
models. Following the original SID practice, we prune and
train the models with 1,865 short- and long-exposure image
pairs. After picking the models with the highest scores on
the split validation set (containing 234 image pairs), we di-
rectly report their performance on the 598 test image pairs.

We compare MOSP with uniformly scale, global L2 prun-
ing, group lasso (Wen et al. 2016) and ASSL (Zhang et al.
2021a) on the U-Net (Chen et al. 2018). The only difference
between the baseline U-Net here and that in the real image
denoising experiments is the output convolution layer (we
adopt the same U-Net here as SID (Chen et al. 2018), while
we substitute the final output layers, a convolution layer with
12 output filters and a pixelshuffle layer with a upscaling
factor of 2, with a single 3-filter convolution layer in the real
image denoising experiments). We prune the U-Net based on
the pretrained model released by the original authors, while
the other experiment settings are kept the same as those of
the real image denoising experiments.

Comparisons and Analysis. The low light enhancement
performance and the resource overheads of the models ob-
tained by the existing pruning methods and the proposed
method are list in Tab A.2. The proposed method continually
achieves the best performance among the compared meth-
ods, which demonstrates the importance of skip connection
pruning and balanced memory reduction.

The visual results are provided in Fig. A.3. Patches re-
stored by the MOSP-pruned model are richer in local details
(e.g., better color, finer contexts), while those by the exist-
ing methods suffer by the remaining noise or even artifacts.
The above results demonstrate that MOSP can better allocate
memory reduction across layers of a given model, thus pro-
viding both quantitatively and qualitatively better restored
images.

Comparisons on Single Image Super
Resolution

Experimental Settings. For single image super resolution
task, we use the publicly available dataset DIV2K (Timofte
et al. 2017) to prune and train the models. We adopt the first
800 images are our training dataset and evaluate the pruned
models on the first 10 validation images. After the whole
pruning procedure, we report the performances of the pruned
models on four standard benchmark datasets, Set5 (Bevilac-
qua et al. 2012), Set14 (Zeyde, Elad, and Protter 2010),
B100 (Martin et al. 2001) and U100 (Huang, Singh, and
Ahuja 2015). The super-resolved images are evaluated with
PSNR and SSIM on the Y channel of transformed YCbCr
space. When estimating the peak memory overhead of a
pruned model, we set the output image size as 3×1280×720.

We compare MOSP with uniformly scaling, global L2
pruning, group lasso (Wen et al. 2016), DHP (Li et al.
2020b), and ASSL (Zhang et al. 2021a) on the EDSR (Lim

et al. 2017). We add a compactor module onto the long skip
connection and keep the local skip connections of the resid-
ual blocks intact. The output channels of each residual block
are forced to be the same to avoid the channel alignment is-
sue.

The models are trained on the input patches sized of
96 × 96 with a batch size of 16. Random horizontal and
vertical flips are applied to the training patches as data aug-
mentation. We use Adam optimizer (Kingma and Ba 2014)
with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. The baseline
models are pretrained for 80 epochs, with the initial learning
rate set as 1 × 10−4 and decreased to half every 20 epochs.
For MOSP, we insert compactors onto the pretrained models
and finetune them for extra 10 epochs. After channel shrink-
ing, the models are further finetuned for 20 epochs. During
the finetune stage, the learning rate is set to 1 × 10−4 and
decreased to 5× 10−5 after 10 epochs. As for MOSP hyper-
parameters, the outer memory stride is by default 2MB and
the inner memory step is set to be the highest per-channel
memory in the current selected group.

Comparisons and Analysis. The SISR performance and
the resource overheads of the models compressed by the
comparing methods are presented in Tab A.3. In most cases,
the proposed method provides compact models with bet-
ter performance. Especially, in the ×3 SR case, the model
pruned with 50% peak memory budget is on par with the
original model thanks to the skip connection pruning.

The visual results are provided in Fig. A.4. Finer super-
resolution results can be obtained by the models produced by
MOSP. For example, the grains on the deck (upper patches)
and grids on the architecture (lower patches) are recon-
structed with better details. The above results again indicate
that MOSP can better balance the memory overheads across
a model.

Detailed Pruning Patterns
Detailed pruning patterns are provided in Fig. A.1. Mod-
els are pruned to half of the original memory overheads to
meet the 12 MB peak memory limit with a test patch sized
3 × 256 × 256. The bars in the graph represent the over-
all memory overhead of a pruned layer, consisting of the
memory overhead of the input features, output features and
parallel skip-connected features of the layer. For example,
for layer “conv3 1”, its memory overhead is modeled as the
memory taken up by the features residing in the long skip
connection 1 and 2 and that by the main branch (i.e., the
input features and the output features). There are three bars
for each layer in the graph, representing the actual memory
patterns of the layer pruned by global L2, uniformly scaling
and MOSP from left to right.

As can be seen from the figure, the pattern derived by
MOSP is more balanced in memory usage than those by uni-
formly scaling and global L2, thus reducing memory waste
under the memory budget. Skip connections can be better
pruned or preserved according to their importance instead
of being forced to be the same as the main branch. Opposite
to the extreme patterns produced by global L2, which prunes
out the layers in the middle of the model, MOSP can better

conv1_1

conv1_2

conv2_1

conv2_2

conv3_1

conv3_2

conv4_1

conv4_2

conv5_1

conv5_2

up6

conv6_1

conv6_2

up7

conv7_1

conv7_2

up8

conv8_1

conv8_2

up9

conv9_1

conv9_2

conv10

Layer Name

0

2

4

6

8

10

12
M

em
 O

ve
rh

ea
d

/ M
B

Long Skip Connection 1
Long Skip Connection 2
Long Skip Connection 3
Long Skip Connection 4
Current Layer (main branch)

Figure A.1: Pruning patterns of the U-Nets obtained by the existing pruning methods and MOSP. Models are pruned to half of
the original memory overhead and tested with a single 3× 256× 256 patch. For each layer in the graph, bars from left to right
represent patterns of global L2 pruning, uniformly scaling, MOSP respectively.

preserve information of different scales.

Hardware Test
After obtaining the models pruned by MOSP under differ-
ent memory constraints, we measure their practical mem-
ory overheads on a server GPU and a simulated mobile de-
vice. The GPU results are measured on a GTX3090 GPU
with pytorch versioned 1.8.0, and the simulated mobile re-
sults are measured in Android Studio with NCNN versioned
20220216. The results presented in Fig. A.2 show that the
peak memory modeling method adopted in MOSP can ef-
fectively reflect the real peak memory. Nevertheless, more
accurate results can be achieved by modifying the memory
surrogate according to the practical inference library.

5 10 15 20
Modeled Peak Feature Memory / MB

0

20

40

60

80

100

120

Te
st

ed
 P

ea
k

Fe
at

ur
e

M
em

 /
M

B

Server GPU
Mobile

Figure A.2: Measured peak memory on the server GPU and
the simulated mobile device.

Model Method Peak Memory Params Performance
PSNR SSIM

Res-U-Net

0.25 × scale 262M 0.59M 38.38 0.914
Global L2 262M 0.02M 30.90 0.724

Group Lasso 262M 0.59M 27.97 0.541
ASSL 262M 0.59M 38.67 0.915

MOSP (Ours) 262M 9.03M 39.24 0.919
0.5 × scale 524M 2.38M 39.23 0.919
Global L2 524M 0.06M 31.17 0.733

Group Lasso 524M 2.38M 36.90 0.900
ASSL 524M 2.38M 39.07 0.918

MOSP (Ours) 524M 9.49M 39.45 0.922
0.75 × scale 789M 5.35M 39.40 0.920
Global L2 789M 3.58M 38.96 0.918

Group Lasso 789M 5.35M 38.88 0.918
ASSL 789M 5.35M 39.29 0.920

MOSP (Ours) 789M 9.57M 39.48 0.922
Unpruned 1048M 9.51M 39.52 0.922

Table A.1: Real image denoising comparisons on SIDD dataset

Model Method Peak Memory Params Performance
PSNR SSIM

U-Net

0.25 × scale 192M 0.48M 27.60 0.763
Global L2 192M 1.40K 22.69 0.694

Group Lasso 192M 0.48M 27.38 0.767
ASSL 192M 0.48M 27.63 0.770

MOSP (Ours) 192M 7.38M 27.80 0.774
0.5 × scale 384M 1.94M 28.04 0.774
Global L2 384M 0.02M 25.51 0.700

Group Lasso 384M 1.94M 28.03 0.779
ASSL 384M 1.94M 28.29 0.786

MOSP (Ours) 384M 7.67M 28.74 0.794
0.75 × scale 576M 4.36M 28.20 0.778
Global L2 576M 6.34M 28.75 0.796

Group Lasso 576M 4.36M 28.50 0.790
ASSL 576M 4.36M 28.37 0.790

MOSP (Ours) 576M 7.84M 28.86 0.798
Unpruned 768M 9.51M 28.88 0.798

Table A.2: Low light image enhancement comparisons on SID-Sony dataset

Low Light Image Enhancement

27.90dB / 0.933 31.56dB / 0.947 29.07dB / 0.946 29.96dB / 0.960 30.75dB / 0.962 30.84dB / 0.965

23.57dB / 0.495
Global L2

24.33dB / 0.554
Group Lasso

25.13dB / 0.552
Uniformly Scaled

25.34dB / 0.575
ASSL

27.04dB / 0.598
MOSP (proposed)

26.70dB / 0.599
Unpruned

Figure A.3: Qualitative comparisons between the existing pruning methods and the proposed method. Memory consumption of
the models are pruned to the half. The patches are cropped from the SID-Sony test images. PSNR and SSIM scores are attached
below.

Single Image Super Resolution

28.30dB / 0.855 29.35dB / 0.877 30.65dB / 0.900 30.90dB / 0.903 31.29dB / 0.908 31.35dB / 0.909

23.42dB / 0.833
Group Lasso

24.65dB / 0.866
Uniformly Scaled

27.26dB / 0.905
DHP

27.66dB / 0.907
ASSL

28.24dB / 0.914
MOSP (proposed)

28.60dB / 0.918
Unpruned

Figure A.4: Qualitative comparisons between the existing pruning methods and the proposed method. Memory consumption of
the models are pruned to the half. Patches are cropped from B100 (upper) and Urban100 (lower). PSNR and SSIM scores are
attached below.

Model Method Peak Mem Params
Performance

Set5 Set14 B100 U100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR
× 2

0.25 × scale 169M 0.09M 34.83 0.941 31.26 0.892 30.42 0.873 27.76 0.864
Global L2 169M 0.02M 30.10 0.924 28.40 0.873 29.11 0.860 26.33 0.848

Group Lasso 169M 0.02M 30.12 0.910 28.13 0.849 28.51 0.837 25.69 0.816
DHP 192M 0.08M 37.37 0.960 32.92 0.915 31.72 0.897 30.45 0.911
ASSL 169M 0.09M 37.46 0.959 33.08 0.913 31.86 0.896 30.88 0.915

MOSP (Ours) 169M 0.22M 37.11 0.959 32.74 0.913 31.58 0.896 30.03 0.906
0.5 × scale 337M 0.34M 36.78 0.955 32.48 0.907 31.37 0.889 29.46 0.896
Global L2 337M 0.11M 34.96 0.943 31.37 0.896 30.54 0.878 27.88 0.869

Group Lasso 337M 0.11M 34.98 0.946 31.83 0.898 30.55 0.882 27.88 0.871
DHP 369M 0.37M 37.63 0.961 33.22 0.917 31.96 0.901 31.28 0.921
ASSL 337M 0.34M 37.75 0.960 33.35 0.916 32.00 0.898 31.41 0.921

MOSP (Ours) 337M 0.96M 37.85 0.962 33.42 0.919 32.09 0.902 31.66 0.925
0.75 × scale 506M 0.77M 37.64 0.959 33.24 0.915 31.97 0.897 31.30 0.920
Global L2 506M 0.28M 35.82 0.949 31.98 0.902 30.97 0.883 28.67 0.883

Group Lasso 506M 0.28M 35.30 0.948 31.66 0.901 30.71 0.884 28.19 0.876
DHP 517M 0.82M 37.68 0.962 33.29 0.918 32.03 0.901 31.48 0.923
ASSL 506M 0.77M 37.81 0.960 33.39 0.916 32.07 0.898 31.64 0.924

MOSP (Ours) 506M 1.30M 37.86 0.962 33.48 0.919 32.11 0.902 31.76 0.926
Unpruned 675M 1.37M 37.99 0.960 33.57 0.918 32.16 0.899 31.98 0.927

EDSR
× 3

0.25 × scale 150M 0.10M 31.23 0.884 28.29 0.803 27.72 0.769 25.02 0.762
Global L2 150M 0.04M 30.34 0.866 27.64 0.782 27.40 0.753 24.68 0.745

Group Lasso 160M 0.04M 25.73 0.835 23.99 0.748 25.79 0.726 23.69 0.715
DHP 169M 0.09M 33.47 0.922 29.70 0.836 28.65 0.801 26.74 0.821
ASSL 150M 0.09M 33.60 0.924 29.52 0.837 28.76 0.803 27.01 0.829

MOSP (Ours) 150M 0.91M 33.99 0.926 30.04 0.842 28.92 0.807 27.44 0.840
0.5 × scale 300M 0.39M 31.90 0.895 28.75 0.812 28.01 0.777 25.45 0.777
Global L2 300M 0.41M 31.76 0.894 28.69 0.810 27.98 0.776 25.41 0.776

Group Lasso 304M 0.41M 31.22 0.888 28.29 0.807 27.73 0.777 25.05 0.766
DHP 309M 0.39M 33.95 0.927 29.98 0.841 28.86 0.806 27.34 0.837
ASSL 300M 0.39M 33.98 0.927 29.77 0.843 28.93 0.808 27.53 0.842

MOSP (Ours) 300M 1.33M 34.21 0.928 30.18 0.845 29.01 0.810 27.81 0.848
0.75 × scale 450M 0.87M 33.75 0.922 29.90 0.834 28.81 0.798 27.23 0.832
Global L2 450M 1.13M 33.89 0.923 30.01 0.836 28.88 0.800 27.45 0.837

Group Lasso 452M 1.14M 33.39 0.920 29.72 0.835 28.67 0.801 26.90 0.825
DHP 459M 0.92M 34.04 0.927 30.10 0.843 28.92 0.807 27.52 0.840
ASSL 450M 0.87M 34.10 0.928 29.83 0.844 29.02 0.809 27.74 0.847

MOSP (Ours) 450M 1.42M 34.27 0.929 30.19 0.845 29.01 0.810 27.84 0.848
Unpruned 600M 1.55M 34.19 0.929 29.88 0.845 29.03 0.810 27.86 0.849

Table A.3: Comparisons on image super resolution

Algorithm 1: Memory-Oriented Structured Pruning (MOSP)
Notation:
l: a layer in one layer group or the given model.
g: a group of layers co-exist in the memory.
G: a set containing all the layer groups.
gpm: the layer group with the highest peak memory.
θk
g : the pruning scheme of one inner step k.

θt
g: the accumulative pruning scheme of inner steps.

skg : the sensitivity analysis result of the selected group g.
mg: a vector containing per-channel memory overhead of
each layer in group g.
Mp: the peak memory overhead of the current model.
Memory(·): the function that returns the memory of a group
or a pruning scheme.

Input:
Pretrained IR model M, memory constraint Mc, the outer
memory stride mo.

Output:
Pruned IR model M′.

Init: Introduce compactors into M and finetune for several
epochs.
Init: Layer Grouping. Acquire grouped layer set G and mg ,
per-channel memory overhead of layers in each group.

1: while True do
Outer Loop, find the group with highest memory

consumption to prune.
2: Mp = maxg∈G(Memory(g))
3: gpm = argmaxg∈G(Memory(g))
4: mo = min(mo, Mp −Mc)

Inner Loop, allocate the memory sparsity within
the selected group.

5: θt
g = 0

6: while Memory(θt
g) < mo do

7: skg = SensitivityAnalyze(gpm)

8: θk
g = LinearProgramming(gpm, skg ,mg)

9: gpm = ApplyPrune(gpm,θk
g)

10: θt
g = θt

g + θk
g

11: end while

12: Mp = maxg∈G(Memory(g))
13: if Mp > Mc then
14: Break
15: end if
16: end while

17: Rebuild to obtain the pruned model M′. Final Fine-
tune the pruned model M′ for several epochs to regain
performance.

