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Background and Introduction

Metal (to bit line)

heating
element

chalcogenide
(phase change material)

Metal (to sensor line)

Ø Non-volatile memories (such as PCM and RRAM) are highly integrated, scalable,
can be accessed by bit, and could replace DRAM. Still, there are reliability
problems, such as device failure and limited endurance.

Phase change memory, PCM DRAM PCM RRAM NAND
Flash

Nonvolatility x √ √ √

Area(F2) 6 4 4 4

Write
Latency ~1s ns ~10s ns ~10s ns 0.1~1s ms

Endurance >1015 108 106~109 105

3D stacking x √ √ √
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Background and Introduction
Non-volatile memory has limited write endurance and is prone to early hard faults
(Stuck-at faults):

Ø Stuck at ‘0’ or ‘1’

Ø Still readable
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Mean endurance=108 writes



Background and Introduction
Ø Uneven memory access greatly reduces memory lifetime.
Ø Wear leveling technology improves memory lifetime by balancing the

frequencies of writes between memory cells.
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The function of Wear Leveling
https://www.transcend-info.com/Embedded/Essay-22



Background and Introduction

Impact of process variation on memory lifetime

UWL：Uniform Wear Leveling
CoV ：Coefficient of Variance (std/mean)
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Down 2 orders 
of magnitude!

Ø Even with uniform write distribution, process variation from scaling can
significantly reduce memory lifetime.
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Background and Introduction
Ø As the number of faults increases, the remaining lifetime is monotonically

decreasing. Therefore, the number of faults can reflect the relative strength of
the row.

The relationship between the remaining lifetime (or write cycles)
and the number of faults in a 512-bit row.



10

Motivation

Table-based
Bloom filter-based
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RETROFIT: Fault-aware Wear Leveling

Start Gap (single gap)
M. K. Qureshi et al, MICRO 2009 
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RETROFIT: Fault-aware Wear Leveling

Start Gap (single gap)
M. K. Qureshi et al, MICRO 2009 
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RETROFIT: Fault-aware Wear Leveling

Start Gap (single gap)
M. K. Qureshi et al, MICRO 2009 
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RETROFIT: Fault-aware Wear Leveling

RETROFIT(single gap)

M. K. Qureshi et al, MICRO 2009 
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RETROFIT: Fault-aware Wear Leveling

Memory controller design to implement RETROFIT
LA: Logical address
PA: Physical address
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GPS to Enhance RETROFIT
Ø Retired rows often have only one uncorrected fault. A big waste of resources!
Ø Redesign retired rows as Protecting-page pointers (PPPs). A 512-bit row can

be designed as 28 PPPs, which can additionally correct 28 in-page faults.
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GPS to Enhance RETROFIT
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GPS to Enhance RETROFIT
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GPS to Enhance RETROFIT
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Column-level Wear Leveling
Ø Rotate the row being copied whenever the Gap moves.
Ø The error correction bits are reused in the rotation to reduce the bitflips. They

are idle for a significant amount of time before a fault occurs.
Ø In order to support multiple Gap rows, the Start and Gap registers are

extended to 10 bits and 5 bits.
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Put it all together
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Results

Based on Monte Carlo simulation, for the average results of 1000 endurance
maps, RETROFIT and RETROFIT_GPS are 0.6x and 3.5x higher than SOTA
respectively, and RETROFIT is 0.6x higher than UWL+RS (previous upper bound).

Ex stands for ECPx, Gx stands for x Gap lines per page
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Results

Based on the results of the SPEC2017 benchmarks, for the average results of
1000 endurance maps, RETROFIT and RETROFIT_GPS are 0.6x and 5.4x
higher than SOTA, respectively.

E0

E1
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Results

For the worst-case results of 1000 endurance maps, RETROFIT and
RETROFIT_GPS are 2.6x and 16.0x higher than SOTA, respectively.

E0

E1
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Results

Based on the Monte Carlo simulation, for the average results,
RETROFIT_CL_WL and RETROFIT_GPS_CL_WL are 1.1x and 2.4x higher than
SOTA, respectively, and 0.6x and 1.5x higher than UWL.

Ex stands for ECPx, Gx stands for x Gap lines per page
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Results

The proposed schemes reduce performance by 1.41%~5.17% and produce a
delay of up to 22ns. The overall overhead is affordable.

Ex stands for ECPx, Gx stands for x Gap lines per page
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Conclusion
ØProcess variation aggravates the uneven strength between rows and
bits in a row. Even if the memory is accessed uniformly, the memory lifetime
will decrease by two orders of magnitude;

ØRETROFIT uses the number of faults in rows to reflect the strength of
the rows and implements biased wear leveling to break through the
theoretical upper limit of uniform distribution and increase lifetime by 0.68x;

ØGPS further improves lifetime by reusing retired rows, prolonging wear
leveling, and improving the utilization rate of error correction capabilities;

ØColumn-level wear leveling reduces the average bitflips by reusing idle
error correction bits and supports RETROFIT compatibility with multiple
sparing rows;

ØThe results show that RETROFIT_GPS can increase the memory lifetime
over SOTA by 5 times, exceeding the uniform wear leveling by 1.5 times;

ØRETROFIT can also address the challenges of weak cells caused by DRAM
bitline/wordline crosstalk, noise, single event upsets (SEUs), etc.
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