
A Mobile Robot Experiment System with Lightweight Simulator
Generator for Deep Reinforcement Learning Algorithm

Yunfei Xiang1∗, Jiantao Qiu1,2∗, Jincheng Yu1, Jiahao Tang1, GuangJun Ge1, Yu Wang1 and Huazhong Yang1

Abstract— More and more researchers are trying to use deep
reinforcement learning (DRL) for mobile robot tasks due to
its powerful inference capability. However, deep reinforcement
learning requires a large amount of data for DRL training in
the pre-experimental stage, which hinders the application of
the algorithm. On the other hand, the inconsistency between
the ROS data interface and DRL GYM-Like data interface
leads to a high cost of migration of the algorithm verification.
This paper proposes a fast simulator generation method using
linear approximate kinematics model and bake-based lidar
rendering methods to generate a fast approximate simulator
used in the pre-experiment stage to solve the problem of
data cost. At the same time, an experimental system design
scheme that converts the ROS interface into a GYM-like
interface is also proposed to simplify the deployment process
of deep reinforcement learning. We evaluate our proposed
method on collision avoidance tasks in a variety of kinematics
models and lidar scenarios. Our Method achieves about 14.2
times kinematics simulation speedup and 2.56 times lidar
rendering speedup. We open-sourced our simulation environ-
ment and robot system software at https://github.com/
efc-robot/MultiVehicleEnv and https://github.
com/efc-robot/NICS_MultiRobot_Platform

I. INTRODUCTION

With the development of Deep Reinforcement Learning

(DRL), the inference ability of artificial intelligence (AI)

has been improved. For example, DRL helps AI outperform

humans in many tasks, such as Goes [1], Mahjong [2],

and StarCraft [3]. The success of DRL in these game tasks

shows the application prospect of DRL in mobile robot tasks.

Actually, the previous work has introduced DRL to mobile

robots navigation in dynamic environments [4], [5]. As a

data-driven method, DRL needs to collect massive data for

policy training. For example, the training of a simple multi-

agent navigation policy consumes 2× 106 attempts [4]. It is

impossible to conduct so many experiments in the real world,

so DRL depends on simulators. In order to implement the

DRL algorithm on a real robot, the first step is to model the

kinematics and sensor of the robot in the simulator, then train

∗Equal contribution
1Department of Electronic Engineering, Tsinghua University, Beijing,

China. yu-wang@tsinghua.edu.cn
2Currently working at Shanghai AI Laboratory, Shanghai, China. This

work was completed in Tsinghua University.
This research was supported by National Key Research and Develop-

ment Program of China (No. 2019YFF0301500), National Natural Science
Foundation of China (No. U19B2019, M-0248), Tsinghua-Meituan Joint
Institute for Digital Life, Tsinghua EE Independent Research Project,
Beijing National Research Center for Information Science and Technology
(BNRist), and Beijing Innovation Center for Future Chips.

and verify the DRL algorithm in the simulator, and finally

deploy the algorithm on the real robot as shown in Fig. 1.

Real Robot Simulator

Kinetics

Sensor

Deep Reinforcement Learning

Training & VerificationEvaluation & Adjust

Fig. 1: Development process of applying deep reinforcement learn-
ing on mobile robot. Building a simulator with the kinematics model
and sensors of the real robot as data source is usually the first step.

In order to make the DRL policy adaptive to the real

environment, some simulators finely model the kinematics

and sensors, such as the widely used Gazebo [6] and AirSim

[7]. However, these fine-grained simulators are not fast

enough for DRL training, which costs weeks for millions of

attempts, reducing the experimental efficiency of researchers.

For efficient data collection, DRL researchers often design

fast simulators at a high level of abstraction. The data

collection costs can be reduced from weeks to tens of hours.

[4], [5].

However, the simulators used by current DRL developers

lack physical constraints. For example, MADDPG [5] models

each agent as a particle, which can change its moving

direction and velocity arbitrarily, resulting in the failure of

the trained policy on the real robot.

Developing simulators according to a specific task and

robot with detailed physical constraints needs large effort,

which becomes the bottleneck of DRL research. There are

two main challenges to build the fast simulator:

From the perspective of real-to-sim, it is challenging to

model different types of sensors and kinematics constraints,

which results in the inability of the simulator for a specific

task to quickly migrate to other tasks. For example, the

Ackerman simulator uses two control signals (rear wheel

speed and front wheel angle) for movement. The simulator

needs to be re-built to control the differential vehicle, whose

two control signals are the left and right wheel speed.

From the perspective of sim-to-real, the widely used inter-

faces differ between DRL field and robotics field. The DRL

researchers use GYM-like [8] simulators, which provide

synchronization sensor and control interfaces for the DRL

policy. However, real robots provide asynchronous interfaces

such as ROS [9]. Thus, additional costs are required to

deploy the DRL policy (if it works) on real world robots.

To address the above challenges about real-to-sim mod-

eling and sim-to-real deployment, we propose a method to

generate fast simulators from a high-precision simulator or

actual environment and design a framework to connect the

GYM-like interface of DRL to the ROS interface on real

robots. The contributions are as follow:

• We propose fast kinematics modeling method and

fast Lidar sensor rendering method, providing a large

amount of data at low costs for DRL training.

• We provide unified sim-to-real interfaces and their

paradigm, supporting the collaborative development of

DRL policy and real robot systems.

• We build and open-source the generator of the fast

simulator from high-precision simulator with unified

interfaces.

The remaining of this paper is organized as follows:

Section II introduces typical research methods of DRL and

robotics. Section III gives a brief review of related work.

The real-to-sim simulator generation method is detailed in

Section IV and evaluated in Section V. The sim-to-real

interface and system are described in Section VI. Section

VII concludes this paper.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning models the system as a Markov

decision process (MDP): 〈S,A,P,O, r〉. The state space S
is the set containing all possible states of the system. The

action space A is the set containing all possible actions that

one agent can take. When the system is in the state st ∈
S and takes one action at ∈ A, the next state st+1 obeys

conditional distribution P(st+1|st, at) which is the transition

probability function. The state transition probability function

describes the transition characteristics of the system state

when the control signal is given, which is similar to the

kinematics function in the field of robotics.

In each time step, the agent takes action at which obeys

at ∼ π(at|ot) and then obtains the next observation ot+1

and the reward rt = r(st, at) , where ot is the observation

ot = O(st) and π is the policy function.

Reinforcement learning obtains transition data

(ot, at, rt, ot+1) from interaction with the environment

and uses methods such as Q-learning [10], policy gradient

[11], [12], [13] to improve the policy. Recent advances

integrate DRL and deep learning and thus make full use of

the development of computing power. However, the DRL

algorithm has the problem of low data efficiency [14], and

there are a large number of hyperparameters in the algorithm

[15], which need to be adjusted through many experiments.

The deployment of DRL algorithms requires the training

process to be repeated many times, which brings huge data

calculation overhead and hinders the application of DRL in

real world tasks.

B. Mobile Robot

There are many types of mobile robots, including wheeled

robots (Ackerman wheel, differential wheel, Mecanum

wheel, etc.), underwater robots, drones, etc. A mobile robot

generally includes a motion controller, some sensors, a cen-

tral control and calculation module, a power supply module,

and a wireless communication module.

The main body of the movable robot moving on the 2D

plane is regarded as a rigid body, and the position of the

robot is usually represented by the 3-degree-of-freedom(3-

DOF) transformation matrix of the rigid body relative to the

earth coordinate system T (t) = [R(t), p(t); 0, 1] [16]. The

coordinates of the components in the robot relative to the

main body determine the internal state of the robot S(t) ∈ R
I

and I-DOF are introduced. The global state of the robot is

determined by the generalized coordinates and generalized

velocities corresponding to these 3+I-DOF.

By applying a control signal C(t) ∈ R
J on the motion

controller, the internal components of the robot change

the internal state and interact with the environment, which

will change the global state of the robot. The kinematics

function of the robot can be expressed as [Ṫ (t), Ṡ(t)] =
f(S(t), C(t)). The simulator computes the increment of each

dimension of the state according to the kinematics function

and transforms the increment into the earth coordinate system

for accumulation to obtain the global state of the mobile

robot.

In the real world, mobile robots need to perceive their

own state and the environment through various sensors, and

make decisions based on the input data. Different kinds of

sensors have their own data format and sampling frequency.

These sensors collect data asynchronously and publish them

to other components for subsequent processing.

III. RELATED WORK

As described in Section II, DRL is used to solve the step-

by-step MDP problem. GYM[8], developed by OpenAI Inc,

is a widely used DRL platform that provides a simulator,

different tasks, and synchronous data interfaces for MDP. For

multi-agent DRL, OpenAI open-sources Multi-agent Particle

Environments (MPE) [5] provides a simulator with GYM-

like synchronous interfaces and a set of tasks such as multi-

robot collision avoidance and pursue & escape.

The current work using DRL on robotics also adopts

GYM-like interfaces. Chen et al [17] use DRL to solve

the challenging multi-robot collision avoidance task with

static obstacles. Semnani et al [4] further expand DRL

to multi-robot collision avoidance in dense and dynamic

environments. Both Chen and Semnani model the robot as

a particle and give the moving direction and velocity as the

outputs of policy to control the robot, which conflicts with

real robot physical constraints. For example, the robot can

move laterally in the simulator, but the real world Ackerman

robot cannot laterally move.

In recent work, researchers attempt to provide DRL sim-

ulators with real world physical constraints. Amazon Inc

develops DeepRacer [18], which provides a simulator for

the robot to compete with a predefined Ackerman vehicle.

DeepRacer also provides a real car and corresponding inter-

faces to facilitate the migration of the algorithm trained in

the simulation to the actual system. However, DeepRacer is

only suitable for racing, not for other tasks. Robotarium [19]

designs a multi-agent simulator (for developing & validation)

together with a remote accessible test field (for deployment).

However, robots in Robotarium are not equipped with sen-

sors, so Robotarium only supports simple tasks. Similarly,

OffWorld-Gym [20] also offers a remotely accessible test

field where the robots are equipped with a camera. OffWorld-

Gym also models the environment and exposes a simulation

environment based on Gazebo. Due to the insufficient effi-

ciency of Gazebo, DRL data requirements of DRL cannot

be met. Robopheus [21] uses data-driven methods instead of

manual models for calibration, and thus it can quickly build

scenes in Gazebo simulator for a given actual environment.

Although Robopheus uses a fast calibration method and

ROS interface to support multiple tasks in simulation and

real world, the slow simulation speed and asynchronization

interface makes it unsuitable for DRL.
To sum up, the present simulation environments including

actual physical constraints are based on the slow Gazebo

emulator [18], [21], or provide fast simulators for a few

particular tasks [19], [18]. The above environments cannot

meet the data requirements of DRL, nor can they validate

DRL algorithms in different tasks.
We provide a simulator generation framework, which can

customize a fast simulator for different tasks. The generated

simulator not only has fast simulation speed, but also has

conversion from the DRL GYM-like interface to the real

robot ROS interface.

IV. LOW-COST SIMULATOR APPROXIMATION METHOD

A. Linear kinematics Approximate Method by Taylor Expan-
sion

In order to reduce a large amount of computation overhead

caused by complex kinematics simulation, it is necessary to

build the robot kinematics model and simplify the calculation

as much as possible. Since the kinematics models of robots

with different structures are different, we use linear functions

to build the kinematics model, and only select the variables

with the largest correlation coefficients in the simulator.

This method reduces the amount of calculation required

for kinematics simulation and does not require detailed

knowledge of the internal structure of the robot.
We construct the linear approximate kinematics function

of the mobile robot based on [Ṫ (t), Ṡ(t)] = f(S(t), C(t)).
We merge S and C into X , and T and S into Q ∈ R, and

study the relationship between X and Q̇ in the i-th DOF q̇i.
For q̇i = fi(X), we take the second-order Taylor expansion

at X = 0 to get

q̇i(X) = fi(0) +∇fi(0)
TX +

1

2
XTHi(0)X + · · · (1)

T1 T2 T3··· TK

T1 T2 T3··· TK

T1 T2 T3··· TK

01011
Look-up Fusion

Pre-rendering

Senario

Fig. 2: Bake-based Lidar rendering method. Generate pre-rendering
table and fusion the lookup result when rendering.

The above formula can be regarded as an approximate

linear model of q̇i about the constant term, the first order

term, the quadratic term, and the cross term of X . The kine-

matics model using linear approximation can be expressed

as Q̇ = AX , where X = vec([1, X]⊗ [1, XT]) .

We collect data from Dt = (t, Qt, Xt,ΔQt) in the high-

precision simulator, and input it into the above linear model

to get the model parameters by fitting. However, in the above

model, there are some pairs of independent variables and

dependent variables that are not statistically correlated. The

direct use of all parameters in the model coefficient matrix

will cause the introduction of systematic deviations, and

additional calculations will also be added. Therefore, it is

necessary to prune the independent variables that have no

remarkable correlation with the dependent variable when the

linear fit is obtained.

We divide each independent variable by its own standard

deviation, so that the coefficients corresponding to each

independent variable can be compared with each other. After

that, we sort all the absolute value coefficients in descending

order to get |β1| ≥ |β2|, · · · ≥ |βN |, select the biggest-k

values so that

k∑

1

|βi| < α
N∑

1

|βi| <
k+1∑

1

|βi| (2)

Among them, 0 ≤ α ≤ 1 represents the filtering threshold.

The larger the α, the more terms will be retained. By

adjusting the size of α, we can trade-off between accuracy

and calculation speed.

B. Bake-based Lidar Rendering Method

In order to avoid a large amount of computational over-

head caused by real-time rendering of lidar, we borrowed

the “baking” method in the 3D game engine. This method

includes: 1. Modeling the perception equation of lidar. 2. Pre-

rendering and store the lidar perception results of a single

object in some possible situations. 3. Reading the stored

results and merging them into the final result during the

simulation. The bake-based Lidar rendering method is shown

in the Fig. 2.

1) Lidar Perception Model: In our system, obstacles are

modeled as rigid cylinders, and all surfaces have good diffuse

reflection characteristics for the laser. The attributes of an

obstacle include: transformation related to the earth TO ,

surface information PO. A lidar is modeled as emitting lasers

in multiple directions simultaneously from the center point,

and measuring the distance from the edge of the obstacle

that each laser hits to the center point of the lidar. The

attributes of lidar include: transformation related to the earth

TL, laser ranging range [Rmin, Rmax], laser angle range

[αmin, αmax], and lidar resolution Nlidar, we collectively

refer to the attributes other than TL as PL.

Considering a scene with one lidar L and M differ-

ent obstacles [O1, · · ·Om, · · ·OM], the ranging result is an

Nlidar-dim vector Rlidar.The lidar perception model RL =
L(L,O1, · · ·OM) can be obtained by the following formula:

L(L,Om) = L(TL, TOm
, PL, POm

) = L(TLOm
, PL, POm

)
(3)

L(L,O1, · · ·OM) = min(L(L,O1), · · · L(L,OM)) (4)

Where TL and TOm are the transformation matrix of

the lidar L and the obstacle Om related to the earth and

TLOm is relative transformation matrix between L and Om.

Formula (3) indicates that when the parameters of the lidar

and the obstacle remain unchanged, the perception result

is only determined by the relative position of the two.

Equation (4) indicates that the laser is always reflected after

encountering the first obstacle, so the perception result of

multiple obstacles is consistent with the minimum distance

of each obstacle.

2) Pre-rendering Lookup Table: In order to build a lookup

table for pre-rendering, we fix the lidar at the origin of the

coordinate system, list all obstacles [O1, · · ·OM] with differ-

ent boundaries, formulate a coordinate list T = [T1 · · ·TK]
for each obstacle, and render Lk,m = L(Tk, PL, POm

) one

by one by using the high-precision lidar rendering function.

When rendering, the position of the obstacle is limited to

the main axis of the lidar, only the relative distance between

the obstacle and the lidar and its own rotation angle are

scanned, and the rendering results of different azimuth angles

are obtained directly through rotation. The angle error of the

rendering result is smaller than 2π/(2Nlidar) according to

the rotational symmetry with the relative azimuth angle of

lidar.

3) Rendering by Lookup and Fusion: After constructing

the rendering result table L̃(k,m) = Lk,m and the corre-

sponding index T , each time the observation function is

called in the DRL algorithm training, the measurement result

of the lidar can be obtained by the way of “Lookup and

Fusion”. For each lidar L, for the obstacle Om within its de-

tection range, we calculate the relative position TLOm , get the

closest option in the T according to argmink ||T−1
k TLOm

||,
and look up the table to get Lk,m as the rendering result

of a single obstacle. After obtaining the rendering result

Lk,1 · · · Lk,M of all obstacles in the detection range, the

approximate result of the current lidar can be obtained by

TABLE I: RMSE and FPS of the linear kinematics model for three
different kinematics model

Kinematics
RMSE

FPS(s−1)
Δx(m) Δy(m) Δθ(rad)

Ackerman 3.08× 10−9 9.71× 10−6 9.89× 10−5 9.01× 104

Differential 2.56× 10−7 5.11× 10−9 1.56× 10−16 5.72× 104

Mecanum 1.23× 10−17 9.41× 10−18 3.75× 10−17 4.73× 104

taking the minimum value of each dimension measurement

result.

V. EXPERIMENTS AND RESULTS

A. Error Analysis of Linear kinematics Approximate Method

In order to test the kinematics error of our proposed

method, we extract kinematics for three typical wheeled

robots (Ackerman, Differential, and Mecanum) models. The

three kinematics models and the meaning of the variables

are shown in Fig. 3.

φ

x

y

θ
v

x

y

θ

v1

v2

x

y

θ
v1

v3

v2

v4

Main rigid body

Normal wheel
Mecanum Wheel

a) Ackerman

b) Differential

c) Mecanum

Fig. 3: Three kinds of robot with different kinematics

We use the kinematics models from the textbook [16] to

do the simulation with simulation time step Δt = 0.001s to

generate data as data source ground truth. We use the pro-

posed linear kinematics model to approximate the kinematics

models. We report the RMSE between our linear model and

the original model in Table I.

We also run the gazebo simulator with one Ackerman

robot on an empty plane and set “real time update rate”

as 0 to do the simulation as fast as possible. The running

frame rate of gazebo is 6.358 × 103 FPS, and our method

achieves a speedup of about 14.2 times.

B. Error Analysis of Bake-based Lidar Rendering

In this section, we will analyze the errors caused by the

baking-based lidar rendering method. In order to measure our

proposed baking-based lidar rendering method, we design

four scenes containing different types of obstacles.

In the scenes, we fix the lidar at the center of the field and

randomly place the positions of all obstacles to obtain the

lidar perception results of different rendering methods. We

use a rendering method based on computational geometry

scanning as the baseline, and also use this method as a high-

precision simulator for pre-rendering and obtaining a lookup

table. We then use the bake-base method to obtain the lidar

perception results in the same scene. The following table

TABLE II: Distance RMSE and Area RMSE of bake-based method
for difference sampling scenes

Sence
Scan-mode Bake-based
FPS(s−1) FPS(s−1) RMSE (m) RMSE (m2)

Circle 5.73× 101 3.30× 102 8.47× 10−2 5.63× 10−3

Square 3.64× 100 3.32× 102 8.88× 10−2 6.71× 10−3

Strip 4.16× 100 3.24× 102 1.05× 10−1 9.86× 10−3

Mixture 5.70× 100 3.39× 102 9.06× 10−2 7.20× 10−3

Average 5.65× 100 3.31× 102 9.23× 10−2 7.35× 10−3

TABLE III: Area RMSE of bake-based method for different sam-
pling density cases

Table Size 100× 240 50× 240 100× 120
Shape RMSEA(m2)

Circle 5.63× 10−3 1.76× 10−2 5.58× 10−3

Square 6.71× 10−3 2.34× 10−2 6.99× 10−3

Strip 9.86× 10−3 3.46× 10−2 1.15× 10−2

Mixture 7.20× 10−3 2.65× 10−2 8.65× 10−3

Average 7.35× 10−3 2.55× 10−2 8.18× 10−3

records the rendering time of the two rendering methods

in different scenes, as well as the RMSE of the distance

measurement and the area measurement.

It can be seen from Table II that our method can achieve

a speed increase of 2 orders of magnitude compared with

the method of computational geometry. The average RMSE

of the distance is 9.23 × 10−2(m) in all scenes, which is

3.08% relative to the maximum measured distance 3(m),
and the RMSE of the area is 7.35 × 10−3(m2), which is

0.25% relative to the maximum detection area. Table II also

shows that the shape of strip has a larger error than circle

and square, due to its relatively large size and large aspect

ratio. We also run gazebo with the same scenes to record

the frequency of the lidar. We set the update frequency as

1000 so the gazebo will update lidar data as fast as possible.

The average frequency of gazebo lidar is about 370Hz with

290% CPU Utilization. Our method runs with 100% CPU

Utilization and have about 2.59 times speedup.

In order to further investigate the relationship between the

density of the table and the error, we set three different rules

for the table. One is 100 equal divisions in the distance and

240 equal divisions in the angle, the other two are reduced

by half in distance and angle respectively. And we measure

the area RMSE relative to the scan-mode method in four

different scenes.

As can be seen from Table III, after reducing the distance

sampling density, the error increases by 3.47 times on

average. The decrease of the sampling density of the angle

has a relatively small effect on the error. This means that in

the case of the same table building time budget and storage

budget, denser distance sampling and fewer angle sampling

should be used.

In order to further verify the effect of the lidar of our

algorithm in a more intuitive way, we draw the lidar point

cloud from different data sources. The robot moves follow a

fixed path in a scene with 4 obstacles and collect lidar data

points from 3 different environments. The lidar point cloud

is transformed into the earth coordinate system through the

Trajectory
Obstacle
Point cloud

Fig. 4: Lidar point cloud result plot from a) scan-mode, b) bake-
based, c)gazebo and d) SLAM point cloud.

pose of the robot for drawing and superimposed to obtain

the lidar point cloud. We draw the cloud point by the data

from scan-mode, bake-base, and gazebo environment, and

the results are plotted in Fig. 4. It can be seen from the

plot that the point cloud of the three methods have very few

differences. We also run SLAM algorithm [22] by the bake-

based method data and plot the cloud point in the 4 d), the

result show that our lidar data can support SLAM algorithm.

VI. DRL-ROBOT EXPERIMENT SYSTEM

To apply the DRL algorithm in the robot system, it is

necessary to transfer the trained policy function to the robot

system. The data obtained by the sensor is used as input,

and the output of the policy function is used as the control

quantity of the robot. To reduce the additional maintenance

cost caused by frequent modification of the DRL task de-

scription in the algorithm migration process, we borrow the

task description software specifications commonly used by

MARL researchers and reuse the MARL task description

in the actual robot system. At the same time, a unified

data interface is provided for the strategies obtained by

MARL training, which allows the DRL task description to

be modified to the robot system at almost no cost.

A. System Design Guidelines

We analyzed the structure of the “DRL algorithm +

simulator” system during the training process and divided it

into the DRL front end and the Simulator. The DRL front end

contains the policy function, which provides data observation

call-back and external output actions for the policy. The

simulator part contains kinematics simulation and sensor

perception modules. The observation callback function of

Action
Vector

Policy
Function

Observe
Vector

Observe
Callback

Property
Interface

State
Interface

Sensor
Interface

Control
Interface

Property

Controller

State

KineticsSensor

Action
Vector

Policy
Function

Observe
Vector

Observe
Callback

Property
Interface

State
Interface

Sensor
Interface

Control
Interface

Property

State

KineticsSensor
Data

Predict

a) Training on simulator b) Evaluation in real world

SimulatorDRL
Frontend Physical-worldInterface DRL

Frontend Interface Middleware

Fig. 5: Training and Evaluation of Robot System for DRL. The state and property of the robot can be directly accessed by the DRL
algorithm in the simulator. In the real robot system, a middleware subscribes to the corresponding topics and provides data through a
unified data interface. The DRL algorithm can access the latest data through the interface.

DRL can directly read the sensor data, property, or the state

of the robot from the simulator to obtain observation results

to generate an observation vector.

But in the “DRL algorithm + middleware + robot” sys-

tem, the true value of the robot state and attributes cannot

be directly obtained due to the kinematics process of the

real robot system running in the real physical world. It is

necessary to calibrate the system in advance to obtain the

system properties. Sensors are used to collect sensor data

during the mission and sensor data are used to predict the

current system state. The DRL-Robot system framework is

shown in Fig. 5.

B. Development and Deployment

a) GUI of Fast Simulator

b) GUI of gazebo c) Real robot environment

Circle obstacle

Target point

Strip obstacle

Agent robot

Lidar range

Fig. 6: Navigation and obstacle avoidance task in a) Fast Simulator,
b) gazebo and c) real world.

We build a “Fast Simulator” with linear kinematics model

and bake-based lidar rending module, then run a task of

navigating based on the relative coordinates of the target

point and avoiding obstacles through lidar on it. We use the

Fast Simulator as a data source to train the DRL algorithm

and evaluate the policy function on Fast Simulator simulator,

gazebo environment, and real robot environment tasks, as

shown in Fig. 6.

Trajectory
Obstacle
Target point

Fig. 7: Robot trajectory for navigation and obstacle avoidance task
in different environments.

In our experiments, the algorithm trained on the Fast

Simulator can avoid obstacles and reach all target points in

all tasks. The trajectory diagram of the robot in different

tasks is shown in Fig. 7. Moreover, the policy function uses

a consistent interface when testing the DRL algorithm in

three different environments.

VII. CONCLUSION AND FURTHER WORK

In this paper, a fast simulator generation method is pro-

posed to obtain a lightweight simulator for training, and a

mobile robot experimental system with a consistent interface

is used to help verify the DRL algorithm to solve the

problem. We propose a method using a linear kinematics

model and a baking-based lidar simulation method for sim-

ulating arbitrary dynamics of mobile robots and fast lidar

simulations. In addition, an experimental system is designed

that can transform the ROS interface for robots into the

GYM-like DRL interface required by DRL. We have verified

through experiments that the generated simulator can be used

to quickly train and verify the DRL algorithm, run the trained

DRL algorithm on Fast-Simulator, Gazebo, and real robot

tasks with no code modification.

We believe that the current deep reinforcement learning

algorithms in the field of robotics still face problems such

as high data costs, long experimental cycles, and develop-

ment difficulties caused by tight coupling. Nowadays mobile

robots can move in more complex 3-D scenes and have more

complex sensors such as cameras. It is necessary to build

a lightweight simulator generation method for these more

complex environments and accelerate the application of DRL

algorithms in the robotics field.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[2] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao, T. Qin,
T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with deep
reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[4] S. H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How,
“Multi-agent motion planning for dense and dynamic environments via
deep reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3221–3226, 2020.

[5] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” arXiv preprint arXiv:1706.02275, 2017.

[6] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[12] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of mappo in cooperative, multi-agent games,”
arXiv preprint arXiv:2103.01955, 2021.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[14] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Char-
lin, D. Hjelm, P. Bachman, and A. Courville, “Pretraining repre-
sentations for data-efficient reinforcement learning,” arXiv preprint
arXiv:2106.04799, 2021.

[15] J. Wang, J. Xu, and X. Wang, “Combination of hyperband and
bayesian optimization for hyperparameter optimization in deep learn-
ing,” arXiv preprint arXiv:1801.01596, 2018.

[16] A. Mueller, “Modern robotics: Mechanics, planning, and control
[bookshelf],” IEEE Control Systems Magazine, vol. 39, no. 6, pp. 100–
102, 2019.

[17] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 285–292.

[18] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,
T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, and D. Karup-
pasamy, “Deepracer: Educational autonomous racing platform for
experimentation with sim2real reinforcement learning,” 2019.

[19] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 1699–1706.

[20] A. Kumar, T. Buckley, J. B. Lanier, Q. Wang, A. Kavelaars, and I. Ku-
zovkin, “Offworld gym: open-access physical robotics environment for
real-world reinforcement learning benchmark and research,” 2020.

[21] X. Ding, H. Wang, H. Li, H. Jiang, and J. He, “Robopheus: A virtual-
physical interactive mobile robotic testbed,” 2021.

[22] J. Xu, “Open-source 2d-slam,” https://github.com/jan-xu/2d-slam.

