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Abstract—Phase change memory is a promising alternative
to conventional memories such as DRAM due to its density
and non-volatility. Unfortunately, reliability is still a challenge
as limited write endurance, exacerbated by process variation,
leads to increasing numbers of stuck-at faults over the memory’s
lifetime. Error-correcting Pointers (ECP) is a popular proposal
to mitigate stuck-at faults by recording the addresses and the
values of faulty bits in order to extend the memory lifetime.
In this paper, we propose Yoda, a method to extend ECP with
one or a small number of additional encoding bits in order
to dramatically improve the effectiveness and guaranteed fault
correction capability of ECP. Our simulation results demonstrate
that Yoda has a 3.0× improvement in fault coverage compared
to a fault-aware ECP with a similar overhead, while also
providing a 2.5-3.0× improvement over state-of-the-art schemes
with comparable complexity.

Index Terms—Emerging Memories, Reliability, Stuck-at-Fault

I. INTRODUCTION

Phase change memory (PCM) is being extensively studied

as a potential replacement to conventional memories, such as

DRAM and Flash. The scaling of conventional memories to

very small feature sizes has become increasingly challenging

due to physical limitations, yield problems, and poor relia-

bility [1]–[3]. In contrast, PCM is an attractive alternative

due to its scalability, non-volatility, and high density [4]–

[6]. Moreover, PCM is nearing mass production from several

vendors and is the heart of the recently announced Intel XPoint

memory. Unfortunately, PCM does have a limited lifetime due

to write endurance challenges of the phase-change process.

In this paper, we propose a new fault recovery scheme for

stuck-at faults called Yoda. Yoda is compatible with the error-

correction pointers (ECP) technique proposed by Microsoft but

significantly improves the fault protection guarantee by adding

a small number of encoding bits. Thus, Yoda combines the

concept of partition-and-flip style encoding with ECP in order

to allow multiple stuck-at faults to coexist within the same

partition. Moreover, we propose a mechanism to protect the

encoding bits, allowing them to be stored in traditional PCM

which is subject to endurance faults. The resulting correction is

able to correct 3.0× the number of faults of ECP alone and 2.5-

3.0× the number of faults of previous partition and flip with
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similar en/decoding complexity. Additionally, for small and

moderate numbers of faults, Yoda provides better guaranteed

protection than more complex partitioning approaches. In

particular, this paper makes the following contributions:

1) We propose Yoda, a method to extend pointers with

partition and flip capabilities to dramatically improve

guaranteed number of protected bits over pointers alone

with very low extra overhead.

2) We demonstrate a “small” Yoda method that further

decreases the number of required encoding bits to achieve

the same protection of Yoda at the expense of small

additional hardware encoding and decoding overhead.

3) We provide a characterization of the recovery from stuck-

at faults of Yoda and Small Yoda in comparison to ECP

and other comparable partition and flip schemes.

II. BACKGROUND

To tolerate stuck-at-wrong (SA-W) bits, there are generally

three classes of approaches. The first class is partition-and-

flip schemes, such as SAFER [7], RDIS [8], and Aegis [9].

These approaches attempt to partition a data block to separate

stuck-at cells into different groups and use a flag bit to invert

each group. If the stuck-at cell is SA-W in a group the group

is inverted, but if it is stuck-at-right (SA-R), the group is not

inverted. The second class is error-correcting pointers (ECP)

and its related schemes [10]. ECP uses pointers to record

the addresses of stuck-at faults within the memory block and

stores the replacement value to use in place of the one that

could be SA-W in the faulty cell. Finally, fault-correction

strategies such as error correction codes (ECC) [11] can be

used to attempt to recreate the faulty SA-W bits upon subse-

quent read accesses. Other schemes, such as coset encoding,

attempt to reduce energy and extend lifetime by reducing bit

changes [12], [13]. Coset encoding could also potentially hide

stuck-at faults within the memory by encoding the data into

multiple candidates that may not contain any SA-W bits in the

resulting data word, however, these approaches are complex

to implement and cannot guarantee fault correction as they

are probabilistic in nature. Thus, we focus on the three main

categories for description and comparison.
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III. YODA

We propose a technique we call Yoda that intelligently

combines knowledge of SA-R and SA-W bit locations through

pointers, partitioning, and flipping to improve fault tolerance.

Yoda is short for yielding optimized dependability assurance

(Yoda) through one-bit inversion with alloted numbers-of-bits

(Obi-wan). Furthermore, we propose Small Yoda, a method

to decrease the encoding storage overhead of Yoda-N at the

expense of more complex encoding/decoding logic.

The N in Yoda-N refers to the number of partition-and-

flip groups the error-correcting pointers can be partitioned

between. Thus, Yoda-0 extends ECP where it only points to

stuck-at-wrong bits and Yoda-1 is a special case to optionally

flip the entire data block (1 group) before pointing to the min-

imum of the SA-R and SA-W bits [14]. Yoda-N generalizes

this idea to multiple groups.

A. Yoda-N

In Yoda-N , we partition the data block into N groups1,

similar to Flip-N-Write (FNW) [15]. For each group, we use

an inversion bit to store the status whether the group should

be inverted based on the majority of stuck-at faults in the

group. After inverting the data block using the flag bits, if

there are uncorrectable faults, we use pointers to record their

addresses to mitigate them. Pointers could point to faults

within a particular group, be spread across many groups, or

some hybrid between.

In Figure 1, we illustrate an example for which the stuck-

at faults can be tolerated using two pointers by Yoda-2

(partitioning into two groups), but cannot be tolerated by Yoda-

0, or Yoda-1. Yoda-2 only requires one additional encoding bit

over Yoda-1. There are seven faults in the data block, including

three SA-R bits and four SA-W bits. The data block is

partitioned into two groups, one containing the most significant

bits (group1) and one containing the least significant bits

(group0). The zeroth group has three SA-W bits and one SA-R

bit, so the group is inverted and the corresponding inversion

bit is encoded as ‘1’. The first group has two SA-R bits and

one SA-W bit, so the corresponding inversion bit is encoded as

‘0’. After this inversion step, there are only two uncorrectable

faults remaining: one inverted SA-R bit in the zeroth group and

one SA-W bit in the first group. To tolerate these faults, two

pointers are used to point to these locations. In this case, ECP,

1Yoda refers to Yoda-N in the remainder of the paper.

Fig. 1: Example of Yoda for N=2 (Yoda-2) with two pointers.

Yoda-0, and Yoda-1 require seven, four, and three pointers (61,

36, and 28 auxiliary bits), respectively, to tolerate all the faults

while Yoda-2 requires only two pointers with two flag bits (20

auxiliary bits).

1) Small Yoda: For systems requiring three or more point-

ers, the pointers for Yoda can be compressed at the expense

of additional encoding and decoding overhead. We call this

extension to Yoda, “Small” Yoda. The space overhead of

Small Yoda (also referred to as Yoda-S) can be reduced

to be lower than Yoda-1 or Yoda-0. An example of this

compression is most clearly illustrated in the case for Yoda-

2 with three pointers. The data block is partitioned into two

groups, each with 256 bits. Relative to the 512-bit block, if

the most significant bit (MSB) of a pointer is ‘0’, the pointer

corresponds to a faulty bit in the zeroth group, while if the

MSB of a pointer is ‘1’, the pointer links to a faulty bit in

the first group. The MSB of each pointer can be removed and

replaced with an encoding of the grouping, and in the case

of Yoda-2 with three pointers there are four permutations of

pointer locations: “00”: three pointers in group zero, “01” two

pointers in group zero one in group one, “10” one pointer in

group zero two in group one, and “11” all pointers in group

one. In this way, by using two bits to store the permutations

of the three pointers we actually save one auxiliary bit.

As more pointers are available and the data block is parti-

tioned into more groups, we can save even more bits through

this compression. For example, if the data block is partitioned

into four groups (Yoda-4) with six pointers to mitigate 13

stuck-at faults, then Small Yoda-4 with six pointers saves five

and two auxiliary bits over Yoda-4 and Yoda-1, respectively.

In general, the number of encoding bits depends on the

number of pointer grouping permutations. For example, if

there are m grouping permutations, we require �log(m)�
encoding bits. If the data block is partitioned into N groups,

the length of each pointer can be compressed to 9-�log(N)�
bits. If there are k pointers, the savings through compression

is k�log(N)�-�log(m)�. To compress the pointers, we require

a small lookup table to translate the grouping modes to the

corresponding code of the encoding bits. Notably, the fault-

tolerance capacity of Small Yoda is equivalent to that of Yoda.

The reduced space overhead is achieved by a tradeoff in the

encoding and decoding complexity.

IV. FAULT-TOLERANCE GUARANTEE

Figure 2 shows the required overhead to guarantee correc-

tion for a 512 bit block. The cost for Yoda increases linearly.

As with traditional ECP, the slope for Yoda-0 is sharper as

it requires 9 bits or 10 bits more (essentially an additional

pointer) to tolerate an extra fault. The slopes for Yoda-1 (4.5

bits/fault), Yoda (4.9 bits/fault), and Yoda-S (4.2 bits/fault) are

less sharp. This is due to the fact that with k pointers, Yoda-0

can guarantee protection of k stuck-at faults, while Yoda-1,

Yoda, and Yoda-S can guarantee correction 2k+1 faults.

These results indicate that Yoda has a clear scalability

advantage over ECC, SAFER, and RDIS. In addition, SAFER,

ECC-1, RDIS, and Yoda can be implemented using logic in the
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memory controller. In contrast, Aegis requires a series of large

look-up tables for its implementation, because its encoding

algorithm is considerably more complex than SAFER, ECC-

1, RDIS, and Yoda. Moreover, Aegis requires potentially many

tests of different irregular partitions to attain the required

protection, whereas Yoda is deterministic and can determine

the encoding directly. Regardless, Yoda provides a better

fault-tolerance guarantee for small, moderate, and very large

numbers of faults. Furthermore, while Yoda-S would require a

look-up table for partitions with more than two groups, it still

follows the same deterministic encoding algorithm as Yoda,

making it much lighter weight than Aegis.

V. EVALUATION

To evaluate the efficacy and cost-effectiveness of Yoda for

tolerance to stuck-at faults, we experimentally compare Yoda

with SECDED ECC, FNW, and three comparable overhead

error recovery schemes, which were designed for stuck-at

faults: ECP, SAFER, and RDIS. We assume that, by using

a read-after-write method [16], a fault cache [9], or a compact

bit-level fault map [17], SA-R and SA-W faults may be dis-

tinguished for encoding. To ensure the fairest comparison, we

use fault-aware ECP with k pointers (Yoda-0k). For SAFER

we also provide equivalent fault information. Similarly, it is

denoted as SAFERN where N means the number of partition

groups. For RDIS, we apply recursive partitioning three times

to represent RDIS (RDIS-3) [8]. In the evaluation, we separate

Yoda-1 from Yoda for reference as Yoda-1 is a powerful

special case of Yoda. Small Yoda (Yoda-S) is equivalent to

Yoda for fault-tolerance but with reduced space overhead at

the expense of higher encoding and decoding complexity.

A. Experimental Methodology

In our evaluation, stuck-at faults can be tolerated in a data

block for each of the schemes as follows:

1) For a Hamming code based error correction (ECC-164),

one SA-W and any number of SA-Rs can be tolerated in

each group (64 bits).

2) For FNW, there is no group that has both SA-W and

SA-R bits in the group’s data.

3) For SAFER, after its distinct partitioning, there is no

group that has both SA-W and SA-R bits.
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Fig. 2: Overhead bits to guarantee a particular fault-tolerance.

4) For RDIS-3, after recursively partitioning three times,

SA-R and SA-W bits are fully segmented.

5) For Yoda-0k (Yoda-0 with k pointers), the number of

SA-W bits is not more than k.

6) For Yoda-1k (Yoda-1 with k pointers), if either the SA-R

bits or the number of SA-W bits do not exceed k, the

stuck-at faults in the data block can be tolerated.

7) For Yoda-Nk (Yoda with N groups and k pointers), after

inverting N groups, if the number of uncorrectable faults

throughout all the groups is not more than k, the stuck-at

faults in the data block can be tolerated. Small Yoda-Nk

(Yoda-S N groups and k pointers) has the same fault

tolerance with fewer auxiliary bits.

We use Monte Carlo simulations to conduct our evaluations

of fault-tolerance [7]–[9]. Similar to RDIS and SAFER, we

also assume the auxiliary encoding bits are stored in a separate

fault-free memory [7], [8]. For each cell in PCM memory,

we assume its lifetime follows the normal distribution which

has a mean value of 108 and a 25% coefficient of variance.

We examined a 512-bit data block size with a 4KB operating

system page. We assume writes are uniformly distributed over

the whole memory which is consistent with the expectation

from an effective wear leveling method [18], [19]. Further,

we assume a differential write operation is adopted to further

minimize cell wear-out. In our simulation, we continuously is-

sue page writes to the memory protected by different schemes

until there is an unrecoverable fault. We record the average

numbers of recovered faults in a 4KB page for the various

recovery schemes and the average lifetime improvement of a

4KB page protected over that of an unprotected 4KB page.

B. Memory Lifetime Evaluation

In Figure 3, we compare the average number of recovered

faults by various Yoda variants against SAFER and RDIS-

3. ECC and FNW were omitted because they had much

lower capability. Note that for Yoda, we set the number of

groups (N ) to 2�log2k�, where k is the number of pointers,

in order to have the number of partitions scale along with the

number of pointers. From the figure, we see that Yoda tolerates

more stuck-at faults with the same or even lower overhead
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Fig. 3: Faults corrected before failure in a 4KB page. The number
of auxiliary bits per block is shown above its bar. For Yoda, the
overhead is shown for regular and small Yoda, respectively.
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capacity. For example, Yoda-89 tolerates 908 faults in a page

by using 89 auxiliary bits per 512-bit data block, while Yoda-

010, SAFER and RDIS spend 90, 91 and 96 auxiliary bits

and tolerate only 371, 293 and 364 faults, respectively, per

block. Small Yoda-89 provides further reduction, with the

same 908 faults tolerated with only 76 auxiliary bits. Yoda-

110 is the second most effective scheme (not including any

Yoda-S schemes) that requires 91 auxiliary bits per block and

tolerates 824 faults in a page, which is still less effective

than Yoda-89 and requires two additional auxiliary bits per

block. Furthermore, Yoda-46 with 58 auxiliary bits per data

block tolerates 533 faults in a page, which is larger than the

numbers of tolerated faults for Yoda-010, SAFER and RDIS

with a much higher overhead. On average Yoda provides a 3×,

2.5×, 3× improvement over Yoda-0 (essentially an improved

ECP), RDIS, and SAFER, respectively for similar overhead.

Number of stuck-at faults in a data block
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Fig. 4: Probability of failure with various stuck-at faults per data
block under protection of different recovery schemes.

Figure 3 depicts the number of faults that cause a 4KB

page to fail under different recovery schemes, while Figure 4

illustrates the probability of failure with different numbers of

faults in a data block. The failure probability for SAFER and

RDIS is obtained through Monte Carlo simulations, while the

ones for ECP and Yoda variants are calculated by assuming

that SA-W and SA-R have the same probability (both 50%)

and they are distributed uniformly over different groups in

the data block. ECP and Yoda-0 are not concerned with fault

distribution, while Yoda-1 and Yoda take it into account. In

this figure, before the number of stuck-at faults reaches the

thresholds that the recovery schemes can fully tolerate, the

probability of failure remains zero. Yoda-1 and Yoda tolerate

k+1 faults more than Yoda-0 when using k pointers, so

their failure probabilities begin to rise with k+1 more faults.

RDIS-3 starts to lose its perfect protection capability at three

faults, but its curve keeps a low increasing rate, making this

scheme comparable to Yoda-010 and Yoda-110 on average.

SAFER does not exhibit any advantage over the other schemes

with a similar cost. Among all these recovery schemes, Yoda

manifests a lower failure probability than the other schemes

with a equivalent overhead, and that, as the space overhead

increases, this gap becomes larger. Yoda-1 keeps its trend

to beat Yoda-0, SAFER, and RDIS, illustrating its second

position in fault tolerance.

VI. CONCLUSION

Phase change memory suffers from endurance limitations

which is a challenge for its mass adoption. Technology scaling

and process variation further exacerbate this problem and

reduce the potential lifetime of the memory. In this paper,

we proposed Yoda, which is compatible with the ECP tech-

nique proposed by Microsoft. Yoda substantially improves the

lifetime of PCM by tolerating many more faults than ECP

by adding a small number of encoding bits. Our simulations

show that Yoda significantly improved the efficacy and cost-

effectiveness over ECP, SAFER, and RDIS. Moreover, for

small, moderate, and very large numbers of faults, Yoda

provides a better fault tolerance guarantee than the much more

complex Aegis approach.
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